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Cells can migrate individually or collectively. Collective movement 
is common during normal development and is also a characteristic 
of some cancers. This review discusses recent insights into features 
that are unique to collective cell migration, as well as properties that 
emerge from these features. The first feature is that cells of the col-
lective affect each other through adhesion, force-dependent and sig-
nalling interactions. The second feature is that cells of the collective 
differ from one another: leaders from followers, tip from stalk and 
front from back. These are dynamic differences that are important 
for directional movement. Last, an unexpected property is discussed: 
epithelial cells can rotate persistently in constrained spaces. 
Keywords: collective cell movement; dynamics; mechanics; 
guidance; rotation
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Introduction
Collective migration refers to cells migrating together in sheets, 
clusters, streams, sprouts or other multicellular arrangements. It is 
observed frequently in animals in vivo, both as part of the normal 
morphogenetic programmes during development [1,2] and in path-
ological situations such as dissemination of carcinoma cells [3,4] 
or neovascularization of tumours. Cells of epithelial or endothelial 
origin also display collective migration in vitro: two-dimensionally 
in standard tissue culture dishes, or three-dimensionally in more 
complex matrixes [5–7]. Several in-depth reviews describe dif-
ferent types of collective cell migration [1–4] and discuss specific 
examples, characteristic features and model systems used in detail, 
including those referred to in this review. 

Collective cell migration has many features in common with 
individual cell migration, but also has unique features. Some fea-
tures might be unique to one type of migration, others more wide-
spread. Analysis of the features shared by many types of collective 
cell migration might inform us about common constraints and 
common strategies  of collective motile behaviour. In this update, 

I discuss studies that have improved our understanding of key fea-
tures of collective cell migration and reveal some possible underly-
ing common themes in these complex behaviours. The first is the 
interaction between collectively migrating cells and how the topol-
ogy of this interaction can affect individual cell behaviours, as well 
as overall movement. The second is the differences between the 
migrating cells within a collective and the significance of these dif-
ferences. Finally, some unexpected large-scale movements, such as 
rotation, can result from collective behaviours and are discussed.

Defining a collective
At the outset, it is worth clarifying which cell and tissue behaviours 
are considered to be collective cell migration (Fig 1). A strict defini-
tion describes collective migration as “tightly connected cells that 
migrate as cohesive structures” (Fig 1A). I favour a more inclusive 
definition: “collections of cells moving together and affecting one 
another while doing so”. This definition allows for a wider range of 
physical and signalling interactions between the migrating cells, and 
would include loosely associated streams with dynamic interactions 
(Fig 1B) such as neural crest cells [8] or neurons of the rostral migra-
tory stream [9,10]. Even for closely apposed and apparently tightly 
connected cells, the physical and mechanical interactions can differ 
substantially depending on the cell type and characteristics. An open 
definition of collective migration emphasizes that the cell–cell con-
nection parameter is highly variable and that this parameter should 
be crucially considered in each case. A recent review of cancer cell 
invasion classifies multicellular migration into “multicellular stream-
ing” and “collective cell migration” [4], which would correspond to 
my loose and cohesive types of collective cell migration, respectively.

Regardless of which definition is followed, two categories of 
interaction should be considered for cells that migrate collectively. 
The first consists of interactions with the environment. These are 
similar in principle to the interactions that an individually migrat-
ing cell has with its environment, but can show some differences 
in practice when executed by a group of cells. Such interactions 
include adhering to the substrate and getting traction on it, as well 
as avoiding or degrading obstacles [5,11]. The substratum can be 
the ECM, but it can also be other cells. Reading guidance cues is 
another important interaction with the environment, and one in 
which individual cells and collectives might differ [12,13]. The 
second category of interactions consists of those between the cells 
that are migrating collectively. These interactions can be physical 
and mechanical in nature, but communication by signals that do 
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not depend on cell–cell contact can also be involved as discussed 
below (pink arrows in Fig 1B). This second category of interactions 
is used to define collective migration; the presence and conse-
quences of these cell–cell interactions sets it apart from individual  
cell migration. 

