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Immunity, embryogenesis and tissue repair rely heavily on cell

migration. Cells can be seen migrating as individuals or large

groups. In the latter case, collectiveness emerges via cell–cell

interactions. In migratory epithelial cell sheets, classic Cadherins

are critical to maintain tissue integrity, to promote coordination

and establish cell polarity. However, recent evidence indicates

that mesenchymal cells, migrating in streams such as neural

crest or cancer cells, also exhibit collective migration. Here we

will explore the idea that Cadherins play an essential role during

collective migration of mesenchymal cells.
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Introduction
Collective cell migration, the coordinated migration of a

cell population through cell–cell cooperation, is a recog-

nized mode of migration during morphogenesis, wound

healing and cancer metastasis [1–3]. Such collective

behaviour was thought to be restricted to epithelial cells

maintaining stable cell–cell adhesions, but recent data

indicate that mesenchymal cells can also cooperate and

undergo collective cell migration [4�,5�]. Mesenchymal

cells are produced by Epithelial–Mesenchymal Tran-

sition (EMT). This complex process includes a cell–cell

dissociation step during which stable cell contacts are

downregulated [6]. In this review, we focus on the func-

tion of classic cadherins (type I and II) in collective

movement. We start with a brief overview of the current

knowledge of Cadherins’ functions in epithelial tissues,

including the dynamics of epithelial cell interactions and

epithelial cell sheet migration. We then go on to propose a

role and discuss possible mechanisms for these molecules

in collective movement of mesenchymal cells.

Cadherins in epithelial tissues
Classic Cadherins are transmembrane proteins that

engage in calcium-dependent homophilic bindings via
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their first extracellular domain [7]. Their interaction

promotes the formation cell–cell junctions called Adhe-

rens Junctions (AJs) [8]. AJs contain Cadherins at only

10% of their maximum density and thus promote a

relatively weak cell–cell adhesion compared with Des-

mosomes or Tight Junctions [8], although the binding

affinity between these different molecules could also

have an important role in determining the strength of

cell–cell adhesion. New cell–cell adhesions are formed in

a 3-step manner: initiation, expansion and stabilization

(Figure 1a, [9]). Briefly, in the initiation phase, cells

explore their local environment using protrusions, such

as lamellipodia, to favour random encounter with nearby

cells [10]. When membranes of two cells collide, cadher-

ins present on their surface make homophilic contacts.

Cadherin engagement induces a very transient peak of

Rac1 activity directly followed by an increase of RhoA

activity [11]. Consequently, the lamellipodial activity is

inhibited at the nascent contact and progresses sideways.

The wave of membrane activity on both sides promotes

the formation of new adhesion sites by favouring mem-

brane overlap. In the meantime, at the site of contact,

branched actin is progressively converted into bundles of

actomyosin parallel to the cell cortex [12��]. This

polymerization of actin and actomyosin generated tension

is the main driving force for the expansion of the cell–cell

junction [10,13,14�]. The membrane activity and actin

turnover progressively decrease as the region of contact

grows larger. This helps to stabilize the connection be-

tween the cell adhesion complex (cadherin/catenins) to

the cytoskeleton. In this context, activities of small

GTPases must be extremely fine-tuned. For instance,

Rac1 activity is essential for membrane exploration at

nascent junctions, but maintaining Rac1 prevents matu-

ration and eventually disrupts the junction. Similarly, Rho

activity is essential for AJs expansion via contractile

forces. However, premature contractility can destabilize

young junctions unable to withstand the local forces,

while excessive contractility disassembles mature ones

[14�,15–17]. Thus, the series of events that follows within

seconds of Cadherin engagement at nascent junctions

determines if the junction will grow and mature or dis-

assemble quickly. The molecular details underlying the

fine-tuning of small GTPase activity during AJs formation

remain elusive.

Cadherins attach to the cytoskeleton via their intracyto-

plasmic domain in two ways. The C-terminal part con-

tains a b-catenin binding domain and b-catenin can then

recruit a-catenin (reviewed in [13]). The role of a-catenin

remains controversial since a-catenin does not seem to

bind b-catenin and actin at the same time. However, it
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Cadherins in epithelial cells.

(a) Interaction between two epithelial cells. Explorative protrusions driven by Rac1 activity promote the formation of an initial contact. At the site of

contact RhoA controls the switch from branched actin to parallel bundles of actomyosin. The contact progressively expands into a stable Adherens

Junction. (b–d) Different types of epithelial collective cell migration: cell sheet (b), isolated groups (c) and strands (d). (e) In such tissues, traction forces

from integrin-mediated contacts with the extracellular matrix are transmitted as local stresses across the cell sheet via cadherin-based junctions.

