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authors argue that maintenance of stable physical links 
between cells is a pre-requisite for collective migration [3]. 
Others, on the other hand, have suggested a broader defi-
nition including all large cohorts of cells migrating within 
the same space during a given period of time [2]. The latter 
definition potentially opens the field of collective migration 
to all migratory cells that are not solitary whereas the former 
only includes epithelial-like cells. None of these definitions 
are fully satisfactory, since cooperation and collectiveness 
have been experimentally demonstrated in some mesenchy-
mal cells [5–7], suggesting that collectiveness cannot be 
solely assessed by looking at the stability of cell–cell junc-
tion or at which density cells travel together.

Therefore, it is important to note that the simple observa-
tion of a large number of mesenchymal cells actively migrat-
ing in a given region does not imply collectiveness, as cells 
may simply ignore each other. Therefore, for collectiveness 
to be assessed, a detailed analysis of cell behavior has to 
be performed. The movement of the whole cell population 
should be compared with the behavior of a cell within the 
group and that of isolated cells regardless of the dynamics of 
cell–cell interactions that are taking place. Parameters such 
as velocity, persistence, and cell polarity should be used to 
make the comparison (discussed in [1]).

Mesenchymal cells are produced by an epithelial-mes-
enchymal transition (EMT) (Fig. 1a). During EMT, stable 
cell–cell junctions are disassembled, apico-basal polarity 
is lost, and migratory capabilities are enhanced [8]. Since 
mesenchymal cells do not maintain long-lasting cell–cell 
adhesion, they were considered to have a solitary behav-
ior by default. An archetypal mesenchymal cell would 
be self-propelled and its guidance would only depend on 
external cues present in its direct environment such as 
attractants, repellents, and availability of extracellular 
matrix.

Abstract Directional cell migration is required for proper 
embryogenesis, immunity, and healing, and its underpin-
ning regulatory mechanisms are often hijacked during dis-
eases such as chronic inflammations and cancer metastasis. 
Studies on migratory epithelial tissues have revealed that 
cells can move as a collective group with shared respon-
sibilities. First thought to be restricted to proper epithelial 
cell types able to maintain stable cell–cell junctions, the 
field of collective cell migration is now widening to include 
cooperative behavior of mesenchymal cells. In this review, 
we give an overview of the mechanisms driving collective 
cell migration in epithelial tissues and discuss how mesen-
chymal cells can cooperate to behave as a collective in the 
absence of bona fide cell–cell adhesions.
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Introduction

Collective cell migration is the coordinated migration of a 
group of cells during which cells are influenced by inter-
actions with their neighbors [1–3]. Collective movements 
have been observed during development, wound healing, 
and invasion of cancer cells [2–4].

What kind of interactions are required or sufficient to 
promote collectiveness remains open for debate, as some 
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Epithelial-mesenchymal transition (EMT) is often seen 
as a linear process that starts with a loss of stable junctions 
allowing motility to emerge. However, it is now clear that 
EMT is a complex, reversible, non-linear, multiple-step 
operation that needs not to be systematically completed 
[4, 8–10]. For instance, cells can acquire motile proper-
ties while maintaining cell–cell adhesion and a remnant 
of apico-basal polarity, adopting a metastable state as seen 
during wound healing, vascular remodeling, or mammary 
gland branching [8, 11–14] (Fig. 1). In addition, cells that 
eventually complete EMT do not necessarily disassemble 
their cell–cell junctions at the onset of migration. Some 
cells rupture their cell body leaving pieces behind and most 
mesenchymal cells maintain cell–cell adhesion molecules 
at their surface throughout migration long after they have 
separated from their neighbors [6, 15–23].

Thus, it is clear that there is a gradation of phenotypes 
between a pure epithelial cell type, with its full array of 
cell–cell adhesions [adherens junctions (AJs), tight junc-
tions (TJs), desmosomes, gap junctions] and a typical 
solitary mesenchymal cell type with no cell–cell junctions 
(Fig. 1a). Consequently, mesenchymal cells have the poten-
tial to interact with each other, even though transiently, and 
such interactions may be sufficient for cooperation and  
collective behavior to emerge.

In this review, we will first present the mechanisms con-
trolling collective movement in epithelial tissues where 

collectiveness depends on stable cell–cell adhesion and 
is thus more readily observable. We will then address the 
specific conditions under which collectiveness can arise in 
mesenchymal cells.