Interaction between cells of a tightly associated cohort is prob-
ably mediated by robust cell–cell adhesion, but what about the 
loose interactions? Analysis of neural crest cells might shed light on 
this. Neural crest cells perform long-distance migration in the ver-
tebrate embryo and have diverse roles at their destinations. Neural 
crest cells can migrate as individual cells but, at least in Xenopus, 
movement is more directional if the cells migrate collectively [14]. 
N-cadherin was found to mediate a cell–cell interaction that pro-
duces contact-dependent cell polarity, which, in turn, improves col-
lective directionality [14]. In other species, the associations between 
neural crest cells may be less frequent and more dynamic [8,15]. 
Together with the observation that neural crest cells undergo an 
epithelial-to-mesenchymal transition (EMT) when they delaminate 
from the neural tube [16], this loose association has supported the 
idea that neural crest cells migrate as individual mesen chymal cells. 
However, N-cadherin has a positive effect on net movement even 
for the more loosely associated cells [17], so the collective aspects 
of neural crest cell migration might be pervasive. Xenopus neural 
crest cells attract one another by secreting the complement fragment 
C3a, whilst also expressing the cognate receptor C3aR [18]. The 
resulting mutual chemoattraction keeps neural crest cells together 
as a loose cohort during migration. This finding helps to explain how 
cells that react to each other with “contact-dependent inhibition of 
locomotion” [19], and thereby repel one another on contact, never-
theless move together as a cohort [18] or stream [8]. The process can 
be described as a community effect on the basis of global attraction 
and local inhibition.

Information at cell contacts
The way that collectively migrating cells interact with one another 
usually involves some direct cell–cell contact. In neural crest cells, 
contact-dependent RhoA activation leads to contact- mediated 
repulsion [19], probably due to the ability of RhoA to stimulate 
contractility through Rho-kinase and myosin activation [20]. This 
effect is counterbalanced by the soluble attractant. For more cohe-
sive collective movements, such as those shown by epithelial and 
endothelial cells, one would expect cell–cell contacts not to be 
repulsive. Findings suggest that the differing outcomes of cell–cell 
contact for these types of migrating cell—transiently touching in 
contrast with cohesive collective movement—is at least in part due 
to regulatory differences that impinge directly on RhoA  [21,22]. 
Many cancer cells migrate and invade tissue or a three-dimensional  
matrix as tightly associated cohorts [3,4]. An in-depth investigation 

of this phenomenon using the squamous cell carcinoma cell line 
A431 showed that genetic manipulations that increase cortical 
contractility decrease cell cohesion and, interestingly, decrease tis-
sue invasion, although the individual cells are still migratory [21]. 
The transmembrane protein DDR1 is necessary for cohesive move-
ment. DDR1 reduces myosin-dependent contractility at cell–cell 

A

B

Fig 1 | Different interaction properties of collectively migrating cells.  
(A) A cohort of attached cells, in which each migrating cell is attached to 
its neighbours. The attachment might be relatively static or more dynamic, 
but gives some mechanical coupling. (B) A group of loosely interacting cells 
moving together. In the case of Xenopus neural crest cells, cells will locally 
inhibit one another on physical contact, but simultaneously attract one another 
(pink arrows). Large grey arrows indicate direction of movement.

Glossary

DDR1 discoidin domain receptor 1
ECM extracellular matrix
Fz Frizzled
Fat2 FAT tumour suppressor 2
FGF fibroblast growth factor
Par3/6 partitioning defective 3/6
RhoGAP GTPase activating protein for Rho
VEGF vascular endothelial growth factor
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junctions through a set of molecular links including two polar-
ity proteins Par3 and Par6 as well as p190ARhoGAP [21]. Local 
recruitment or activation of the RhoGAP is expected to reduce 
RhoA activation locally at cell contacts. Similarly, a screen for 
genes affecting collective movement of human bronchial epithe-
lial cells identified the RhoGAP as an essential contributor that 
prevents cell scattering and allows collective and cohesive move-
ment [22]. This RhoGAP, myosin-IXA, is unusual in that it also has a 
myosin motor domain, mediating interaction with actin filaments. 
Myosin-IXA is recruited to the cell cortex at new adhesions and sta-
bilizes these adhesions. In both of these examples, local RhoA inhi-
bition on cell–cell contact prevents contraction and cell scattering  
allowing for continued adhesion.

