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Effects of Gel Thickness on Microscopic Indentation Measurements
of Gel Modulus
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†Field of Theoretical and Applied Mechanics, Sibley School of Mechanical and Aerospace Engineering and ‡Department of Biological
and Environmental Engineering, Cornell University, Ithaca, New York
ABSTRACT In vitro, animal cells are mostly cultured on a gel substrate. It was recently shown that substrate stiffness affects
cellular behaviors in a significant way, including adhesion, differentiation, and migration. Therefore, an accurate method is
needed to characterize the modulus of the substrate. In situ microscopic measurements of the gel substrate modulus are based
on Hertz contact mechanics, where Young’s modulus is derived from the indentation force and displacement measurements. In
Hertz theory, the substrate is modeled as a linear elastic half-space with an infinite depth, whereas in practice, the thickness of
the substrate, h, can be comparable to the contact radius and other relevant dimensions such as the radius of the indenter or
steel ball, R. As a result, measurements based on Hertz theory overestimate the Young’s modulus. In this work, we discuss the
limitations of Hertz theory and then modify it, taking into consideration the nonlinearity of the material and large deformation
using a finite-element method. We present our results in a simple correction factor, j, the ratio of the corrected Young’s modulus
and the Hertz modulus in the parameter regime of d/h % min (0.6, R/h) and 0.3 % R/h % 12.7. The j factor depends on two
dimensionless parameters, R/h and d/h (where d is the indentation depth), both of which are easily accessible to experiments.
This correction factor agrees with experimental observations obtained with the use of polyacrylamide gel and a microsphere
indentation method in the parameter range of 0.1% d/h % 0.4 and 0.3% R/h% 6.2. The effect of adhesion on the use of Hertz
theory for small indentation depth is also discussed.
INTRODUCTION
Mechanical signals play important roles in directing cellular
behaviors including adhesion, migration, differentiation,
and cell-cell communications (1–5). When grown on a
substrate coated with proteins (e.g., naturally derived extra-
cellular matrix (ECM) collagen), many cell types, such as
fibroblasts, endothelial cells, smooth muscle cells, and
mesenchymal stem cells, exert forces on the substrate
(1,3,6,7). In turn, the stiffness of the substrate influences
the cellular behavior through linkages between the integrins
presented on the cell membrane and ECM. Early work from
the Wang laboratory revealed that substrate stiffness regu-
lates both focal adhesions and cell locomotion (2). Work
from the Discher laboratory demonstrated that stem cells
choose their cell differentiation lineage depending on the
substrate stiffness, i.e., mesenchymal stem cells grown on
soft, medium, or rigid substrates develop into neurogenic,
myogenic, or osteogenic cells, respectively (1). Recent
work from Reinhart-King’s laboratory showed that endothe-
lial cell network formation is mediated by the substrate stiff-
ness, which has a direct impact on our understanding of the
formation of vascular tissue (4).

Our increasing appreciation of the cellular mechanical
environment demands a new set of tools to accurately char-
acterize the mechanical properties of soft materials in situ.
To date, much of what we have learned about the roles of
mechanical forces in various physiological processes has
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been derived from observations of cells plated on hydrogel
substrates with tunable stiffness (1–4). Traditional methods
for measuring the modulus, such as rheometry and atomic
forcemicroscopy (AFM), are expensive and low-throughput,
and cannot be carried out in situ under cell culture conditions.
Therefore, investigators have developed a number of novel
techniques to either measure the Young’s modulus of
a substrate in situ or directly probe the traction force of cells
plated on a specially engineered substrate (8–21). Of almost
all of the in situ measurement techniques, the widely used
microscopic indentation method pioneered by the Wang
laboratory is the easiest one to implement in a biology
laboratory (22). Briefly, the indentation displacement of
a gel by a microsphere (e.g., a micrometer-scale steel ball
or a glass indenter; see Fig. 1) ismeasuredwith amicroscope,
and the Young’s modulus is derived by means of Hertz
contact theory. This method is especially appealing to
biology laboratorians because 1), it provides straightforward
measurements and can be carried out quickly under cell
culture conditions; 2), it is compatible with microscopy,
which is used to observe cellular behavior; 3), it does not
require instruments that are expensive and not normally
available in a biology laboratory (e.g., a rheometer or atomic
force microscope); and 4), it is high-throughput.