(f) Shear and normal stress are generated at the cell–cell contact. Cadherins are in red, integrins are in green. Actin cytoskeleton is shown as

orange fibers.
can recruit other actin-binding partners such as Vinculin

[18] and Afadin [19]. In addition, it has been proposed

that in regions where a-catenin concentration is high (i.e.

at stable AJ), some a-catenin may detach from Cadherins

and bind to actin as a dimer, where it competes with the

Arp2/3 complex. This mechanism would prevent actin

branching at the site of cadherin homophilic interactions

and thus promote the formation of parallel actin bundles.

Therefore a-catenin seems to have a dual role at the

junction: linking cadherins to microfilaments, via its

ability to recruit actin-binding proteins to the cytoplasmic

tail of cadherins, and preventing actin branching by

competing with Arp2/3 when released in the cytosol

[8,20,21]. In addition to microfilaments, AJs can also

interact with microtubules. The juxtamembrane domain

of Cadherins contains a p120-catenin binding site. p120

can link Cadherins to microtubule plus-ends via dynein

(a minus-end molecular motor) and to the minus-end

via PLEKHA7 and Nezha (reviewed in [8]). AJs

and the cytoskeleton are interdependent. Assembly, recy-

cling and stabilization of Cadherin is controlled by its
Current Opinion in Cell Biology 2012, 24:677–684 
interaction with the cytoskeleton, but Cadherin engage-

ment also controls cytoskeletal rearrangement (reviewed

in [8,9]).

Epithelial tissues can move as sheets, strands or isolated

groups (Figure 1b–d, [2,3]) and Cadherins have been

shown to play an important role in their coordinated

migration. For instance, dynamics of blood vessel sprout-

ing relies on VE-Cadherin [22,23], posterior Lateral Line

Primordium of the Zebrafish express several Cadherins

and loss of function experiments targeting these mol-

ecules impair migration [24–27], while some cancer cells

undergo Cadherin-dependent migration [14�,28�,29–31].

Several studies on directional migration of expanding cell

sheets in 2D-cultures highlighted the role of AJs in cell

coordination [32�,33��]. Control epithelial cells exhibit

highly directional movement while inhibition of E-Cad-

herin increases randomness. Interestingly, direct

measurements of forces across the cell sheet showed that

traction forces from integrin-matrix interactions lead to a

build up of tension across the tissue (Figure 1e). There
www.sciencedirect.com
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are multiple forces occurring at the cell–cell contact, such

as shear and normal stress, which are parallel and orthog-

onal to the cell–cell interface, respectively (Figure 1f).

Cells align in the direction of the maximum normal stress

and minimal shear stress, being these stresses transmitted

through AJs [33��,34–36]. In the case of a cell sheet

attempting to close a wound, such cell alignment mech-

anism based on transmission of stresses allows cell

polarity to be generated in the direction of the space to

be filled, without gaps forming within the population

itself. Tissue integrity, via maintenance of AJs, is used

as a means of converting an anisotropic situation (appear-

ance of a free edge owing to a wound) into a global

reorganization of the tissue via progressive cell alignment

along the direction of transmitted stress.

In the Drosophila egg chamber, a small cluster of cells,

called the Border Cells, travels between Nurse Cells from

one end of the chamber to the oocyte [37]. Border cells

express E-Cadherin between them and this is essential

for these cells to polarize. However, the local environ-

ment through which they migrate does not contain extra-

cellular matrix and E-Cadherin is also used to establish

contact with the surrounding Nurse Cells [38�,39,40].

Remarkably, these E-Cadherin junctions between Border
Figure 2
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cells and Nurse cells are compatible with the formation of

cell protrusions, while AJs between Border cells are not

and restrict protrusive activity outward. This suggests

that two types E-cadherin engagements, with two differ-

ent outcomes, co-exist in Border cells. This highlights the

importance of deciphering the actual molecular compo-

sition of specific Cadherin-based junctions to understand

how they might lead to cell protrusions, stable AJs or

transient contacts.

In conclusion, the use of Cadherin-based junctions during

collective cell migration of epithelial cell population is

extremely diverse. Cadherins can be used to transmit

signals via local stress and tension, to polarize cells by

restricting formation of cell protrusions away from the

contact and to promote interaction with surrounding

tissues if needed.