The topology of cell–cell interactions might serve as a source of 
spatial and directive information. This is evident when cells are in 
an anisotropic arrangement, for example, when only one side of a 
cohort is free (Fig 2). The effect of a free edge can be observed when 
a scratch wound is generated in a dense sheet of cells. The cells 
migrate with biased directionality, and often collectively, to fill the 
gap [7,23,24]. Interestingly, experiments have shown that when 
a small group of front cells in the tip of a slender moving cohort is 
separated from the rest by laser cutting, their highly directional move-
ment is perturbed [25]. Slightly counter-intuitively, their ability to 
move forward is enhanced by being in contact with the other cells 
behind them. This indicates that the polarized topology of a cohort 
is important for effective movement. For an individual cell, the topol-
ogy of its interaction with the other migrating cells can be a source 
of polarity and therefore of directionality. This is most clear when 

considering a cell at the free surface of a simple two-dimensional 
cohort (Fig 2, cell 1), which has obviously anisotropic interactions 
(red compared with yellow/orange edges). Front cells often become 
polarized at the subcellular level with a polarized cytoskeleton and 
with their protrusions preferentially oriented outwards, into the free 
space. In many cell types the polarity is also manifest as centrosome 
orientation relative to the nucleus [26,27], but this might be a con-
sequence of migratory polarity rather than being instructive [28]. 
Non-front cells also become polarized  [25–27]. In three-dimensional 
morphogenesis such as sprouting, one can speculate that equivalent 
topological instructions occur and bias the primary protruding area 
of a front cell to be opposite from where the cell–cell interactions 
occur. Coupled with substrate geometry in a tissue, such instruction 
can provide significant  patterning in morphogenesis.

How do front cells become internally polarized? The precise 
answer might differ depending on the cell type—epithelial, endo-
dermal or neural—and on the geometries of cell–cell interactions 
between the collective. Some general ideas can, however, be 
explored by reconsidering the simple two-dimensional sheet type of 
arrangement (Fig 2). Interaction with the substrate at the free edge 
(Fig 2, highlighted in red) might direct front cell polarization, as ECM 
anisotropy can produce intracellular polarization [29]. Note that the 
extent of substrate interactions might initially be similar for a cell at 
the free surface and an internal cell of a two-dimensional monolayer 
(Fig 2, bottom, see side-view of cell 1 and cell 2). The difference 
is in available, unconstrained space. More recently, the  cell–cell 
interaction surfaces (Fig 2, marked yellow and orange), which are 
also clearly anisotropic for the front cell, have attracted interest. 
Anisotropic cadherin-mediated cell–cell adhesion was shown to 
polarize multiple cell types [30,31], and thereby to direct move-
ment [31]. Thus, by either or both mechanisms, a front cell can be 
directly instructed for forward movement. 

It is less obvious how cells of a collective that have no free sur-
face (Fig 2, cell 2) are oriented in behaviour. Direct observations 
show that such cells are polarized and contribute actively to collec-
tive migration [25,32]. As to how polarization occurs, analyses of 
the mechanics and forces involved seem to give some insight: phys-
ical pulling forces have been shown to alter the size of cadherin- 
mediated cell–cell contacts [33], just as pulling forces were 
previously shown to change focal adhesions to the ECM [34]. In an 
elegant set-up, cadherin- mediated force application, but not simply 
cadherin engagement, was shown to promote cell protrusions at the 
opposite end of mesendoderm cells [35]. Interestingly, localization 
of the intermediate filament keratin was strongly influenced by ten-
sion on the cell–cell contacts, apparently through recruitment of 
plako globin to cadherin under tension. Under physiological con-
ditions, this system was found to be most important for non-front 
cells (Fig 2, cell 2; [35]). Although the front cell has multiple levels  
of polarity information to direct protrusions forward, the follow-
ing cells might be more dependent on anisotropic forces to orient 
their protrusive activity. Force differences in collectively migrating 
cohorts probably have significant effects on both collective move-
ment and individual cell behaviour [36]. The molecular link from 
cortical tension to intermediate filaments found in mesendoderm 
cells might represent a common mechanism. Intermediate fila-
ments have been shown to transmit mechanical stress in endothelial  
cells  [37]. Specific keratins are also required for proper wound 
repair in the skin of mice [38] and in collective  sheet migration of 
epithelial cells in culture [39]. 