The current microscopic indentation method, however, is
limited by the assumptions made in Hertz contact theory.
Hertz contact theory assumes that the microsphere indenter
is in contact with a gel of infinite half-space. This cannot be
easily satisfied in the laboratory, because of the ways in
which gels are made in the laboratory, as well as the need
doi: 10.1016/j.bpj.2011.06.049
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FIGURE 1 Schematics of the microsphere indentation method. A micro-

sphere with radius R is in contact with a soft gel layer of thickness h. The

bottom of the gel is adhered to a glass slide. Heavy dotted lines indicate

the surface of the elastic substrate and the sphere (rigid) just before contact.

The geometry after contact is indicated by solid lines. The point P is at

distances that are very large compared with the contact radius a. In Hertz

theory, h ¼ N and d2 is determined by a small-angle approximation, as

illustrated in the inset.
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to be compatible with an optical microscope. The most
commonly used gel, polyacrylamide, is made by sandwich-
ing a mixture of polymer precursor and its cross-linking
agent between two glass coverslips. A thin gel is much
easier to process to achieve a uniform gelation throughout
the gel, and a thick gel degrades the imaging quality. As
a result, the most commonly used gel thickness in the inden-
tation method is in the range of 50–200 mm (22,23). The
microspheres, which are commercially available, usually
have a radius of 150–625 mm (22). These conditions violate
the Hertz assumption and lead to an overestimation of the
modulus (22,23).

In this work, we first review the limitations of Hertz theory
in the context of the microscopic indentation method. We
then present a simple expression for a correction factor, j,
the ratio of the corrected and Hertz moduli, as a function of
R/h and d/h, where R is the indenter radius, d is the indenta-
tion displacement, and h is the gel thickness. The computed
correction factor is obtained via a finite-element simulation
that accounts for large deformation andmaterial nonlinearity
in the parameter regime of d/h % min (0.6, R/h) and 0.5 %
R/h % 12.7. This correction factor reproduces the result of
Dimitriadis et al. (21) based on linear elasticity theory at
the small-strain limit d/h% 0.1. It is consistent with experi-
mental measurements obtained with the use of polyacryl-
amide gel of various thicknesses and the microsphere
indentation method using stainless steel or glass spheres in
the parameter regime of 0.1 % d/h % 0.4 and 0.3 % R/h %
6.2. This work extends the capability of the current micro-
scopic indentation method for characterizing soft gels.

MATERIALS AND METHODS

Computation methods

Hertz theory and its limitations

Hertz theory was developed to explain nonadhesive contact between two

elastic spheres. By assigning zero curvature to one of the spheres, one

can readily extend Hertz theory to the case of a sphere indenting on an
Biophysical Journal 101(3) 643–650
elastic half-space. To adapt Hertz theory to the microsphere indentation

experiments, we note that the modulus of the microsphere (a steel or glass

ball) is at least six orders of magnitude higher than the substrate, and thus

can be considered as a rigid body. The Young’s modulus E of an infinitely

thick gel indented by a rigid microsphere is related to the indentation force

F and the measured indentation depth or displacement d by

E ¼ 3ð1� v2ÞF
4R1=2d3

=2
; (1)

where R is the radius of the indenter, F is the weight of the microsphere

minus the buoyancy, and v is the Poisson’s ratio of the substrate. We assume
n ¼ 0.5 in this work, because indentation experiments are typically carried

out in a short time (i.e., within several minutes). In this regime, there is not

enough time for the small solvent molecules to migrate in or out of the gel

network (24). Indeed, one can estimate the diffusion timescale using the gel

modulus, viscosity of water, typical experimental dimensions (contact

radius), and permeability of the gel network (25). Based on previous data

(26), we estimate the permeability of our polyacrylamide gel to be 5 �
10�19 m2. Using a typical contact radius (100~250 mm) and gel modulus

(~1000 Pa), we estimate the diffusion timescale to be 5–31 h, which is

much longer than our experimental timescale. As a result, the gels behave

as incompressible materials in the microsphere indentation experiments.

