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Cell forces define cell morphology, alterations in which

are caused by tyrosine kinase and phosphatase

mutations, which implies a causal linkage. Recent

studies have shown that phosphotyrosine signaling is

involved in force sensing for cells on flat surfaces. Early

force-dependent activation of Src family kinases by

phosphatases or cytoskeleton stretch leads to the

activation of downstream signaling. In addition, force

generation by cells depends on a feedback mechanism

between matrix rigidity or force generation and myosin

contractility. Components of the force-sensing pathway

are linked to the integrin–cytoskeleton complex at sites

of force application and serve as scaffolds for signaling

processes. Thus, early events in force detection are

mechanically induced cytoskeletal changes that result in

biochemical signals to mechanoresponsive pathways

that then regulate cell form.
Introduction

Architectural remodeling and changes in tissue tension
are common in living tissues (Box 1). There are local
tension changes during the addition or removal of cells,
cell movements linked to morphogenesis, muscle contrac-
tion and relaxation, as well as during bone compression
and decompression. Therefore, cell–extracellular matrix
(ECM) and cell–cell contacts are subjected to force
fluctuations and adjust to changes in tension. Studies
demonstrate that mechanical factors affect cellular
functions. At the level of cell growth and viability, normal
cells require a rigid substrate or internal cytoskeletal
tension for growth, whereas transformed cells have lost
this requirement [1,2]. ECM rigidity and shear flow can
alter migration [3,4], tyrosine kinase activities [5–7], gene
expression [8,9] and cellular differentiation [10,11] in
various cell types. Force transducers involved in mechan-
osensation are ion channels that convert mechanical force
into an electrical or chemical signal [12]. However, the
detailed mechanisms of force transduction in responses to
the ECM during adhesion, migration or cell differentiation
have yet to be identified.
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Integrins are important plasma membrane proteins that
bind to the ECM, and antibodies directed against them can
block cellular adhesion and migration. Integrin binding to
the ECM induces the clustering and recruitment of
scaffolding proteins that connect integrins to the actin
cytoskeleton [13,14], activation of tyrosine kinase and
phosphatase signaling, and the coupling of cell-generated
forces with the ECM (reviewed in [15]). As transmembrane
linkers that are involved in adhesion and motility, integrins
are involved in the transduction of ECM rigidity to
modifications of cellular morphology. Forces applied to
ECM–integrin–cytoskeleton connections, which can be
generated by internal actin or external ECM motion, induce
maturation of adhesion sites to focal adhesions, which
are coupled to bundles of actin called stress fibers [16,17]
(Box 2). Conversely, loss of force triggers the disassembly of
stress fibers and adhesion sites [16]. These observations
indicate that structural and signaling functions of ECM–
integrin–cytoskeleton molecular complexes are modified
depending on the magnitude of the forces.

Early evidence that forces exerted by the ECM proteins
and rigidity are sensed through integrin adhesions was
acquired using magnetic and optical tweezers in endo-
thelial cells [18] and fibroblasts [14]. Beads coated with
integrin ligands were twisted or restrained at the cell
surface, mimicking the forces that are generated during
adhesion-site formation. Local generation of forces caused
cytoskeletal stiffening or the mechanical reinforcement of
integrin–cytoskeleton linkages, which increased in direct
proportion to the applied stress. Although general changes
in the cytoskeletal rigidity have been described as a result
of external forces [19], adhesion site initiation and
maturation occur locally where the forces are applied in
fibroblasts [14,16,17,20–22] or in the direction of shear
flow in endothelial cells [4]. Additional studies showed
that forces affect integrin-dependent adhesion properties
[23], linkage to the actin cytoskeleton [14] and recruit-
ment and activation of signaling proteins [6].