Cell 1

Cell 1

Free edge

Substrate

Top view

Side view

Cell 2

Cell 2

Fig 2 | Topological interactions between front cells and followers. The upper 
panel represents a top-view and the lower panel a side-view of the same 
region—the front part of a migrating cohort. As the substrate (ECM) is at the 
bottom, it is accessible to all migrating cells in the case of a simple monolayer. 
Cell 1 has one free edge (red) and three bound edges (orange and yellow) 
giving inherent anisotropy. The bound edges might also be under contact-
dependent tension. Cell 2 has only bound edges, but they might experience 
different amounts and types of stress, for example due to pull from cell 1, 
and traction and resistance in other cells. The yellow edges might experience 
polarized shear stress. ECM, extracellular matrix.
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Different cell states
From the previous discussion of cell topologies, it is evident that 
migrating cells within a collective should sometimes be considered 
as two types: the front cells that have free edges or more extensive 
substrate interactions, and the other cells. This distinction of two 
cell types, two states or two behaviours seems to be a widespread 
phenomenon for collective cell migration. In the extreme case, there 
are types of collective migration in which distinct cell types, such as 
fibroblasts and tumour cells, co-operate [40]. Most migrating col-
lectives, however, are homotypic—originating from one cell type. 
Despite this, detailed analysis of cell behaviours often identifies two 
types of cell, or two cell states. As this has been observed in many 
contexts and with varying methodology, the naming of such cells 
differs. In some studies, the front cells in two-dimensional sheets, in 
particular the most active and dominant of them, are called ‘leader 
cells’ with the remaining cells being called ‘followers’. For consist-
ency, I relate to this terminology, ‘leaders’ and ‘followers’, hence-
forth. The presence of leader cells and distinction of two cell states 
is unlikely to be applicable to all types of collective movement. 
Certain types of branching morphogenesis, for example [41,42], 
might rely primarily on other cell behaviours. The same is true for 
rotation, as discussed in the last section.

The exact topology, number and degree of specialization of 
leader cells varies depending on the system analysed. In sprouting 
morphogenesis, the leaders are the tip cells and the followers are 
the stalk cells (Fig 3A). These are usually described as fates and have 
distinct induction requirements. Tip cells are induced by VEGF in 
angio genesis [43] and by FGF in tracheal development [44]. They 
look and behave differently from stalk cells. Tip cells have many 
filo podia and the ability to respond to external guidance informa-
tion [45]. They also express different genes from stalk cells [46,47]. 
In collectively migrating and invading cancer cells, leader cells 
also express different genes compared with internal and follower 
cells [48–50]. Finally, data on neural crest cell migration in chicks 
indicate that leading and following (‘trailing’) neural crest cells not 
only behave differently, but also have different gene expression 
profiles [51]. Thus, during many types of collective cell migration, 
some cell specialization occurs. That this also occurs in neural crest 
cells supports the idea that tightly cohesive and loose, dynamic 
types of collective cell migration have more in common than is 
immediately apparent. 

Leaders in a collectively migrating sheet are functionally dis-
tinct from the other cells; this notion was reinforced in a systematic 
study of endothelial cells [7]. A distinct set of genes was found to 
be important for front cell behaviours, and was different from the 
genes required for general motility. Distinct roles can also be inferred 
from cell ablation or inactivation studies. In chains of migrating glia 
cells, photo-ablation studies have shown that the leader (‘pioneer’)  
cells are required for successful migration of the follower cells along 
their axonal path [52]. In the large migrating lateral line primordium 
in zebrafish, only the leader cells need to express the chemokine 
receptor Cxcr4b [53]. In developmental sheet migration surrounding 
a hole, the leading edge cells express unique markers and together 
construct a ‘purse-string’ actin cable; they also extend sensing filopo-
dia for accurate hole closing [54]. Finally, when cohorts of epithelial 
cells are observed in two- or three-dimensional  cultures, elongated 
substructures can emerge that, similarly to sprouts, migrate efficiently 
and directionally. Cells within them tend to be forward polarized and 
leader cells are obvious [24]. Ablation of the main lamellipodium in 