The indentation depth, d, is defined with respect to a remote point in the

specimen where the deformation is identically zero (e.g., point P in

Fig. 1). The dotted horizontal line in Fig. 1 represents the surface of the

undeformed substrate just before contact. The indentation depth is the

sum of two displacements:

d ¼ d1 þ d2; (2a)

where
d2 ¼ a2=ð2RÞ (2b)

using the small-angle approximation (see inset of Fig. 1) and a as the

contact radius. Recall that in Hertz theory,

d ¼ a2=RhdH: (3)

Equations 2 and 3 imply that d1 ¼ d2 in Hertz theory.

Eq. 1, or Hertz theory, is derived based on the following assumptions:

1. The displacements and strains of the substrate are assumed to be small so

that a linearized continuum theory can be used. In particular, there is no

distinction between the deformed and undeformed configurations of the

contacting bodies as far as force equilibrium is concerned. These

assumptions allow the sphere to be replaced by a paraboloid.

2. The gel substrate is an infinite half-space (i.e., h ¼ N). Physically, this

means that its thickness is large in comparison with all other relevant

length scales in the experiment (e.g., the contact radius a).

3. The contact surfaces are assumed to be frictionless so that the shear trac-

tions acting on them are identically zero.

4. No adhesion between the indenter and the substrate, for otherwise

normal tensile stress can be supported near the edge of contact. This

assumption, together with assumption 3, implies that contact stress is

compressive.

For a thin gel substrate, assumption 2 is usually violated in experiments.

As a result, Eq. 1 tends to predict a much higher elastic modulus, a limitation

that is widely recognized in the literature (22). For example, in the micro-

sphere experiments of Reinhart-King et al. (23), the measured Young’s

modulus based on Eq. 1 is found to decrease significantly with substrate

thickness. Specifically, the modulus is 17,500 Pa for a gel thickness of

50 mm. It decreases to 2500 Pa when the gel thickness is 200 mm. In their

study, the modulus of the gel is taken to be 2500 Pa. Their implicit assump-

tion is that a gel thickness of 200 mm is sufficiently thick to approach the
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Hertz limit of an infinite substrate. Later, we will show this is not the

case, as the correction to Hertz theory in general depends on the ratios

d/h and R/h.

In the following, E in Eq. 1 will be replaced by EH, which we will call the

Hertz modulus.

Modified Hertz theory for a substrate of finite thickness based
on linear elasticity

We briefly review previous works that sought to account for the effects of

substrate thickness. Previous investigators modified Hertz theory to account

for finite layer thickness either numerically (27–29) or analytically (21,30).

Shull and Crosby (27) and Shull (28) were primarily interested in probing

the adhesion of gel to a micro-indenter, whereas Dimitriadis et al. (21) were

interested in measuring the gel modulus using atomic force microscopy

(AFM). All of these works accounting for the finite layer thickness effect

were based on linear elastic theory, where strains are assumed to be small

(d/h % 0.1) and directly proportional to stresses.