Collective cell migration in epithelial tissues

Migratory epithelial cells maintain stable cell–cell junctions 
throughout migration (Figs. 1b, 2a). Although some cell 
types such as branching mammary gland cells or sprouting 
vascular cells do keep TJs during migration [8], the common 
structure observed in all examples of collectively migrat-
ing epithelial cells described so far is the cadherin-based 
AJ. Formation of AJs has been thoroughly documented and 
reviewed [24–27]. Briefly, when two epithelial cells make 
contact, they probe each other using Rac1-driven lamel-
lipodia. These protrusions bring cadherins from the two 
adjacent cells in contact to form primitive AJs. The lamel-
lipodia quickly collapse at their original touching point and 
progress sideways to enlarge the area of interaction [28, 29]. 
Small GTPases activities have to be finely regulated to keep 
contractility at intermediate levels; too low and the contact 
will quickly disassemble, and too strong and it will be dis-
rupted [29–32].

Cadherins interact with a wide range of cytoplasmic 
proteins, which link them to the actin cytoskeleton and the 

Fig. 1  Epithelial-mesenchymal transition and epithelial collective  
migration. a Epithelial-mesenchymal transition (EMT). EMT is a 
complex, non-linear multi-step process that, when completed, con-
verts epithelial cells into archetypal mesenchymal cells. Epithelial 
cells have a clear apico-basal polarity with cell–matrix adhesion 
at their basal side and cell–cell adhesion at their apical side. EMT 
includes: loss of apico-basal polarity; loss of cell–cell adhesion, and 
acquisition of cell motility. Each of these aspects is controlled by 
an array of transcription factors and can, to some extent, be regu-

lated independently. Despite having no cell–cell adhesions, mesen-
chymal cells often express cell–cell adhesion molecules at their cell  
membrane. Cell–matrix and cell–cell adhesion molecules are shown 
in red and brown, respectively. b Collective migration of epithe-
lial cells. When epithelial cells undergo collective migration, they  
maintain part of their epithelial characteristics. For instance, they 
maintain stable cell–cell junctions throughout migration and part of 
their apico-basal polarity. Such an intermediate phenotype is often 
called metastable
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microtubules [30]. Of particular interest is α-catenin, which 
binds to cadherins via β-catenin and recruits additional actin-
binding factors such as vinculin and afadin to link the AJ to 
actin fibers [33, 34]. In addition, cytoplasmic α-catenin can 
interact with actin monomers to compete with the Arp2/3 
complex and prevent excessive actin branching at the site 
of contact [35–37]. Also, cytoplasmic p120-catenin can act 
as a negative RhoA regulator and a positive Rac1/Cdc42 
regulator [38, 39]. Thus, p120 recruitment to the cell–cell 
adhesion complex might alleviate its effect on these small 
GTPases favoring a local increase of RhoA activity. More-
over, E and N-cadherin can directly affect focal adhesion 
turnover [40, 41]. This indicates that AJs can influence cell 
polarity in at least two ways: by inhibiting protrusive activ-
ity at the site of contact, but also favor protrusive activity on 
the opposite side of the cell.

Epithelial cells can undergo collective migration in various  
ways. They can migrate as a separate group like the border 
cells in the Drosophila egg chamber [42] or the posterior 
lateral line (pLL) primordium in zebrafish [43]. Epithelial 
cells can move as wide cell sheet as seen during wound 
healing and dorsal closure of Drosophila embryos [2, 3, 44, 
45]. They can form strands stretching out of a tissue such as 
those observed during invasive carcinomas or fibrosarcomas 
[3, 46]. Finally, epithelial cells can form hollow tubes out-
growing from a previous network of epithelial tubules or ves-
sels, which has been described during blood vessels sprout-
ing or mammary gland formation [14, 47–49]. All these 
examples rely on stable cell–cell adhesion to perform col-
lective migration and impairing cadherins’ function and/or  
expression in these cells has dramatic consequences on 
their ability to migrate as a group, for instance, the fish pLL 

