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Forces arising from contractile actomyosin filaments help

shape tissue form during morphogenesis. Developmental

events that result from actomyosin contractility include tissue

elongation, bending, budding, and collective migration. Here,

we highlight recent insights into these morphogenetic

processes from the perspective of actomyosin contractility as a

key regulator. Emphasis is placed on a range of results

obtained through live imaging, culture, and computational

methods. Combining these approaches in the future has the

potential to generate a robust, quantitative understanding of

tissue morphodynamics.
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Introduction
The generation of tissue form during morphogenesis is

coordinated across multiple length scales, from molecular

interactions to cell-level deformations to tissue-level

changes in shape. These length scales are often bridged

by the transmission of cytoskeletal tension, which arises

from the movement of myosin motors along actin fila-

ments (Figure 1a). At the molecular scale, this actomyosin

contractility is regulated by several signaling pathways,

including those downstream of Rho kinase (ROCK) and

myosin light chain kinase (MLCK). When forces pro-

duced by locally-activated actomyosin are transmitted

along greater length scales via junctional domains, a cell

can do work on or move within its surrounding tissue. For

example, planar polarized contractility can instruct con-

vergent extension (Figure 1b), whereas actomyosin con-

tractility localized to apical cellular surfaces drives apical

constriction (Figure 1c). Proteins that are sensitive to
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local stresses and strains (e.g. stretch-activated ion chan-

nels and other mechanosensing proteins) can also convert

mechanical information back into molecular instructions

(reviewed in [1]). In this way, actomyosin contractility

regulates and can be regulated by tissue morphogenesis.

Given the architectural complexity of native epithelial

tissues, protein signaling, and cellular biophysics, quanti-

tative information about morphogenesis has been gleaned

from a combination of in vivo imaging, experiments in

culture, and computational modeling. Here, we review

recent work that has used these techniques to elucidate

the mechanics and dynamics of tissue morphogenesis,

from the perspective of actomyosin contractility as a key

regulator of these processes. The interested reader is

directed to more comprehensive reviews describing the

forces in morphogenetic patterning [2], contractility-in-

duced changes in tissue shape [3,4], and epithelial junc-

tional dynamics [5]. Combining computational, culture,

and in vivo methods in the future will be important for

generating a more robust, quantitative understanding of

tissue morphodynamics.

Actomyosin contractility tissue elongation
Cell intercalation (reviewed in [6]) is a morphogenetic

process in which cells remodel their intercellular contacts

to significantly rearrange their relative positions within an

array of neighboring cells. One of the most well-studied

types of intercalation in the context of tissue morphogen-

esis, convergent extension, occurs when the tissue length-

ens along one axis while simultaneously narrowing along

the perpendicular axis (Figure 1b), a process requiring

asymmetric distributions of force along cell boundaries.

During Drosophila germband extension (Figure 2a), for

example, planar polarized actomyosin contractility short-

ens dorsoventral junctions to drive intercalation in the

anteroposterior direction [7]. Planar cell polarity (PCP)

proteins within Xenopus Laevis mesoderm also direct

convert extension by compartmentalizing cortical con-

tractility along mediolaterally-aligned junctional domains

[8] and so it is likely that similar mechanisms occur in

vertebrates.

Obtaining a comprehensive, quantitative understanding

of the dynamics of convergent extension remains an

active area of research that has benefitted from computa-

tional modeling. Vertex models (reviewed in [9]) consider

epithelial cells as polygons with the locations of the

vertices specifying the state of the epithelial sheet

(Figure 3a). Here, the equations of motion govern the
www.sciencedirect.com
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Contraction of actomyosin filaments generates tissue-scale

changes in shape. (a) Filamentous actin, crosslinking proteins (not

shown), and non-muscle myosin II form contractile actomyosin

filaments, shown in the zonula adherens belt (orange structures) within

an epithelium. (b) Local increases in planar polarized contractility (see

yellow cell borders) result in preferential remodeling of cell junctions

(to white cell borders) during convergent extension. (c) Apically-

localized actomyosin contractility decreases the area of the apical

membrane to drive budding and epithelial sheet bending.
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Actomyosin contractility regulates many developmental

processes. (a) Convergent extension elongates the germband during

Drosophila gastrulation. (b) Apical constriction initiates budding during

airway branching morphogenesis in the embryonic chicken lung. (c)