Modified Hertz theory for a substrate of finite thickness based
on nonlinear elasticity

Small-strain theory breaks down when d/h R 0.1, a condition that is

frequently encountered in microsphere experiments (23) (Table 1), particu-

larly during attempts to characterize soft biomaterial. Therefore, it is neces-

sary to include large deformation in the analysis and to consider different

values of R/h. The breakdown of small-strain theory creates two difficulties:

The fact that displacements and strains are no longer small means that

the relation between displacements and strains is nonlinear (for example,

the Lagrangian strain tensor involves quadratic terms of displacement

gradients). Also, one must distinguish between the undeformed and

deformed configurations. On top of these difficulties, one must account

for material nonlinearity (i.e., Hooke’s law, which holds that strain is

directly proportional to stress, is no longer accurate). In our finite-element

simulations (see below), the usual Hooke’s law of linear small-strain elas-

ticity is replaced by a neo-Hookean solid (31), the simplest material

model used by physicists and chemists to extend Hooke’s law to account

for large deformation. We also use the exact kinematics of large-deforma-

tion theory (31).

To illustrate the nonlinearity brought about by large deformation and the

neo-Hookean model, we consider a simple example of a straight bar with

initial cross-section area A0 and length L0 subjected to a constant tension

force T (see inset of Fig. 2). After deformation occurs, the cross-section

area A0 shrinks to A and the length extends to L. A plot of the normalized

true stress s/E (s ¼ T/A) versus the extension ratio l ¼ L/L0 (solid line) is

shown in Fig. 2. Recall that in small-strain theory, the tensile strain is 3 ¼
l�1, and one does not draw a distinction between the true stress s and the
TABLE 1 Results from the microsphere indentation experiments

Gel thickness

h (mm)

Indentation depth

d (mm)

Dimensionle

parameters

R/h d/h

Sample 1 51.75 5 5.42 19.65 5 1.17 6.14 0.38

Sample 2 153.27 5 15.37 41.05 5 1.59 2.07 0.27

Sample 3 272.26 5 17.54 64.41 5 1.74 1.17 0.24

Sample 4 520.94 5 6.29 89.74 5 1.37 0.61 0.17

Sample 5 771.37 5 30.05 112.66 5 2.49 0.41 0.15

Sample 6 1053.5 5 23.92 133.40 5 2.54 0.30 0.13

Sample 7 133.75 5 2.26 31.36 5 1.37 4.37 0.23

Gel thickness h and indentation depth d were measured in experiments using the

of radius R¼ 317.5 mm (six measurements per sample). Sample 7 was indented b

dimensionless parameters R/h, d/h, and u are listed in the table. The Hertz modul

modulus Ewas determined using the correction factor (Eq. 6) and the frictionless

tion factor provided in Dimitriadis et al. (21) (see their Eq. 12). All of the data
nominal or engineering stress t ¼ T/A0. The linear small-strain theory,

which holds that stress is directly proportional to strain, is shown as the

dashed line in Fig. 2. The prediction of the nonlinear neo-Hookean solid

is shown as a solid line. Because the dash line is tangent to the solid line

in Fig. 2 at l ¼ 1 (3 ¼ 0), the neo-Hookean solid has the same Young’s

modulus as the linear Hooke’s law in the limit of small strains. Clearly,

deviation occurs once j3j > 0.2, especially in compression (l <1). It

must be noted that the stress state in the gel layer under indentation is multi-

axial and not uniform, and hence is much more complex than the example

shown in Fig. 2.

We note that Yoffe (32) previously modified Hertz theory to account for

large deformation. However, his analysis was based on perturbing the Hertz

solution about the small-strain state, and did not account for the finite-thick-

ness effect. Also, the constitutive model used in his analysis was the linear

Hooke’s law, that is, it did not account for material nonlinearity. More

recently, Lin and Chen (33) carried out a detailed large-deformation anal-

ysis of the Hertz problem of a rigid hemisphere indenting on a neo-Hookean

half-space (i.e., h ¼ N). They based their analysis on an exact formulation

of the equations of nonlinear elasticity, but did not consider the finite-thick-

ness effect.