Cadherin-based junctions in collective cell
migration of mesenchymal cells
Mesenchymal cells are produced by an EMT [6]. They

have lost stable cell–cell junctions but usually keep

expressing various Cadherins that are present at their

surface. However, EMT is not an all-or-nothing event, as

there is a continuous gradation from a complete EMT,
Direction of migration

(b) Cell streaming

a
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Figure 3
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Collective migration enhances chemotaxis in Neural Crest cells.(a)

Individual cells show poor chemotactic abilities when placed in a

gradient. Weak transient protrusions form at random and the attractant

is mostly inefficient at modulating them. (b) Cells at high cell density

constantly collide with each other. Each collision strongly repolarizes the

cells. The attractant positively biases the well-oriented protrusions very

efficiently. That is sufficient to confer an overall directionality onto the

cell population. Grey cells represent earlier time points. Migratory paths

are shown as dotted lines. Question marks indicate phases of

reorientation during which cell polarity is lost. Green represents Rac1.
such as in melanocytes, to partial EMT, such as Xenopus

mesoderm (gradation of EMT is reviewed in [41]). Cad-

herin-based contacts are involved in the migration of

many different mesenchymal-like cell types such as

myofibroblasts [42], neurons and glial cells [43–45]. As

examples of mesenchymal cells, we will focus on meso-

dermal and Neural Crest (NC) cells [1,46,47].

Collective migration of mesodermal cells

Mesoderm is a germ layer formed during early embryo

development that moves from an external to a more

internal position within the embryo during gastrulation.

Although mesodermal cells are a typical example of

mesenchymal cells, not always they undergo a complete

EMT, such as Xenopus mesoderm, which migrate as a

pseudo-epithelial cell sheet (a motile group without com-

plete cell–cell dissociation) [48�]. The idea of stress-de-

pendent polarity discussed above for typical epithelia

cells has also been explored in Xenopus mesodermal

cells. These cells are connected through C-Cadherin

dependent junctions. Interestingly, C-Cadherin engage-

ment in absence of stress does not have an effect on cell

polarity. However, when local stress is applied on C-

Cadherin, cells repolarize away from the region of stress

by forming a protrusion in the opposite direction [48�].
These observations are in accordance with cross-talks

between Cadherin-based junctions and cell-matrix inter-

actions reported by several groups [49–53].

Migration of the mesoderm in zebrafish has been widely

studied and it relies on E-Cadherin [54]. In this system,

cells migrate collectively but cells that are experimentally

isolated can migrate as efficiently as groups. However,

groups without E-Cadherin fail to successfully undergo

directional migration [55��] suggesting that collectiveness

mediated by AJs is only required when cells are at high

cell density. In this case, a high cell density is thought to

affect the distribution or availability of guidance cues. For

instance, leader cells may degrade or shield signals from

followers. Therefore, connections via AJs are required to

couple cells in order to reduce variations across the

population.

Collective migration of neural crest cells

Neural crest (NC) is an embryonic cell population that

undergoes delamination after EMT [1,56,57]. NC cells

have been shown to exhibit localized N-Cadherin-based

contacts and gap junctions, which are both important for

efficient migration [5�,58–65]. There is evidence that NC

cells from Xenopus, zebrafish and chick exhibit Contact-

Inhibition of Locomotion [66,67,68��] (CIL, Figure 2a)

and migrate as a loose but dense collective (Figure 2b).

CIL is the process by which a cell ceases moving after

being contacted by another cell [68��,69–71] and is often

described as having two phases: a collapse of the cell

protrusions upon contact that leads to a transient arrest of

migration and a repolarization in the opposite direction
Current Opinion in Cell Biology 2012, 24:677–684 
with cells eventually moving away from each other. In a

mesenchymal cell population at high cell density or in

cells that retain a pseudoepithelial phenotype, CIL pre-

vents the formation of cell protrusions in between neigh-

bours. Thus, most of the protrusive activity is directed

towards the free space [5�,68��,72].