Rigidity responses are difficult to understand because
local, transient mechanical perturbations can be con-
verted to distinct biochemical signals that have either
limited or global effects on cellular functions. These
temporally and spatially restricted signals depend on
tyrosine kinase and/or phosphatase activities in the
adhesion sites at the junction between integrins and the
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Box 1. 2D versus 3D matrices

Although most studies of cell adhesion, migration and rigidity

responses have been performed in a two-dimensional (2D)

environment, several studies performed in three-dimensional (3D)

environments have demonstrated that adhesion sites, actin

cytoskeleton structures, integrins signaling and cell morphology

are altered compared with 2D [69,70]. Furthermore, the rigidity of

the 2D environment, usually glass or plastic, used in most studies

is higher than the rigidity of 3D matrices encountered in normal

tissue [24]. Therefore, one should be careful extrapolating from 2D

to 3D matrices. For example, mature focal adhesions and flat

lamellipodia, which are a hallmark of cells migrating on 2D

matrices, do not have an equivalent in 3D matrices [69,70].

However, some cell behavior is seen in both. Cells migrate towards

a more rigid substrate [3,69,71] and this migration involves cycles

of contraction and relaxation, and of extension and retraction

[49,50].
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cytoskeleton, that is, at the first intracellular molecular
complex that will be subjected to the application of force.
Local deformation can be either mechanically propagated
to remote parts of the cell by the connecting cytoskeleton
or converted to a global contraction or relaxation signal
and therefore dictate cell shape. However, recent studies
have found that confined rigidity response events that are
dependent on phosphotyrosine signaling control locally
and temporally the formation, stabilization and disas-
sembly of adhesion sites and associated cytoskeletal
structures. Consequently, we suggest that the integration
of local changes in contractile state and motility behavior
results in major effects on cell morphology.
Alteration of tyrosine kinase activity affects rigidity-

dependent growth, migration and cell morphology

Early observations linked transformation to uncontrolled
cellular growth and to profound alterations in cell shape
and migration. Transformation is often characterized by
deregulation of tyrosine kinase and phosphatase activity.
The first defined oncogene, vSrc, encodes an early
recognized tyrosine kinase. In most studies on tumor
cells, changes in morphology, but not cytoskeletal
dynamics, have been reported. However, changes in
environmental factors (i.e. changes in ECM rigidity) and
internal force generation (i.e. inappropriate rigidity
responses) might be key factors in determining trans-
formed cell morphology and the malignant phenotype [24]
(Box 3). Certain transformed cells in culture have an
altered morphology (they are typically rounder) and are
more refractive than are normal cells (Figure 1a).
Box 2. From nascent ECM–integrin–cytoskeleton connections to

Recruitment of integrin-associated proteins to nascent adhesion sites

is hierarchical. Integrin aggregation or occupancy can be controlled

using micrometer-sized beads coated with ECM proteins or anti-

bodies, possibly in combination with soluble integrin ligand [13,14].

Forces can be applied to these coated-beads by optical or magnetic

tweezers. Binding of specific cytoplasmic proteins to integrin

adhesions can be triggered by integrin aggregation, a combination

of aggregation and matrix ligand binding, and aggregation and/or

occupancy in addition to force generation [13,14,21]. After integrins

interact with the clustered ECM, scaffolding proteins connect integrins

to the actin cytoskeleton in motion. Nascent ECM–integrin–cytoskele-

ton connections develop to focal complexes, which are defined as

early adhesion sites and are localized at the cell periphery [15]. Force

generated by myosin II is responsible for the maturation of focal

complexes to focal adhesions [17,46], which require sustained forces

for their stabilization [16] and are connected to stress fibers. Further

maturation leads to the transition from mature focal adhesions to

fibrillar adhesion sites [62]. The nomenclature of adhesion sites is

mainly derived from studies of Rho GTPases [72]. Excessive Rac

www.sciencedirect.com
In transformed cells, the macromolecular structures that
are responsible for cell morphology and migration are
affected. Focal adhesions can be replaced by podosomes
and stress fibers can be absent [25,26] (Figure 1b,c).
Transformed cells acquire anchorage independence, that
is, they can grow without attachment to a substrate,
suggesting rigidity response deregulation [1,2]. For
example, transformed cells generate weak, poorly coordi-
nated traction forces [27]. However, transformation is also
associated with increased contractility (Box 3).