Finite-element method for modified Hertz theory

We performed finite-element simulations using the commercial software

ABAQUS (34). We took advantage of the axisymmetry to create a two-

dimensional, finite-element model for this indentation problem. The gel

substrate was modeled as a circular layer made of incompressible neo-

Hookean material. The radius of the layer was 20h, where h is the thickness

of the layer. The spherical indenter of radius R was modeled as a rigid

object. (We checked to ensure that increasing the radius of the layer had

no effect on our solution.) To highlight the effect of large deformation,

we studied indentation depths up to d/h ¼ 0.6, which clearly exceeds the

limit of the small-strain theory. We considered two limits of the friction

condition on the interface: the no-slip condition (infinite friction) and the

frictionless condition (zero friction). We ascertained that our results

obtained by the finite-element method (FEM) converged as the mesh size

decreased. Additional information regarding the finite-element simulations

is given in the Supporting Material.

There are three dimensionless arguments that can be constructed in the

indentation problem: the dimensionless force F=ð16E ffiffiffi
R

p
d3=2=9Þ, the

dimensionless indentation depth d=h, and the dimensionless indenter radius

R/h. Dimensional analysis leads to the following result:

9F

16E
ffiffiffi
R

p
d3=2

¼ f

�
d

h
;
R

h

�
; or F ¼ 16

9
E

ffiffiffi
R

p
d3=2f

�
d

h
;
R

h

�
:

(4)
ss

Hertz modulus

EH (Pa)

Corrected modulus

E (Pa)

Linear modulus

EL (Pa)u

3.556 3226 5 288.1 312 5 85.6 359 5 92.5

0.413 1068 5 62.1 344 5 49.6 368 5 51.7

0.145 544 5 22.0 261 5 20.4 263 5 19.2

0.034 330 5 7.6 230 5 6.1 216 5 5.9

0.0147 235 5 7.8 188 5 6.9 172 5 6.8

0.0075 182 5 5.2 158 5 4.6 143 5 4.5

1.039 1633 5 107.0 334 5 33.7 374 5 38.1

microscopic indentation method. Samples 1–6 were indented by a steel ball

y a glass sphere of radius R¼ 585 mm (10 measurements). Average values of

us EH was calculated using Hertz theory (Eq. 1) with n¼ 1/2. The corrected

interface condition. The linear modulus EL was calculated using the correc-

except for the dimensionless parameters are presented as the mean 5 SD.

Biophysical Journal 101(3) 643–650



FIGURE 2 Nonlinear elasticity of material in large deformation. The

relationship between the normalized true stress and stretch ratio for

a neo-Hookean bar subjected to uniaxial tensile force T is shown. The

dashed line represents the prediction of the linear small-strain theory

(Hooke’s law). The solid line represents the nonlinear response of the mate-

rial. The inset shows the geometry and loading. The tension bar has a cross-

section area of A0 and length of L0 before deformation. After deformation,

the cross-section area shrinks to A and the length extends to L. The true

stress s is defined by T/A, whereas the extension ratio l is L/L0.
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where f is an unknown dimensionless function of its dimensionless argu-

ments. Using Eqs. 1 and 4, and Poisson ratio to be 0.5, we find the correc-
tion factor j to be

j ¼ E=EH ¼
�
f

�
d

h
;
R

h

���1

(5)

To investigate the effect of R/h on the correction factor j, we carried out

finite-element simulations for different R/h values in the range of 0.5–12.7,

which covers the dimensions used in typical experiments.
Experimental methods

Coverslip activation

The surface of glass coverslips (No 1, 48 mm� 65 mm; Thermo Scientific,

Waltham, MA) were activated to covalently bond to polyacrylamide gel

sheets via methods adapted from the protocol of Reinhart-King et al. (23).