the front cell perturbs the organization and transiently impedes over-
all movement, showing the instructive role of leader cells on a short 
timescale [25]. As mentioned above, detaching the few front cells 
from the followers also perturbs collective directionality until the fol-
lowers reattach. Thus, both leader and follower cells migrate actively 
and both seem to be crucial for collective directionality. However, 
there seems to be a clear division of labour between them in many 
examples of collective cell migration.

Leader and follower cells should be considered as different cell 
states and not different cell types. This becomes clear when collec-
tive migration is dynamically observed by live imaging. Leaders 
and followers are found to interconvert and change roles. It might 
not be surprising that this can occur in experimentally generated 
cell sheets or cohorts of initially equivalent cells. More surprising 
were the findings that in sprouting angiogenesis the leader (tip) cells 
exchange position, and function, with follower (stalk) cells [55,56]. 
A few years ago, it was shown that specification of tip cells over 
stalk cells is a dynamic and competitive process involving an 
inductive signal (VEGF) and an inhibitory signal, a type of lateral 
inhibition, through Notch and its ligand Delta [57,58]. This process 
is recapitulated in tumour angiogenesis [59,60]. A similar but more 
stereotypic process happens in invertebrate tracheal sprouting [61]. 

Tip cell

Stalk cells

A

B

Fig 3 | Different cell states within a migrating collective. (A) A typical small 
sprout with a leading tip cell (green), followed by stalk cells (blue). The 
structure will move to the right. The stalk cells might be pulled by the tip cell 
or contribute directly to movement as seen for leaders and follower cells in a 
flat moving cohort. (B) A free migratory group; contrary to the situation in 
(A) there is no intrinsic polarity in the group, and thus no obvious leader. If 
we assume the green cell is the dominant ‘leader’ cell at this moment and the 
blue ones ‘followers’, the cluster will move to the right. If the leader state is 
assigned by extrinsic information such as an ‘attractant’ gradient, this might be 
sufficient to constitute ‘collective guidance’ [13]. 
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Live imaging has revealed that during the process of angiogenic 
sprouting, leader and follower cells dynamically exchange places, 
in the time frame of minutes to hours [55,56]. Stalk cells are 
observed to ‘race ahead’ and overtake the lead, displaying unantici-
pated dynamic migratory abilities. The stalk cells thereby become 
tip cells and vice versa. This indicates that tip cell behaviour is a 
function of position in the chain, a situation analogous to leader 
and follower behaviours described in vitro. This seems to be the 
normal process in vertebrate sprouting angiogenesis. It also helps 
to explain how tip cells can be quickly replaced if ablated, even in 
invertebrate systems that normally  display limited interconversion 
and plasticity [62].

The appreciation that leader cell assignment is dynamic is in line 
with new ideas about guidance in collective cell migration. In the 
structures considered so far, the migrating collectives are inherently 
polarized (Figs 2,3A) with an attached rear. If the migrating group is 
unattached (Fig 3B), there is no inherent information as to the loca-
tion of the front cell. Each cell with a free edge can be outward polar-
ized and in principle behave as a leader cell. All else being equal, this 
would create a tug of war with no overall directionality. The migrat-
ing border cell cluster in Drosophila is an example of an unattached 
group, but one that migrates directionally towards its target, the giant 
oocyte. The border cells are derived from an epithelium and seem 
to be cohesive, but with frequent exchange of the front cell during 
migration [63,64]. Dominant leader cell behaviour can be induced 
in non-front cells by instant manipulation of Rac activity [65], 
reinforcing  the idea of dynamic leader cell assignment. Interestingly, 
this cluster uses receptor tyrosine kinase-driven signalling for guid-
ance, as does the vasculature or tracheal tree for both guidance and 