Fig. 2  Epithelial versus mesenchymal collective cell migration.  
a Epithelial collective cell migration showing stable cell–cell contact 
(red lines). b Mesenchymal collective cell migration showing tran-
sient cell–cell contact (red lines), which are sufficient to polarize the 
cells. c Some examples of cell–cell adhesion molecules expressed 

during epithelial or mesenchymal collective cell migration. Refer-
ences: Zebrafish lateral line [50–53, 138–140]; Drosophila border 
cells [60–62, 141–143]; Xenopus mesoderm [82, 144–146]; Xenopus 
NC cells [6, 18, 19, 147–150]
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expresses E-cadherin (CDH1), N-cadherin (CDH2), R-cad-
herin (CDH4), and K-cadherin (CDH6) [50–53] (Fig. 2c). 
Inhibition of cadherins 2, 4, and 6 impairs pLL migra-
tion [50, 51, 53]. Interestingly, while migrating, the pLL  
normally deposits epithelial rosettes called neuromasts that 
later develop into mechanosensing organs. These epithelial 
rosettes detach from the rear of the pLL and their separation  
from the rest of the population owing to a local loss of  
E- and N-cadherin at the presumptive region of separation 
between pro-neuromasts and the rest of the pLL [54]. Inter-
fering with these changes in cadherin distribution affects 
the separation of pro-neuromasts from the pLL, indicating 
that cohesion is primarily cadherin-dependent in these cells 
and that cadherin have to be downregulated to allow cells 
to leave the group. Importantly, directional migration of 
the pLL depends on stromal cell-derived factor 1 (Sdf1) a 
well-studied chemoattractant [55–59]. The pLL is thought 
to be polarized because of a differential distribution of Sdf1 
receptors with Cxcr4 at the front and Cxcr7, acting as decoy 
receptor, at the rear [56]. The fact that targeting cadherins is 
sufficient to disturb pLL migration as a whole suggests that 
the chemotactic abilities of the individual cells are rather 
poor. If this is the case, stable cell–cell junctions could be  
primarily needed to maintain weakly responding cells 
together with better responding ones. Alternatively, the ability  
to chemotax could be downstream of the cell–cell junc-
tions such that membrane localization of CXCR4/7 may be 
depending on cell polarity induced by AJs formation. These 
ideas remain to be tested in this system.

Drosophila border cells migrate as a small cluster of cells 
that delaminate from one end of the egg chamber and move 
in between other cells to reach the oocyte. Cell–cell adhesion 
between the border cells and between border cells and their 
surrounding tissues involve E-cadherin [60–62] (Fig. 2c). 
The group adopts a radial polarity with all cells forming 
protrusions outward. The cluster is then further polarized 
by the action of PDGF-VEGF-related factor (PVF) and 
epidermal growth factor (EGF) [42, 63–66]. Cells with the 
higher level of PVF/EGF signaling become leader cells and 
exhibit more stable cell protrusions, hence creating a front-
rear polarity at the group level. Interestingly, E-cadherin is 
primarily involved in migration rather than cell adhesion 
since its inhibition blocks migration but does not promote 
dissociation of the border cell cluster [61]. The lack of cell 
protrusions after E-cadherin inhibition has been interpreted 
as an effect on cell-substrate adhesion. However, since 
E-cadherin massively accumulates at the interface between 
border cells it is possible that cells exhibit shorter protru-
sions due to a reduced cell polarity.

A key role for E-cadherin has been described in epithe-
lial cell sheets undergoing wound closure [44, 67–69]. Such 
epithelial cell sheets undergo a transient and partial EMT 
and are known to migrate under an intermediate metastable 

phenotype, which allows for a quick reversal to complete 
epithelial features once the wound has closed (Fig. 1b). In 
this system, cells are connected via E-cadherin-dependent 
AJs and inhibiting cell–cell adhesion reduces cohesion 
and the overall directionality of the cells [69]. Importantly, 
AJs are essential to transmit stresses across the cell sheet. 
Cells experience multiple stresses: normal stress (tension or 
compression) that is oriented perpendicularly to the cell–
cell contact; and shear stress that is parallel to it [70–73]. 
Cells progressively align along the regions of minimal shear 
stress [74–76]. The original break of symmetry provided 
by the appearance of a wound is sufficient to polarize the 
population by generating an explorative leading edge. Then, 
local stress transmitted via cell–cell adhesion generates an 
overall polarity at the tissue level without the need to create 
additional gaps.

Overall, collective migration in epithelial tissues primar-
ily relies on mechanical coupling via cell–cell junctions. 
These junctions are important for controlling cell polarity 
at the single cell and the tissue level but also to average out 
differences among cells in terms of motility or chemotactic 
ability.

Collective cell migration in mesenchymal tissues

Mesenchymal cells do not maintain stable cell–cell junctions 
(Figs. 1a, 2b). Nonetheless several mesenchymal migratory 
populations show stable spatial relationships over time.