When two NC cells collide, RhoA activity increases at the

contact [68��] while that of Rac1 decreases [5�]. These

events depend on N-Cadherin and Wnt/PCP signalling

[5�,68��,73]. The lamellipodium collapses but instead of

propagating laterally to expand the contact area, as

observed during epithelial cell–cell interaction, a new

lamellipodium is formed on the opposite side of the cell

(Figure 2a). In addition, RhoA activity does not promote

the reorganization of the actin cytoskeleton parallel to the

region of contact and the cell–cell junctions are not

reinforced. Instead, cells contract their cell body to move

away from each other in a RhoA/Rock-dependent mech-

anism [68��]. Why this local activation of RhoA upon

Cadherin binding leads to two opposite behaviours in

epithelial versus mesenchymal cells remains unknown. It

has been shown that actomyosin activity needs to be

maintained at low levels to allow long-lasting cell–cell
www.sciencedirect.com
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junctions while high levels of RhoA activity promote actin

bundle formation at the basal side of the cells and lead to

retraction of the cell rear and junction disassembly

[16,17,74,75��]. However, quantification of absolute

levels of RhoA has remained beyond reach. Importantly,

despite lacking stable cell–cell contacts, NC cells

cooperate and undergo collective migration [5�]. This

is clear when cells are exposed to an external gradient

of chemotactic cue. Isolated cells chemotax poorly

(Figure 3a) while individual cells cultured at high cell

density respond efficiently (Figure 3b, [5�]). A similar

cooperation has been observed in Xenopus mesodermal

cells [76]. How cooperation is mediated remains elusive.

One possibility is that the transient contacts not only

polarize the cells but also control the local distribution of

surface receptors that are important for chemotaxis. It is

also unclear if these local N-Cadherin contacts lead to the

formation of proper, even though transient, AJs contain-

ing the molecular effectors essential for cytoskeleton

remodelling.
Figure 4
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Because CIL promotes protrusion collapse and repolar-

ization, mesenchymal cells that exhibit CIL quickly dis-

perse. Therefore, some backup system must prevent

extensive dispersion in order to maintain a critical cell

density allowing collectiveness to emerge. In vivo, NC

cells are surrounded by local inhibitory signals that

restrict their migration into specific territories [1,46,47].

In addition, each NC cell expresses a chemoattractant and

its cognate receptor: complement factor C3a and C3aR,

respectively (Figure 4, [4]). C3a is a complement factor

with well characterized chemoattractant activity in the

immune system [77]. When a NC cell leaves the main

group, it moves back towards the region of high cell

density by following the local gradient of C3a produced

by each NC cell, in a process called co-attraction

(Figure 4). This is possible because C3a/C3aR signalling

activates Rac1, which promotes the formation of a new

protrusion [4]. When cells rejoin the group, a new N-

Cadherin-dependent contact is established that leads to

CIL and dispersion (Figure 4). The presence of C3a and
thering

ersion

(c)

(b)
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h cell density in migratory Neural Crest cells.(a) NC cells are polarized
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its receptor has been shown for NC from Xenopus [4],

mouse (Lambris and Mayor, unpublished) and chick

(Bronner and Mayor, unpublished), and for mesoderm

of Xenopus embryos [78]. Interestingly, cerebellar gran-

ule neurons have been shown to use tip-like N-Cadherin-

based contacts to migrate as chains [79�] and some

tumours express autocrine chemotactic factors and Cad-

herins that would allow a cycle of CIL and mutual

attraction to emerge [80–82]. Furthermore, it has been

recently shown that during the migration of zebrafish

lateral line primordium, some isolated lateral line cells

are attracted by chemoattractants produced by the clus-

tered primordium cells [83], in a process similar to the co-

attraction described for NC cells.

Xenopus NC cells also express Cadherin-11 [84]. Intrigu-

ingly, Cadherin-11 is found at the leading edge of the

cells where it seems to regulate small GTPases and favour

filopodia and lamellipodia formation [85]. Cadherin-11 is

cleaved by Adam13 and is therefore present as a full

length protein, a transmembrane portion and as a soluble

extracellular fragment [86]. Specific functions of these

different forms are yet to be determined but these data

suggest that Cadherin processing may play a role in the

regulation of cell–cell and cell-matrix interactions.

Perspectives
Studies on coordination through transmission of forces in

epithelial and pseudoepithelial cell sheets have provided

an explanation for how AJs may transmit and integrate

changes in cell polarity allowing a complete reorganiza-

tion at the tissue level. How cell cooperation emerges in

mesenchymal cells is unclear. Are actual AJs transiently

formed upon cell–cell collisions during CIL? Are Cadher-

ins linked to the cytoskeleton during transient contact?

Are these transient cell–cell interactions sufficient to

promote transmission of forces? Are Cadherins signalling

or just bringing membranes together to favour activation

of other pathways such as non-canonical Wnt/PCP or to

promote formation of Gap Junctions? These are some of

the questions that will have to be addressed in order to

better define what cooperation in mesenchymal cells

actually means.
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