tip cell selection [1,43–45]. On the basis of analysis in this system, 
I previously proposed the idea of collective guidance [13,64], in 
which external guidance information directs group movement by 
inducing different levels of signalling in the front cell compared with 
the other cells (Fig 3B, higher levels in the green cell than in the blue 
cells). This selects one cell to be in a different state from the others, to 
be a transient leader. This state difference, combined with the inher-
ent polarization of each cell, provides directionality of movement 
for the group. We tested this model rigorously by imposing differ-
ent signalling states on different cells and observed that such exter-
nally controlled induction of leader over follower states, can indeed 
direct movement of a cell group [66]. Thus sprouting angio genesis 
and cluster movement share both signaling pathways for guidance 
and  dynamic leader cell assignment.

Cells and tissues rotate
Live imaging completely changed our view of how cells in a collec-
tive differ from one another in the studies discussed above. Other 
surprises have come from live analysis, for example the finding that 
mammary epithelial cells thought to be sessile are mobile [42,67]. 
Also unexpected were the observations that intact epithelia and 
groups of epithelial cells rotate three-dimensionally  [68,69]. 
A marked example of this is the rotation of the follicular epithe-
lium during Drosophila oogenesis [68]. Follicle cells are somatic 
cells that form a monolayer epithelium enclosing central germline 
cells including the oocyte (Fig 4A). At a particular stage of develop-
ment the whole epithelium starts to rotate, either clockwise or 
anti-clockwise, relative to the overlaying ECM—the basement 
membrane. The rotation occurs in an integrin-dependent manner 
and seems to continue for several complete revolutions, causing 
the whole structure—and the resulting egg—to become elongated. 
The rotating cells deposit circular tracks of ECM material such as col-
lagen, which in turn seem to mechanically constrain tissue elonga-
tion [68]. This interesting type of morphogenesis can be viewed as a 
self-organized collective movement of a coherent cell sheet, but one 
with no free edge and no leader cells. So how do all the cells man-
age to move in the same direction? And is this a completely unique 
case or representative of a wider phenomenon? To answer these 
questions, it is worth considering other types of rotating movement  
reported for epithelial cells.

It is well established that epithelial and endothelial cells can 
perform collective movements when placed in two-dimensional 
culture dishes, with analogy often made to wound healing. But 
perhaps surprisingly, when such cells are placed in a small micro-
patterned area of a dish, and are thus confined with respect to 
substrate interaction, they tend to rotate around one another 
(Fig 4B; [70,71]). Apparently, mesenchymal cells do not display this  
behaviour  [71]. When cells such as Madin–Darbey canine kidney 
cells or breast epithelial cells are grown under more physiological 
three-dimensional culture conditions, they grow in clusters, some-
times mimicking normal differentiation and forming a central, 
apical lumen [72,73]. These clusters rotate in a coherent fashion 
(Fig  4C;  [69,74]). As for the follicular epithelium, the basal sides 
of these cells move on, and relative to, the external ECM, which is 
only minimally deformed by the movement  [74]. Interestingly, 
breast cancer cells that are highly transformed and considered to 
have undergone EMT do not show coherent, rotating behaviour, but 
move erratically [69]. Thus, rotating movement seems to be a feature 
of normal epithelial cells when cultured under spatially confined 

Substrate

B

A C

Fig 4 | Epithelial rotation. (A) A cross-section showing the internal rotating 
movement of the follicular epithelium (blue cells) on the ECM–basement 
membrane (orange layer). The internal germline cells (large green cells) follow 
the follicle cells. The epithelium is continuous with no free edge in the intact 
structure. (B) Side-view of a small group of epithelial or endothelial cells plated 
on an island of substrate. The cells will rotate together on the substrate for 
prolonged periods. (C) A small cluster of epithelial cells in a three-dimensional 
matrix. An apical lumen might have formed internally; the basal sides of the 
cells are facing outwards. Such clusters will rotate coherently in one direction. 
ECM, extracellular matrix.
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conditions. In vivo, breast or kidney epithelial cells are part of inter-
connected ductal structures that would be expected to constrain rotat-
ing tendencies. Rotating movement where epithelial cells move as a 
group, but relative to other cells, has been described for other spe-
cialized cells in vivo. A small group of photoreceptor progenitors in 
the developing fly eye rotate slowly at about 5–10° per hour [75]. The 
migratory border cell cluster described above also rotates relative to 
surrounding cells, in particular when it does not undergo directional  
movement [64,76].