Contractility-dependent collective migration sculpts the 3D mammary

ductal architecture during mammary branching morphogenesis.
movement of the vertices, and the forces associated with

cellular contractility can be either specified explicitly or

follow from the minimization of an energy function. The

latter approach has been used to reveal that during germ-

band extension, convergent extension results from the

tissue minimizing its potential energy when driven by

planar polarized contractility [10]. These cellular rearran-

gements occur with a characteristic, limiting velocity of

�2 mm/min, as calculated from a linear dependence of

tissue cohesion, a function of actomyosin contractility and

intercellular adhesion, on the resistance of the tissue to

flow [11]. It will be interesting to determine how incor-

porating additional complexities, such as feedback be-

tween contractility and adhesion, competition between

contractility and other cytoskeletal filaments [12], or

mechanical communication with nearby morphogenetic

events [13], into computational models quantitatively

affects the final tissue form. In addition to elucidating

rate-limiting steps in morphogenetic processes, such in-

sight might clarify the degree to which certain mecha-

nisms are context-dependent.
www.sciencedirect.com 
Axis elongation in Drosophila highlights the importance of

controlled, spatiotemporal regulation of actomyosin con-

tractility and the associated generation of force during

tissue extension. Myosin II must be spatially and tempo-

rally regulated to achieve an efficient change in tissue

shape [14], as increasing or decreasing its expression

results in less efficient intercalation. This is consistent

with studies in vitro in which it is seen that motor activity

must be regulated to coordinate global contractions [15].

Otherwise, motor activity causes crosslinks to unbind,
Current Opinion in Genetics & Development 2015, 32:80–85
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Figure 3
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Computational modeling can quantify the underlying physical

forces acting on cells during morphogenesis. (a) In vertex models,

cells are often modeled as 2D polygons representing a slice through

the cell at the adherens belt. The movement of each vertex is related

to the force acting on that vertex, which is a function of actomyosin

contractility, adhesion to neighboring cells, and the elasticity of the

membrane. See [9] for more information. (b) A recent model of

epithelial morphology expands the force balance into 3D to represent

changes in tissue shape as stable points in the underlying mechanical

equations.
thereby driving an initially well-connected network to a

critical, ruptured state. Thus, actomyosin contractility

may be thought of as one regulator of a tissue-level

potential energy function that, when properly main-

tained, drives cellular rearrangement and tissue exten-

sion.

Actomyosin contractility tissue budding and
bending
In addition to changes in tissue shape mediated by

junctional remodeling, morphogenetic events also pro-

ceed when changes in cellular shape propagate into

changes in tissue form. For example, apical constriction

(reviewed in [16]) within adjacent cells produces a bend

or bud within an epithelial sheet (Figure 1c). This change

in cell shape, mediated by apically localized actomyosin

contractility, is critical for many processes including ini-

tiation of monopodial branches in embryonic chicken

lungs (Figure 2b) [17��]. A similar role for actomyosin

contractility has subsequently been suggested for domain

branching during murine airway branching morphogene-

sis [18]. In this developing organ, the degree of budding

scales with the degree of contractile activity [19] and

bifurcation of lung buds is also driven by MLCK-regu-

lated actomyosin contractility [20].

Live imaging has revealed many dynamic features of apical

constriction, especially during Drosophila gastrulation.
Current Opinion in Genetics & Development 2015, 32:80–85 
During formation of the ventral furrow, apical domain

polarization localizes actomyosin activity in prospective

mesodermal cells to drive apical constriction in a ratchet-

like mechanism [21�,22]. In this process, pulses of myosin

II activation are associated with pulses of ROCK without a

detectable lag time [23]. Forces generated by apical con-

striction in ventral furrow formation can then produce a

tissue-scale hydrodynamic flow of cytoplasm to mediate

tissue elongation and propagate forces deeper into the

tissue [24��].

Despite this tremendous insight, much less is known

quantitatively about how force generation regulates apical

constriction. Mechanical models have demonstrated that

apical constriction is sufficient to give rise to budding

[17��] and folding of an epithelium [25], yet much

remains to be learned about apically-localized contractili-

ty and how it varies in different contexts. It will be

interesting to investigate force generation and transmis-

sion across multiple length scales during the ratchet-like

mechanism of apical constriction with vertex or vertex-

like models. Emerging techniques using fluorescence

resonance energy transfer (FRET)-based force sensors

[26,27] will also likely help provide quantitative data

against which to test these models.

Actomyosin contractility is also an important regulator of

epithelial bending, which can convert a two-dimensional

(2D) sheet into a three-dimensional (3D) structure. Re-

cent developmental studies of the chick heart tube [28],

Drosophila wing disk [29] and eggshell [30�] have impli-

cated regulatory roles for cellular tension in producing

bent, 3D tissue structures. It will be interesting to char-

acterize the dynamics of such changes in shape in these

and future cases with regard to recent models of epithelial

morphogenesis (Figure 3b) [31��]. Here, in vivo morphol-

ogies are understood as stable points of mechanical equa-

tions, with epithelial sheet curvature and bending

resulting from cell adhesion and contractility. In the

future, quantitative measurements of tension should be

incorporated into such models. For example, pN-scale

forces have been measured across focal adhesions [26] and

adherens junctions [27]. Other emerging quantification

tools include laser nanosurgery [32], laser ablation [33],

and deformable microdroplets of fluorescent oil [34]. The

latter method has been used to measure anisotropic

stresses on the order of nN mm�2 in 3D aggregates.