First, a cotton swab was used to evenly coat the surface with 0.1 N NaOH,

and the coverslip was air-dried. Second, a Pasteur pipette was used to coat

the surfacewith 60 ml of 3-aminopropyltrimethoxysilane (APTMS; Aldrich,

St. Louis, MO). After incubation for 5 min, the coverslips were washed

with distilled H2O and air-dried. Third, the coverslips were coated with

2 ml of 0.5% glutaraldehyde (70%; Aldrich) in phosphate-buffered saline

and incubated for 30 min. Finally, the slides were washed in distilled water

and air-dried, which completed the surface activation.

Polyacrylamide gel preparation

Polyacrylamide gels of different thicknesses were cast and bound to the

activated surface of the glass coverslips. A polyacrylamide mixture with

a final concentration of 3% acrylamide (40% w/v; Bio-Rad, Hercules,

CA), 0.1% N, N-methylene-bis-acrylamide (BIS, 2% w/v; Bio-Rad),

300 mM HEPES (EMD Chemicals, Gibbstown, NJ), 0.05% tetramethyle-

thylenediamine (Sigma, St. Louis, MO), and 0.83 mm green fluorescent

microspheres (catalog No. G830; Thermo Scientific) at a concentration of

4 � 106/ml was prepared. The mixture was adjusted to a pH of 6 with

hydrochloric acid and then degassed. Molecular biology-grade ethyl
Biophysical Journal 101(3) 643–650
alcohol was added to a final concentration of 7%. Ammonium persulfate

(Aldrich) was added to a final concentration of 0.05% w/v for initial poly-

merization. A volume of polyacrylamide solution depending on the desired

gel thickness was pipetted onto the hydrophobic side of the circular glass

coverslip. The activated side of the 48 mm � 65 mm slide was lowered

into contact with the polyacrylamide mixture until the mixture covered the

entire area of the circular coverslip. The polyacrylamide layer and circular

coverslip were suspended upside down to ensure that most fluorescent beads

would be at the gel-water interface in later experiments. The sandwiched

gel was polymerized for 30 min in a biohood (16% humidity) or 100%

humidity environment for 2 h. The circular coverslip was then removed

and the polyacrylamide gels were immersed in distilled water for at least

1 day to ensure complete hydration before measurements were obtained.

Microsphere indentation method and gel thickness
measurements

We used a pair of forceps to place a spherical indenter onto a polyacrylamide

gel covered by water, submerging both the gel and the indenter. Using

bright-field microscopy and the x-y translation stage of the microscope

(IX51, Olympus America, Center Valley, PA), we brought the indenter to

the center of the image. The microscope was then switched to the epifluor-

escent mode. Using the z-control knob, we identified the green fluorescent

bead that was nearest the center of the image and appeared to be at the inter-

face of the gel and the indenter. We located the z-position of the fluorescent

bead of interest by manually sweeping the z-position of the stage and

recording the z-position at which the image of the fluorescent bead had

the maximum light intensity. The light intensity was measured with the

imaging software IPLab (Biovision, Mountain View, CA) in real time.

The resolution of the measured z-position of the stage was 51.0 mm. A

magnet (for the steel sphere) or a pipette (for the glass sphere) was used

to gently remove the indenter. The new z-position of the fluorescent bead

was found in the same manner as described above. To ensure that the

measured fluorescent bead was at the air-gel interface, we checked to see

whether the fluorescent bead recovered to the undeformed gel-water inter-

face upon removal of the indenter. All of the measurements were carried out

using beads that were located both at the center of the indenter and at the

gel-water interface. The difference of the z-position of the microscope stage

with and without the indenter multiplied by 1.31 was taken as the maximum

displacement d of the fluorescent bead at the contact point. The factor 1.31

was introduced because the translation of the microscope stage was in air

and the actual distance measured was in gel, and thus there was an optical

index mismatch at the air-gel interface. We obtained this factor through

a careful calibration using a known spacing (an equivalent of a z-ruler)

immersed in water. We fabricated the z-ruler, a silicon wafer with channels

of various depths, using photolithography, and calibrated it with a profilo-

meter (Tencor P10 Profilometer, Tencor, Milpitas, CA). We then took the

gel thickness measurements near the indentation location by finding the

z-position of the lowest and highest beads in the gel. The difference in

z-position multiplied by 1.31 was taken as the gel thickness.