These rotational movements raise some immediate questions: 
how common is it? How do the cells generate traction on the sub-
strate and move with no front? Finally, how do the cells co-ordinate 
their activity so that they move in the same direction? 

Starting from the last question, the in vitro findings suggest that 
the tendency to rotate in a co-ordinated manner is an intrinsic char-
acteristic of epithelial cells. It could primarily be cohesiveness: if 
cells cannot move relative to one another, any movement they make 
relative to a substrate must be coherent. However, in the case of 
the follicular epithelium, hundreds of cells are involved and move-
ment is usually aborted if many cells are unable to interact properly 
with the substrate [68]. In the in vitro situations, cells are not fully 
differentiated and cell–cell interactions are expected to be dynamic. 
Therefore, co-ordinated cell participation seems to be the most prob-
able underlying scenario for co-ordinated directional movement. 
One mediating principle to co-ordinate directionality could be an 
adhesion and force-dependent polarizing effect, as discussed in the 
‘information at cell contacts’ section, which was found to be crucial 
for follower cells. To achieve co-ordination, differential force or tug-
ging at a cell cortex would have to be propagated within the plane 
of the epithelium in a planar polarized fashion. This might be fea-
sible by a mechanical stress effect through the cytoskeleton. Planar 
polarized signalling by the non-canonical Wnt–Fz pathway [77,78] 
might also help to organize a rotating epithelium. However, the clas-
sical planar polarity signalling pathway is not required in the follicu-
lar epithelium, whereas the atypical cadherin Fat2 is required [79]. 
Therefore, rotational movement might use different planar polarity 
signalling molecules or might primarily use mechanical effects to 
orient  and co-ordinate movement. 

The rotating movement of epithelial cells on the ECM might be 
analogous to sheet migration, with all cells behaving as follower 
cells. Follower cells can have forward protrusions along the basal 
substrate [32], which might allow for local traction and directed 
behaviour of the cell. In the context of rotation there is no inherent 
‘forward’ direction, but co-ordinated protrusions could give coher-
ent movement. It is also worth considering similarities to other epi-
thelial movements that involve planar polarized information, but 
do not depend on obvious cellular protrusions. One such move-
ment is epithelial cell intercalation resulting in tissue elongation 
in the fly embryo [80]. Intercalation involves significant exchange 
of neighbours, requiring dynamic cell–cell adhesion. Whether this 
also involves movement relative to an ECM, requiring dynamic 
cell–substrate  interactions, is not clear. Vertebrate convergence 
extension movements also involve cell intercalation [78]; here ECM 
interactions seem to contribute significantly [81]. The cytoskeletal 
mechanisms underlying cell intercalation within an epithelium have 
been the focus of attention. Initial models were based on unequal  
myosin- based cortical tension at cell edges forcing junctions 
together  [80,82]. More detailed imaging revealed a pulsing and 
aniso tropic actomyosin network that affects the whole apical surface 

and might drive cell movements [83,84]. It is possible that forces 
from such dynamic cellular contractions also drive the movement of 
epithelial cells relative to the external ECM. 

Further studies of tissues by well-resolved live imaging are 
required to determine whether rotational movements are actu-
ally common. A general impression is that epithelial cells do not 
move much in vivo. Some tissues, such as the gut, show slow and 
consistent epithelial cell movement due to organized turnover in 
the monolayer [85,86]. Other differentiated tissues might be even 
more static. Rigid attachment to a fixed ECM and strong cell–cell 
adhesion attaching cells to large, elaborate structures might pre-
vent cell movement in such tissues. The cell culture experiments 
remind us, however, that motility is an intrinsic quality of epithelial 
and endothelial cells. Cell movement will manifest itself when the 
context allows. When this happens, the migration will generally be 
collective,  as these are highly social cells. In closing, it is worth not-
ing that our understanding of collective cell migration has advanced 
through studies in many different systems, and that many interesting 
questions remain (see Sidebar A).
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