Similar to tissue elongation, apical constriction requires

precise regulation of the actomyosin force-generating

machinery. During Drosophila dorsal closure, amnioserosa

cells propel epidermal cell migration by rapidly fluctuat-

ing their apical membrane area. The cycle lengths of

these fluctuations shorten with the onset of net tissue

contraction, followed by a damping of fluctuation ampli-

tude until the amnioserosa cells contract rapidly [35].

Here, a low level of myosin activity is required to generate
www.sciencedirect.com
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efficient contraction, as increased myosin phosphoryla-

tion results in an apparently stiffer amnioserosa [36]. It

will be interesting to study quantitatively how force

generation, cytoskeletal architecture, and adhesion com-

plex formation are optimized for this and similar morpho-

genetic events.

Actomyosin contractility collective migration
As discussed above, a tissue can change shape through

junctional rearrangements and cell deformations.

Changes in tissue form also occur during collective cellu-

lar migration (reviewed in [37]). For example, collective

epithelial cell movement through the mammary stroma

during branching morphogenesis (Figure 2c) produces

the characteristic mammary ductal architecture [38].

Here, the cells within the migrating cohort maintain

junctional attachments to each other as the population

remodels the surrounding tissue and extracellular matrix.

3D culture models have provided quantitative insight

into how collective migration is regulated by actomyosin

contractility. In a 3D model of mammary branching

morphogenesis, tissue regions under higher mechanical

stress (�0.1 kPa) show changes in gene expression [39]

and molecular signaling [40], resulting in multicellular

invasion into the surrounding matrix [41]. Additionally,

contractility within the tissue generates surrounding me-

chanical heterogeneities [42] and locally aligns matrix

fibrils to instruct ductal elongation [43]. These findings

are congruent with recent observations of branching

morphogenesis of the murine salivary gland, where acto-

myosin contractility regulates basement membrane remo-

deling [44]. Actomyosin contractility is thus central to

branching morphogenesis, and so it will be exciting to

uncover more quantitative details about how intercellular

forces temporally vary as the branch extends.

A full understanding of the mechanics of collective mi-

gration will require quantitative observation into how the

material properties and behavior of individual cells within

a migrating cohort influence migration and morphogene-

sis. Indeed, as cell density increases in a migrating epi-

thelial sheet, cell movements transition from ballistic

(that is, the cellular mean square displacement is propor-

tional to the square of the observation time, hr2i � t2) to

sub-diffusive (hr2i � ta where a < 1) as the cells become

trapped in cages formed by their neighbors [45]. This

increases the stiffness of the epithelium, possibly due to

increased transmission of stress between cells and a

concomitant strengthening of the cytoskeleton. The for-

mation of adherens junctions also coincides with an

increase in the apparent stiffness of epithelial mono-

layers, reflecting the generation of tissue-level tension

[46]. These observations provide further mechanical

means by which actomyosin contractility is involved in

regulating morphogenesis.
www.sciencedirect.com 
Outlook and concluding remarks
Actomyosin contractility both regulates and is regulated

by tissue morphogenesis, as is briefly described here for

2D tissue elongation, 3D budding and bending, and

collective migration. A more complete understanding of

the regulation of tissue morphodynamics will require

better linking of molecular signaling to current mechan-

ical models that describe changes in tissue shape based

on localized contractility. A notable recent example

combines approaches to demonstrate oscillations of my-

osin contractile activity in the observed spatiotemporal

pattern in the elongating Drosophila egg chamber [47].

Potential topics for mechanochemical modeling include

a wingless-int chemical gradient specifying the precise

domains of localized nonmuscle myosin II activity dur-

ing chick feather morphogenesis [48] and feedback

between ROCK and Shroom signaling to amplify planar

polarized actomyosin contractility during Drosophila
germband extension [49]. It will also be interesting to

incorporate more complex feedback between intercel-

lular forces and cellular biochemistry. For example,

myosin-dependent contractility can decrease the mobil-

ity of cadherin molecules, thus concentrating them at

adherens junctions in culture [50]. Finally, calcium

channels also regulate force [51], indicating a further

unexplored coupling between cellular bioelectrochem-

istry and tissue mechanics.

Recent advances have expanded our quantitative under-

standing of how contractility influences the dynamics of

morphogenetic processes. Overcoming current chal-

lenges will require quantifying the forces generated by

actomyosin filaments in tissues undergoing morphogene-

sis and incorporating these into more advanced models

describing changes in tissue shape. Where this fails,

better culture models must be developed to physiologi-

cally recapitulate in vivo development. Quantitative in-

sight gained from these processes can then be used to test

computational models that describe 3D tissue morpho-

genesis as a function of subcellular actomyosin regulation.

Conversely, newly developed models should be able to

aid in experimental design. By incorporating all three

approaches, we will be able to use culture and modeling

results to verify mechanisms postulated from in vivo data,

while using in vivo observations to identify the physio-

logical relevance of culture and modeling data. In vivo
imaging, culture models, and computational approaches

are thus well poised to generate a robust, quantitative

understanding of tissue morphodynamics.
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