Cell motility depends on substrate density and rigidity
and, therefore, also on the processes that respond to
rigidity (Box 4) [28]. Many of the proteins involved in the
rigidity response have been linked to motility disorders,
including cancer, malformations in development and
neuronal connectivity. Src family kinases (SFKs) [29,30],
focal adhesion kinase (FAK) [31,32], the SH2 domain-
containing phosphatase SHP-2 [32] and receptor-like
protein tyrosine phosphatases (RPTPs) [22] are important
components of the force-dependent signal transduction
pathways that lead to the assembly of adhesion sites. The
force-dependent initiation of adhesion sites, named
reinforcement, occurs in protruding portions of cells,
where adhesion sites can transmit cell propulsive forces
[20,27]. In extending regions of the cell, forces are
generated on integrins by actin rearward flow rather
than stress fibers. At the trailing end of the cell, mature
focal adhesions create passive resistance during cell
migration. To overcome this resistance, high forces must
be generated by nascent adhesion sites [20]. However, in
some static cells, higher forces are correlated with mature
fibrillar adhesion sites

activity is associated with the presence of focal complexes and the

absence of stress fibers. However, elevated Rho activity is character-

ized by the presence of focal adhesions linked to stress fibers [72].

Antagonistic activities between Rac and Rho are responsible for the

transition from focal complexes to focal adhesions [72,73].

It is not clear whether transition from nascent ECM–integrin–

cytoskeleton connections to focal complexes requires the generation

of forces on those linkages. Focal complexes are less tension

dependent than focal adhesions and accumulate along the cell edge

following treatment with inhibitors of actomyosin contractility [42].

Forces applied to these nascent ECM–integrin–cytoskeleton connec-

tions induce strengthening of the integrin–cytoskeleton interactions

[14], a phenomenon that might mimic focal complex initiation and

stabilization [21]. Focal complexes are dissociated by inhibitors of

myosin II-dependent contractility, but not by an inhibitor of Rho kinase

[73]. Accumulation of adhesion site proteins, paxillin and vinculin,

around ECM-coated beads is dependent on Rac but not Rho activity

and is inhibited by amyosin light chain kinase inhibitor, indicating that

physical forces are involved in the initiation of focal complexes [21].
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Box 3. Transformation: increase or decrease contractility?

Transformed cells have an altered rigidity homeostasis. It is not yet

clear whether transformation is associated with enhanced contrac-

tility or impaired contractility. The current model is that contractility

is impaired in malignant cells because malignant cells are

associated with migration, which is enhanced when focal adhesions

and stress fibers are destabilized. Transformed cells are less able to

sense and respond to different surface rigidities compared with

normal cells [2] and are less efficient at generating forces [27].

However, other studies demonstrate that rigid tumors are formed

by transformed cells and uncontrolled growth is promoted by

increased contractility [24]. Nevertheless, both unregulated growth

and migration, which characterize transformed cells, could be

explained by a decoupling of the cell response to the rigidity of

its environment.
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focal adhesions [16]. At the cell rear, traction stresses
induce the disassembly instead of the reinforcement of
focal adhesions and linked stress fibers; this is dependent
on mechanosensitive ion channels and calcium signaling
in keratocytes and astrocytoma cells [33–35]. SFKs, FAK
and PEST domain-enriched tyrosine phosphatase (PTP-
PEST) are also crucial factors in adhesion site disassembly
[26,29,34,36]. This suggests that different modalities of
force generation and rigidity response at the cell front and
rear correlate with position-dependent regulation of
phosphotyrosine signaling, and that different mechanisms
of rigidity responses based on phosphotyrosine signaling
can independently direct cell morphology.

At the subcellular level, the actin cytoskeleton appears
to be the major site for force transduction. Cytoskeletal
stretching correlates with the recruitment of adhesion-
complex proteins, especially tyrosine kinases and their
substrates, both in intact [17,21] and triton-treated
fibroblasts, which are devoid of membrane [37,38].
Figure 1. Cell transformation: a tight link between change in morphology and

tyrosine kinase activity. (a) The distinct morphology of normal (left) and

transformed fibroblasts (right). (b) Fluorescent staining of the actin cytoskeleton

showing its disorganization in transformed (right) compared with normal (left)

fibroblasts. (c) Fluorescent staining of adhesion sites illustrates the replacement of

mature focal adhesions in normal fibroblasts (left) by podosomes in transformed

fibroblasts (right); green fluorescence corresponds to paxillin–GFP. Adapted, with