One of the most studied examples of mesenchymal tis-
sue is the mesoderm. Mesodermal cells are induced at early 
stages of development at the interface between ectoderm and 
endoderm. They undergo an EMT and migrate together with 
endodermal cells to settle in an internal position in a pro-
cess known as gastrulation [77]. Despite mesoderm being a 
relatively loose tissue, mesodermal cells interact with each 
other via cadherin-dependent junctions. In fish for instance, 
E-cadherin is strongly expressed in mesodermal cells during 
migration [78]. Inhibiting E-cadherin dramatically disturbs 
migration and gastrulation fails. However, a single meso-
dermal cell experimentally isolated from the group is still 
able to migrate efficiently, in a manner relatively similar to 
that of the whole group [79, 80]. This suggests that all cells 
are equally capable of following the signals controlling gas-
trulation that are present in the environment. However, if 
these cells are at high cell density but prevented to interact 
via E-cadherin-dependent AJs they fail to cooperate. This 
indicates that cell–cell interactions are somehow required to 
organize the mesoderm in order to proceed with gastrulation, 
even if each individual cell is capable of migrating properly. 
When cells are at high density cells, front cells can shield or 
consume guidance cues such that followers have little left to 
guide them. Therefore, transient physical coupling through 
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AJs may be used to even out differences across the group, 
allow cell cooperation or simply allow non-responding cells 
to be carried passively by their neighbors.

Studies on mesoderm migration in Xenopus have shown 
some interesting similarities with the work on epithelial cell 
sheets described above. Xenopus mesodermal cells express 
C-cadherin [81] and use this cadherin to polarize [82]. 
When two cells make contact, tension is transmitted across 
the C-cadherin junction and this is sufficient to promote the 
formation of a cell protrusion on the opposite side. Interest-
ingly, in these cells tension downstream of AJs is primarily 
passed on by intermediate filaments rather than actin.

This phenomenon of polarization upon cell–cell contact is 
reminiscent of contact-inhibition of locomotion (CIL, Fig. 3) 
[83–86]. Upon collision with other cells, cells exhibiting  
CIL collapse their cell protrusions (lamellipodia, filopodia),  
stop migrating, and repolarize in the opposite direction 
(Fig. 3a, b). Originally identified by observing colliding 
fibroblasts in culture, CIL is now known to be relevant for in 
vivo cell migration [6, 85]. CIL is also deemed an important 
player in cancer metastasis, where a loss of CIL between 
tumor cells and their surrounding tissues is thought to  
promote invasiveness [86, 87]. Studies using neural crest 
(NC) cells as a model system have highlighted the link 
between contact-dependent polarity mediated by CIL and 
collective cell migration. NC cells are induced at the interface  
between the neural epithelium and the prospective epidermis  
[88–90]. They separate from neural and epidermal tissues via 
a delamination process involving a partial or complete EMT  
[1, 4, 91–94]. NC cells subsequently undergo a dramatic 
migration throughout the whole embryo.

Studies on cephalic Xenopus and zebrafish NC cells 
revealed that these cells experience CIL when colliding 
with each other and that CIL is essential for coordinated 
cell migration [6, 85]. In these cells, CIL requires N-cad-
herin-dependent contact leading to the activation of the non-
canonical Wnt/planar cell polarity (PCP) pathway [6, 85] 

(Fig. 3c). The cell–cell interactions trigger a local increase 
of RhoA and a reduction of Rac1 activity at the site of con-
tact. The interaction between N-cadherin, Wnt/PCP, and the 
local modulation of small GTPases in the repolarization of 
NC cells after contact is not yet fully understood. Interest-
ingly, cadherins and Dishevelled (Dsh, downstream effector 
of Wnt signaling) can both modulate microtubules dynam-
ics [35, 95] and data from Drosophila hemocytes and chick 
fibroblasts showed that microtubules are important players 
in CIL. In these cells, microtubules are required for cells to 
sense each other [96] and to repolarize after contact [97], 
respectively. Thus, microtubules might be important down-
stream effectors of the Wnt/PCP and small GTPases during 
CIL. At early stages of Xenopus NC migration, cells are still 
relatively tightly linked to each other and CIL is mostly used 
to prevent cells from forming protrusions on neighboring 
cells. Inhibition of Wnt/PCP or N-cadherin is sufficient to 
disorganize the whole cell population. While migration pro-
ceeds, NC cells progressively dissociate and their migration 
turns into cell streaming. Despite having only tip-like tran-
sient contacts (Fig. 2b), NC cells still exhibit a Wnt/PCP-N-
cadherin-dependent CIL [6, 85].