permission, from [77] (a) and [26] (b).
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Furthermore, cytoskeleton stretching triggers specific
biochemical signals, particularly tyrosine kinase and
phosphatase pathways [38]. Thus, mechanical alterations
of cytoskeletal proteins probably underlie rigidity sensing.
All of these observations point to tight links between
morphology, migration, rigidity responses and tyrosine
kinase activity.
Force sensor elements at adhesion site–cytoskeleton

junctions

The rigidity of an object is defined by the amount of force
that is required for a given deformation. Therefore,
rigidity responses require an element that will be
deformed by the force (force sensor) and an element that
will convert this into a biochemical signal (signal
generator) (Figure 2a). Cells bind to specific ECM
molecules through specific integrins and forces are
focused on these sites by macromolecular complexes that
connect the integrin cytoplasmic domains to the actin
cytoskeleton (reviewed in [15]). For complexes to sense
rigidity, they must contain proteins that: (i) mechanically
link ECM–ligand integrins and actin; and (ii) signal to the
rest of the cell in response to mechanical stimuli while
bound to actin and/or integrin (including tyrosine signal-
ing) (Table 1). The mechanical link is a force sensor that
can be deformed by changes in force that are generated by
the ECM and the cell cytoskeleton; these changes are then
translated into a biochemical signal by a signal generator.
Therefore, the force sensor and signal generator should be
co-localized at integrin–cytoskeleton junctions. Although
components of the cytoskeleton are also involved in
rigidity responses, the most extensively studied rigidity
response mechanisms involve elements at adhesion sites.
Forces applied to integrin–ECM bonds only cause a
deformation in the intracellular and ECM elements
when the ECM is connected to a rigid support. Cellular
force moves the ECM in proportion to its rigidity as well as
modifying the force-sensitive elements in the integrin–
cytoskeleton linkage (Figure 2a). The ECM is modified by
force (reviewed in [39]). Thus, forces generated from
outside and inside the cell will lead to deformation of force-
sensitive linkages, which are probably localized at the
intracellular side of adhesion sites.

Application of external forces using fluid flow [4], ECM
stretching [31,37], laser and magnetic tweezers [14,18]
and pipette deformation [17] lead to the initiation and
expansion of adhesion–cytoskeleton complexes. The site of
the greatest response correlates with the site of greatest
applied force, indicating that the rigidity response process
is locally activated by force. This might explain why cells
move towards a more rigid substrate, which induces
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Box 4. Definition of mechanotransduction and rigidity response pathways

The broad definition of mechanotransduction is the conversion of

changes in mechanical factors into changes in protein activity. Forces

applied to a protein can cause conformational modifications ranging

from distortion to domain unfolding. Work done by the force could

lower or increase the energy barrier between the bound and free

states, for slip bonds [52] or catch bonds [74], respectively.

Deformation induced by force could mask or expose binding sites

[39,75]. In addition, the application of force to an enzyme could change

its activity [6,76] or the opening behavior of an ionic channel [12].

Rigidity response is a case of mechanotransduction in which

the variations in the compliance of the ECM are converted

into changes in protein activity. Greater rigidity results in less

integrin movement for a given cell-generated force. Thus, not only

are the forces and their site of application crucial, but the

time and/or position-dependent changes in force are also important

for cellular function. Therefore, here we have focused on

mechanisms of force transduction, which can be time and

position dependent.
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greater formation of adhesion sites and force generation
[3,31]. The assembly of components at adhesion sites has
been linked to early phosphotyrosine signals. Force-
dependent activation of SFKs by phosphatases [22] or by
cytoskeleton stretch [38,40] is an upstream event in the
signaling pathways that leads to activation of small G
proteins [38] and MAP kinases [41]. Small GTPases can be
TRENDS in Cell Biology 
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activated by force [9] (and in the case of Rap1 downstream
of the tyrosine kinases) through the activation of guanine
exchange factors (GEFs) at appropriate sites [38]. Thus,
we suggest that tyrosine kinases and phosphatases are
directly involved in the force sensing mechanism. Rapid
activation of the SFKs occurs in response to local forces at
the cell edge [6]. In all of these cases, the details of the
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Table 1. Tyrosine kinases and phosphatases and their function in rigidity sensing

Protein Function Target in

rigidity

response

Localization Rigidity

response

Assay Reinforcement Cytoskeleton

stretch

Effects on AS Cell type Refs

FAK Tyr K, IBP a-actinin? AS Y SS,

SF

Y inhibition? Recruitment Assembly

Disassembly

Fibroblast

Astrocytoma

Endothelial

[31,32,37]-

[34]

[4]

RPTP-a Tyr P, IBP Src, Fyn

activation

AS?, CM Y OT Y activation Assembly Fibroblast [22]

SHP-2 Tyr P FAK

inhibition

AS Y OT Y activation Assembly Fibroblast [32,47]

Src Tyr K Paxillin?

Vinculin?

AS Y FRET,

OT,

SS

Y inhibition Recruitment Disassembly Fibroblast

Endothelial

[21,22,29,

30,37]

[6,26]

Fyn Tyr K Paxillin?

Vinculin?

AS Y OT Y activation Assembly Fibroblast [22]

PTP-

PEST

Tyr P Disassembly Fibroblast [36]

PECAM-1 Scaffolding

Tyr Signal

Cadherin

VEGFR2

Flow

sensing

SF Assembly Endothelial [7]

Integrin MT

p130Cas Scaffolding AS, CM Y SS Y? Recruitment Fibroblast [38]

Tyr Signal

Paxillin Scaffolding AS (early) Y OT,

SS,

PS

Y recruitment Recruitment Fibroblast [17,22,37]

Vinculin ABP AS (early) Y? OT,

SS,

PS

Y? recruitment No effect Fibroblast [16,17,21,-

22,37]

Zyxin AS (late) Fibroblast [20]

a-Actinin ABP, IBP AS (late) Y OT Y recruitment Fibroblast [32]

Tensin ABP, IBP AS Fibroblast [62]

Talin-1 ABP, IBP,

scaffolding

Paxillin,

Vinculin,

Integrin

AS (early) Y OT Y recruitment Fibroblast [52,53]

Filamin ABP, IBP AS, CM Y OT N Fibroblast [53]

Integrin

avb3

Adhesion

protein

RPTPa,

Talin-1

AS, CM Y OT,

SF

Y Fibroblast

Endothelial

[22,52,53]

[7,9,54]

ABP: actin-binding protein; AS: adhesion site; CM: cell margin; IBP: integrin-binding protein; MT: magnetic tweezers; N, No; OT: optical tweezers; PS: pipette stretch; SF:

shear flow; SS: substrate stretch; Tyr K: tyrosine kinase; Tyr P: tyrosine phosphatase; Y, Yes. A question mark indicates that the hypothesis is not yet confirmed.
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assembly by force and disassembly by relaxation have yet
to be clarified but there is clearly a mechanical regulation
of kinase and phosphatase activities.

Force sensing has been linked to ion channel opening
and cytoskeleton stretch. Although there is strong
evidence for ionic movements in some force responses
[12,33,35], a completely cytoskeleton-dependent mechan-
ism has been observed in several cases [37]. Thus, the
force sensor might be incorporated into the cytoskeleton
(i.e. as a force-sensitive element). For example, forces
applied to the cytoskeleton can cause protein deformation
(unfolding or distortion) and induce a direct change in
protein activity (indicating that the signal generator
directly senses force). Alternatively, the signal generator
could bind to a deformed component or elastic element in
the cytoskeleton (the force sensor) and be activated or
inhibited (indicating that the signal generator senses force
indirectly) (Figure 2a) (Box 4). In the case of the rigidity
response mechanism, no definitive force sensor or signal
generator has been identified; however, a tyrosine-kinase
dependent phosphorylation of p130Cas has been found in
stretched cytoskeletons [38]. Strikingly, adhesion sites
under tension [42] and the lamellipodium [43], which are
structures that are involved in rigidity responses at the
cell edge, contain proteins that have high concentrations
of phosphotyrosine. Thus, we favor cytoskeleton stretch
rather than ion movements as the primary transducer of
www.sciencedirect.com
force from the environment into biochemical changes that
involve changes in tyrosine phosphorylation levels by
substrate, kinase and/or phosphatase modification
(Figure 2b).