Directional migration of Xenopus NC cells is controlled 
by Sdf1 [6]. Importantly, single cells barely respond to the 
chemoattractant when prevented to interact with other cells 
(Fig. 4a). On the contrary, single cells that are allowed to 
collide with one another, or cells in a group, are highly 
responsive (Fig. 4a). Impairing cell–cell interactions by 
blocking CIL, via N-cadherin or Wnt/PCP, dramatically 
reduces chemotaxis (Fig. 4a). Thus, cell–cell contacts medi-
ated by CIL are essential for the interpretation of guidance 
cues in NC cells. The molecular mechanism that explains 
this collective chemotaxis is based on the observation that a 
N-cadherin/PCP-dependent contact polarizes cells by inhib-
iting RhoA activity at the cell contact, which defines the 
rear of the cells, and increasing Rac1 activity at the front 
(Fig. 4b) [6]. In addition, the chemoattractant Sdf1 is able 

Fig. 3  Contact-inhibition of locomotion. a CIL consists of a series 
of events. First, cells make a physical contact. This contact triggers 
the collapse of cell protrusions. The colliding cells quickly lose their 
polarity and repolarize in the opposite direction. This repolarization 

often makes the cells move away from each other. b Diagram rep-
resenting two colliding cells undergoing CIL. c Molecular pathways 
involved in CIL in Xenopus NC cells
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to increase Rac1 activity at the cell front, but only in cells 
that are already polarized [6]; consequently, cells polar-
ized by CIL can respond more efficiently to Sdf1 (Fig. 4b). 
These results indicate that physical interactions within the 
migratory population allow the emergence of a collective 
guidance mechanism where cells at high density are better 
responding than cells at low density. While cell–cell interac-
tions help chemotaxis by pre-establishing a cell polarity that 
can be further modulated by an external attractant, cells that 
are completely surrounded might be unable to read a local 
gradient of guidance cue. The signals may have been used 
by cells at the leading edge or because a cell located well 
inside the migratory population has no clear polarity and as 
such is poorly responding to the guidance cue (see above for 
a discussion on the effect of high cell density during meso-
derm migration).

By repolarizing cells upon contact, CIL leads to disper-
sion and eventually reduces cell density. In vivo, several 
inhibitors are lining the pathways of migration, which helps 
to restrict the impact of CIL on cell density [4]. On top of 
that, NC cells are actively attracting each other through 
mutual attraction [or co-attraction (CoA), Fig. 5] [5]. Each 
NC cell secretes C3a, a well-known attractant in the immune 
system [98], and expresses its cognate receptor C3aR at 
their cell surface. Since each cell produces C3a, C3a con-
centration is higher in areas where the density of NC cells 
is high. Consequently, when an NC cell leaves the group, 

it can migrate back to the main population following the 
local gradient of C3a (Fig. 5b). C3a/C3aR activates Rac1, 
which leads to a repolarization of the escaping cell towards 
the main group [5]. Thus, by activating Rac1, CoA repre-
sents an opposite force to the dispersive activity promoted 
by CIL, which inhibits Rac1 (Fig. 5c). A continues cycle of 
CIL and CoA is assumed to maintain the collective migra-
tion of NC cells (Fig. 5a).

Importantly, similar observations have been made 
in mouse and chick embryos. NC cells in these species 
also migrate as a loose tissue undergoing cell stream-
ing and forming chains with transient tip-like contacts  
[4, 93, 99–102]. Chick NC cells have been shown to exhibit 
CIL-like behavior when they collide with one another 
[99, 103]. In addition, in both mouse and chick embryos, 
NC cells migrate more efficiently when at high cell den-
sity. For instance, mouse cephalic NC cell migration is 
partially guided by semaphorin signals present within the 
surrounding tissues and response to these signals requires 
cell–cell interactions involving N-cadherin and gap junc-
tions [104–106]. Furthermore, Wnt/PCP is important for the 
migration of trunk NC cells in chick and zebrafish embryos 
[107–111]. Finally, CoA-like behavior has been observed 
in chick cephalic NC cells [103, 112] and the pLL [113] 
and complement factor C3 is expressed in cephalic NC 
cells in chick (Mayor and Bronner, unpublished) and mouse 
(Mayor and Lambris, unpublished). All these observations 

Fig. 4  Contact-inhibition of locomotion promotes collective NC 
guidance. a NC cells exhibit different chemotactic abilities depend-
ing on cell density/cell–cell contacts. From left to right: isolated 
cells have no interactions with other cells and unstable cell polar-
ity. Under these conditions, the chemoattractant Sdf1 is unable to 
impose a clear front-rear polarity and cells chemotax poorly. When 
cell density increases, cells can interact with each other. Each colli-
sion establishes a new front-rear polarity owing to CIL. Well-polar-

ized cells have their cell protrusions further stabilized by the external 
chemoattractant, which leads to better chemotaxis. When cell–cell 
interactions are inhibited, chemotaxis efficiency is reduced. Cell 
paths are shown as dotted lines. Cell–cell contacts are shown in red. 
b Sdf1-Cxcr4 chemotaxis reinforces CIL-dependent cell polarity. CIL 
imposes a rear identity via RhoA activation. Sdf1/Cxcr4 increases 
Rac1, stabilizing cell protrusions at the front
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suggest that contact-mediated cooperation leading to collec-
tive guidance and cell gathering strategies such as CoA may 
represent general cooperative mechanisms during collective 
cell migration.

The fact that transient and stable contacts can equally 
mediate cooperation indicates that collectiveness cannot be 
defined solely by the observation of stable physical coupling 
between migratory cells. As described above, mesenchymal 
cells that cooperate via transient contacts and manage to  
maintain the high cell density required for physical interactions  
can also undergo collective cell migration. Importantly, hav-
ing CIL and migrating at high cell density does not neces-
sarily imply collectiveness. Enteric NC cells that colonize 
the gut have their migration influenced by physical contact 
with one another and local cell density [114–116]. However, 
the movement of individual enteric NC cells does not cor-
relate with the overall migration of the group. In addition, 
the spatial relationships between cells during migration are 
extremely poor such that enteric NC cells that start migrating  
next to each other may end up very far apart. Similarly, mel-
anocyte precursors show contact-dependent behavior and 
have their overall migration primarily depending on cell 
density. For instance, a reduction of the total number of mel-
anocytes leads to non-pigmented patches on the skin because 

the cells have not migrated extensively [92, 117–121].  
However, in most cases, melanocytes broadly disperse in all 
directions with no correlation between individual movement 
and the average migration of the cell population, although 
phases of coordinated directional movement have been 
described [120, 122].

Collective cell migration in epithelial and mesenchymal 
cancers

Tumors of epithelia (carcinoma) and connective tissues 
(sarcoma) can become invasive and undergo collective cell 
migration. Melanoma (skin cancer), ductal carcinoma (i.e., 
breast cancer), rhabdomyosarcoma (striated muscle), and 
fibrosarcoma (fibroblasts) all show signs of cooperative 
behavior while migrating [123–125].

Carcinomas start off as epithelial structures migrating 
as large multicellular masses, progressively turning into 
3D strands. Cell proliferation plays an important part in 
cancer progression and motion in large invasive epithelial 
tumors is partially influenced by the rate of growth, which 
generates a pushing effect [126]. The surrounding tissues 
can be deformed and damaged as a consequence of tumor 

Fig. 5  Integration of contact-inhibition of locomotion and co-attrac-
tion (CoA) promotes collective NC cell migration. a Co-attraction 
(CoA). When part of a group, cells display a radial polarity with cell 
protrusions pointing outward owing to CIL (1). Since cells are migra-
tory, over time the CIL-dependent outward polarity favors cell disper-
sion (2). When a cell detaches from the group, the polarity imposed 
by CIL is rapidly lost. Each cell is secreting C3a and expresses its 
cognate receptor C3aR. A local gradient of C3a repolarizes the wan-
dering cell (3), thus promoting gathering (4). b Cell clusters are 
under the influence of two major driving forces: a centripetal force 
owing to the local C3a gradient, and a centrifugal force owing to CIL.  