Spatio-temporal aspects of force sensing

A migrating cell on a soft substrate that encounters a
border with a rigid substrate will cross towards the rigid
substrate [3]. This process, known as durotaxis, indicates
that rigidity responses are based on localized and dynamic
processes, which can locally and temporally change cell
contractility, motility and shape [31]. In these dynamic
processes, adhesion sites and the actin cytoskeleton are
assembled, stabilized, moved and disassembled on a time
frame of seconds to minutes [44,45]. In addition, the
molecular components of these complexes are rapidly
exchanging on a timescale of seconds, even if the
macromolecular structures are relatively immobile in
space. Cycles of tyrosine phosphorylation and depho-
sphorylation are implied in both of these
dynamic processes.

Adhesion-site dynamics

Treatments that increase or decrease tyrosine phosphoryl-
ation promote enhancement or inhibition of adhesion-site
formation, respectively [46]. For example, the non-specific
tyrosine phosphatase inhibitor PAO induces the formation
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of stable adhesion sites on soft substrates, where such
sites are normally irregularly shaped and highly dynamic,
inducing an inappropriate response to rigidity [5].
However, FAK-deficient fibroblasts exhibit a reduced
rate of cell motility that is associated with long-lasting
adhesion sites, suggesting that FAK-mediated tyrosine
phosphorylation events are involved in adhesion-site
turnover. SHP-2 and PTP-PEST maintain FAK depho-
sphorylation and inactivation but they are involved in
maturation and disassembly of adhesion sites, respect-
ively [36,47]. Furthermore, tyrosine phosphatases are
involved in the reinforcement of integrin–cytoskeleton
linkages [14] and the membrane tyrosine phosphatase
RPTPa, which is required to dephosphorylate the inhibi-
tory phosphotyrosine residue of SFKs, is involved in the
activation of Fyn that is required for early reinforcement
[22] (Figure 3). To reconcile these observations, it might be
necessary to view the phosphotyrosine signaling of
integrin-associated proteins within the context of a
dynamic process that involves repeated cycles of phos-
phorylation and dephosphorylation of specific substrates
at defined times and subcellular locations in the life cycle
of an adhesion site.

For example, tyrosine dephosphorylation of FAK by SHP-
2 induces the stabilization and maturation of the early focal
complexes to focal adhesions [32] (Figure 3), although the
formation of paxillin-positive immature adhesion sites is not
affected by SHP-2. Fyn and c-Src have opposite effects in the
force-dependent reinforcement of integrin–cytoskeleton
www.sciencedirect.com
linkages. Similar to FAK, c-Src is involved in the turnover
of adhesion sites [26] and, accordingly, force-dependent
reinforcement is increased by the loss of c-Src [21,29],
whereas loss of the closely related kinase Fyn inhibits
reinforcement [22]. We suggest that time- and position-
dependent processes account for the specificity of SFKs in
reinforcement and rigidity responses (Figure 4). For
example, Fyn and c-Src could have a different threshold of
force-dependent activation, leading to a temporal shift in
their activity. Alternatively, Fyn activity could be higher
close to the cell edge, whereas c-Src activity could be
predominant further back, leading to a spatial difference
in the activities of these proteins.

Most components of the integrin–cytoskeleton complex
have fast exchange rates with half-lives ranging from a
few seconds to a few minutes [32,34,48]. Only integrins
have molecular dynamics sufficiently slow to support the
half-life of adhesion sites [44]. Of particular interest,
tyrosine dephosphorylation of FAK by SHP-2 controls
FAK-dependent tyrosine phosphorylation of a-actinin and
modulates the association of a-actinin with the integrin–
cytoskeleton complex. A SHP-2-dependent decrease in
FAK activity increases the association of a-actinin and
force-dependent strengthening of integrin–cytoskeleton
linkages [32] (Figure 3). At the cellular level, this stable
association enables the maturation of focal complexes.
Therefore, adhesion-site molecular dynamics are regu-
lated during adhesion formation. The disassembly of focal
adhesions is also regulated by the residency time of FAK
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at focal adhesions. Prolonged association of FAK within
focal adhesions is correlated with increased FAK activity
and focal adhesions disassembly [34].