C3a is shown as shades of blue. Local and overall gradients of C3a 
are shown as dotted lines. When physical contact between a cell and 
the rest of the group is disrupted, the influence of CIL diminishes, 
which in turn favors CoA. c Molecular pathways involved in CIL and 
CoA compete to impose a front–rear cell polarity. CIL favors outward 
migration back by establishing a rear identity at the site of contact 
via RhoA activation. CoA promotes inward migration by inducing 
Rac1 activity. Since CIL and CoA counterbalance each other, collec-
tive cell migration is possible even in the absence of stable cell–cell 
adhesion
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growth. This increases the probability of cells stretching 
out of the tumor into the local environment without the 
need to actively separate from the original tumor. Pro-
gression into the surrounding areas is further facilitated 
by proteolytic activity of leading cells [127, 128]. This 
local remodeling of extracellular matrix favors migration 
of the following cells by making room for larger groups 
or simply by revealing cryptic sites for cell–matrix adhe-
sion [129, 130]. Interestingly, cell cooperation in tumors 
is not restricted to cancer cells. Invasive cells are known 
to recruit other cell types from their local environment  
[8, 123, 125, 131]. For instance, tumor-associated fibro-
blasts can be coerced into leading a strand of cancer cells 
into the local matrix by generating tracks that other cells 
will then follow [132–135].

Strands or chains of epithelial cancer cells can further dis-
perse by undergoing EMT [8]. Information about cell cooper-
ation during cell streaming in cancer migration is scarce, but 
the works described above in embryonic cells strongly support 
the idea that collectiveness is not abolished by the acquisition 
of a mesenchymal phenotype. Thus, cancer cells undergoing 
EMT are not to be considered as solitary by default. This is 
also supported by the fact that collective cell migration, as 
3D strand, 2D sheets or streams, is also observed in tumors 
derived from soft tissues, which directly start with a mesen-
chymal phenotype [3, 124]. Mesenchymal cancer cells still 
express various cell–cell adhesion molecules, such as cadher-
ins [15, 16, 136], and are thus equipped to interact with each 
other or neighboring cells. In addition, EMT is often partial 
(not all tumor cells turn into mesenchymal cells) and incom-
plete (not all cells starting EMT actually complete it). Conse-
quently, tumors from epithelial tissues are often heterogeneous  
structures containing epithelial and mesenchymal cells.

Interestingly, some experiments have hinted that epithelial  
and mesenchymal cancer cells can cooperate during  
metastasis [137]. Grafts containing both epithelial and 
mesenchymal tumor cells lead to an entry of tumor cells 
into the bloodstream and formation of secondary tumors. 
When grafted alone, mesenchymal tumor cells were able 
to enter the bloodstream but not to settle in remote organs. 
Grafted epithelial tumor cells were not able to pass into 
the vessels but, when injected directly into the blood-
stream, they were capable of forming secondary tumors 
[137]. The cooperative mechanisms behind such an effect 
are still elusive, but suggest that cooperation is likely to 
take place at migration and dispersion levels but also that 
tumor heterogeneity may lead to emerging properties due 
to interactions between mesenchymal and epithelial cells 
within the tumor.

Overall, tumors are complex organs recapitulating some 
aspects of developmental or regenerative processes in a 
non-controlled manner. Therefore, all information about 
cell cooperation and collective cell migration gathered from 

studies on physiological systems will give great insights 
into cancer progression.

Conclusions

Studies on collective cell migration in epithelial and mes-
enchymal cells show that cells can cooperate in various 
ways. Epithelial cells make use of stable cell–cell adhe-
sions whereas mesenchymal cells rely on more transient 
and dynamic cell–cell interaction and autocrine/paracrine 
signaling. The different strategies of collective migra-
tion are likely to be related to physiological differences 
between cell types and influenced by the environment 
through which cells have to migrate. For instance, epithe-
lial cells that need to travel, while assuming their function 
as tight barriers between compartments, must at all costs 
keep stable cell–cell contacts. Cells that have to separate 
from a given tissue to relocate elsewhere have to, at least 
transiently, downregulate cell–cell adhesion in order to 
migrate. Other cells may simply adopt a mesenchymal 
phenotype to cross regions where the extracellular matrix 
is particularly tight, or, in the case of metastatic cancer 
cells, to enter a blood or lymphatic vessel. Despite a 
broad range of phenotypes and behaviors, both epithelial 
and mesenchymal cells are able to cooperate to migrate 
collectively. Our understanding of the mechanisms that 
render cooperation in epithelial and mesenchymal tissues 
possible remains sketchy. However, it is essential that 
we try to decipher and understand these mechanisms if 
we want to comprehend the dynamics of collective cell 
migration during morphogenesis, healing processes, or 
cancer invasion.
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