Rigidity responses involve force sensing and distance or

time sensing

The biological rigidity-sensing mechanism must have
means of transforming the force and displacement (i.e.
distance and time information) into a biochemical signal
(Figure 4b,c). Cells display complex patterns of successive
extensions and retractions that seem to be part of an
www.sciencedirect.com
active rigidity-response mechanism. In one case, the cell
periodically probes the rigidity of its surroundings during
spreading and migration [49] (Figure 4d). Also, the forces
that are applied on a collagen filament are oscillating [50],
implying that a rigidity response might involve a
threshold force that is reached after a defined distance
and during a limited time. From the study of rigidity
responses using laser tweezers during fibroblast
migration, the movements involved are calculated to be
over distances of w100 nm and durations of w1 s [51].
Consequently, time and distance are plausible parameters
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to be sensed in the rigidity response process. Changing the
ECM rigidity affects these probing cycles (on softer
substrates, none or fewer periodic probing events have
been observed) suggesting that a feedback mechanism
exists between ECM rigidity and the cellular architecture,
and motile activities that are involved in the probing
mechanism (Figure 4d). More studies are required to
define the exact mechanism of force and displacement
sensing involved in detecting rigidity and whether
external forces can regularly activate the same
signaling pathways.

Position dependence and rigidity responses

The position dependence of rigidity responses (Figure 4b)
is exemplified by the fact that structural and signaling
proteins that are necessary for rigidity responses are
placed at strategic locations, for example, at the cell edge
during protrusive events and at early adhesion sites.
Many proteins involved in rigidity responses and/or
phosphotyrosine signaling, including talin [52,53], integ-
rins (avb3) [52,54], paxillin [22], a-actinin [32,49], RPTPa
[22], Rap 1 [55] and p130Cas [56], are localized at the
leading edge of the cell, ready to respond to any
contraction generated by the cell or by the ECM. There
is a position-dependent binding-and-release cycle of
fibronectin–integrin–cytoskeleton interactions, with pre-
ferential binding occurring at active edges of motile
fibroblasts and release at 0.5–3 mm back from the edge
[57]. Interestingly, this position-dependent binding corre-
lates with the efficiency of the reinforcement process in the
rigidity response [51]. Forces generated at single ECM–
integrin–cytoskeleton connections can lead to breaking or
reinforcement of the integrin–cytoskeleton linkage [51,52]
(Figure 4a). With rigid optical tweezers holding fibronec-
tin beads, contact reinforcement is favored over breaking
of bead–cytoskeleton contacts at the cell edge but not at
2 mm back, whereas no differences are observed using soft
optical tweezers [51]. At the molecular level, the reinforce-
ment of integrin–cytoskeleton interactions are limited to
linkages that have experienced force and not those nearby
(!1 mm) [14].

Forces exerted on a macromolecular complex might
affect the specific distances required to assemble that
complex. The density and clustering of integrin ligand
RGD affects cell adhesion [58], the establishment of
integrin–cytoskeleton linkages [52] and the formation of
focal adhesions and stress fibers [59]. These processes
might be dependent on a crucial minimum distance
between occupied integrins. In agreement, the distance
between RGD peptide sites must be !70 nm for the
formation of stress fibers and focal adhesions [58,59]. This
might be the length of the molecule that bridges and
clusters integrins during the formation of integrin–
cytoskeleton complexes [52]. These data indicate that
the distances between occupied integrins within an
adhesion site can act as a rigidity response that responds
to tension-dependent changes in integrin density [44]. At
the cellular level, the periodic contractions of the
lamellipodium involved in ECM probing are confined to
a segment of the cell edge and involve local activation of a
contractile signal that directs cell probing [49]. Therefore,
www.sciencedirect.com
at the cellular and molecular levels, rigidity response is a
localized phenomenon.
Time dependence and rigidity responses

The time dependence of rigidity responses (Figure 4c)
might involve the precise order in which components of
the integrin–cytoskeleton complex bind and detach during
the life cycle of an adhesion site [45]. The formation of the
elementary connection between integrin and the cytoske-
leton, and its reinforcement, depend on talin, which is
probably one of the first proteins that enter adhesion sites
[52,53]. a-Actinin and zyxin enter the adhesion site during
its maturation [60,61]. The transition from mature focal
adhesion to fibrillar adhesion is characterized by the
segregation of tensin and specific integrins [62]. Because
the ECM–integrin–cytoskeleton connection is a visco-
elastic material (i.e. it is not purely elastic) [63], the time
required to reach the threshold force for rigidity responses
probably differs depending on the stiffness of the ECM.
Accordingly, a soft optical trap could mimic the effects of a
rigid trap on the stabilization of the integrin–cytoskeleton
linkages if externally applied forces rise rapidly [51]. In
lamellipodia, the cytoskeletal-dependent radial transport
of a contractile signal directs the timing of contraction
and, probably, adhesion site initiation to stabilize pro-
trusive events [49]. Consequently, formation of cell
contacts with the ECM is not a continuous process, but
involves cycles of contraction and relaxation. Further-
more, in a tissue, contractile activity and external forces
should also produce a rigidity response. The limited time
of contraction, during which the cell locally probes the
ECM composition and physical properties, might reduce
the time window for the activation of a rigidity response.
Steady-state morphology of cells

Cells in suspension usually adopt a spherical shape.
After they contact a surface with suitable chemical
(ECM proteins) and physical (rigidity) properties, cells
spread and migrate through a series of motile events.
Detailed analyses of cell movements on short timescales
show that they move discontinuously, with a seemingly
random mixture of brief extensions, retractions and
quiet periods [49,64,65] (Figure 5a). However, motile
events (extension and retraction) can be precisely
defined in their geometry and dynamics by the
structure and dynamics of the underlying actin
cytoskeleton. Ena/VASP-capping activity, for example,
determines the angle between actin filaments and the
cell edge, thereby affecting the speed of protrusion [64].
The lamellipodial width is correlated with the period-
icity of contractions that are generated by the cell edge
during motility, indicating that the transport of a
contractile signal by the rearward flow of actin controls
the time between contractions [49]. Therefore, the
periodicity, frequency and amplitude of extension and
retraction events can be precisely defined by cell
signaling pathways, and depend on external factors,
for example, the nature of the ECM proteins and
rigidity (Figure 4d). Many events are involved in
defining cell shape because individual extension and
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retraction events only last for 20–90 s and involve 0.2–
4 mm of the cell edge.

The precise timing and localization of the forces
generated on different actin structures during motility
will direct the amplitude and localization of forces that are
applied on integrins and further adhesion-site initiation.
Therefore, after the extension of the cell edge, the sensing
of matrix rigidity is one of the earliest events in the
formation of adhesion sites that leads to the stabilization
of the extension on the ECM.
www.sciencedirect.com
Small movements can cause large changes in mor-
phology. Therefore, the final morphology is the integral of
many individual rigid substrate responses and the
dynamics of the focal contacts and associated cytoskeletal
structures (Figure 5b). Accordingly, cell spreading on soft
substrates, which fails to stabilize cell protrusion [49],
results in a greatly decreased cell area compared with cells
on a rigid substrate [2,24,51]. In addition to this local
effect of forces, the orientation of stress fibers (the axis
where the internal forces are higher) also directs the
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protrusive activity of the cell [66]. Therefore, by sensing
force and generating force in the appropriate areas, cells
can control their motility as well as their morphology.

The number of different motile activities is limited. For
example, cellular spreading can be described by a few
characteristic phases [67] (Figure 5a). Thus, only nine
basic morphologies are produced by the expression of
active small GTPases [68]. For a complete description of
the morphology, all factors must be included as each
influences the overall dynamics. Changes in cell compo-
sition influence the duration and extent of individual
processes, which, in turn, influences the overall behavior
at the cellular level.

Concluding remarks

The morphology of a cell is the result of discrete rigidity
response events that are integrated over time. These
events are defined by the localized rigidity of the ECM
that controls the local deformation of the force sensor at
the integrin–cytoskeleton junction and, therefore, the
activation of a signal generator, which involves tyrosine
signaling. Rigidity response events and motile events are
based on the same molecular processes and are highly
interconnected. The important task now is to define the
distinct phases of motility and the dynamics of the cellular
motile processes to obtain an overall working model of
morphological changes that can then be tested by altering
the activities and dynamics of contributing factors.
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