RESULTS AND DISCUSSION

Numerical computation results

Correction factor based on nonlinear elasticity theory

We obtained an expression for the correction factor that
accurately matched our simulation result for the parameter
range of 0.5 % R/h % 12.7 and d/h % min (0.6, R/h):

E=EH ¼j ¼ 1þ 2:3u

1þ 1:15u1=3 þ aðR=hÞuþ bðR=hÞu2
;

uh
�
Rd=h2

�3=2
:

(6)
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For the slip (or frictionless between sphere and gel inter-
face) condition,

aðR=hÞ ¼ 10:05� 0:63
ffiffiffiffiffiffiffiffi
h=R

p �
3:1þ h2=R2

�
; (7a)

bðR=hÞ ¼ 4:8� 4:23h2=R2: (7b)
For the no-slip condition,

aðR=hÞ ¼ 8:94� 0:89h2=R2; (7c)

bðR=hÞ ¼ 9:288: (7d)
FIGURE 4 Numerical and analytical expression for the correction factor

when R/h R 2. (A) Slip interfacial condition and (B) no-slip interfacial

condition between the indenter and the substrate. The solid line is given

by Eq. 8 and the symbols indicate FEM results for different R/h values:

2 (,), 3(>), 4(6), 5(7), 6(*), 7(C), 8(-), 9(A), 10(:), 11.5(;),

12.7(+). The dotted lines indicate the typical range of u in experiments.

The insets show close-up views of the data points.
Fig. 3 shows that the fitting formula Eq. 6 (solid lines)
can faithfully reproduce our FEM results (circular
symbols). In the small-strain regime of d/h % 0.1, Eqs. 6,
7a, and 7b reproduce the correction factor based on linear
elasticity theory from Dimitriadis et al. (21) (see red dashed
lines). In the parameter regime of d/h > 0.1, Eq. 6 deviates
from the result of linear elasticity theory due to the nonlin-
earity and large deformation of the material. This discrep-
ancy becomes more evident when R/h is greater or less
than one.

Of interest, for a parameter range of R/h >2 and <12.7,
the correction factor j depends only on a single dimension-
less parameter, u h (Rd/h2)3/2, and can be described by
a simpler formula. This result is supported by the collapse
of data for different R/h values shown in Fig. 4 A (slip)
and Fig. 4 B (no-slip). The correction factor j is found to
be well approximated by:

E=EH ¼ j ¼ 1þ 2:3u

1þ 1:15u1=3 þ 9:5uþ b�u2
: (8)

The numerical factor b* is 4.212 if the indenter is in fric-
tionless contact with the substrate (slip), and 9.288 if the
FIGURE 3 Correction factor E/EH versus d/h when R/h ¼ 0.5 or 1,

considering a frictionless interface between the indenter and the gel. The

solid lines are given by Eq. 6 and the symbols are numerical results. The

dashed line is obtained using the result of Dimitriadis et al. (21) (see their

Eq. 12).
indenter cannot slip on the substrate (no-slip). Typical
values of u in experiments can range from 0.01 to 10. The
maximum relative error between Eq. 8 and the FEM results
is ~8% for all data points plotted on Fig. 4.
Comparison with microsphere indentation
experiments

To evaluate the accuracy of our correction factor j in Eq. 6,
we carried out microsphere indentation experiments to mea-
sure the modulus of a polyacrylamide gel containing 3%
acrylamide and 0.1% BIS-acrylamide using the microsphere
method. A steel ball with a diameter of 635 mm or a glass
sphere with a diameter of 1.17 mm was used as the micro-
sphere indenter. The weight of the steel ball minus the buoy-
ancy gives a force of ~8.9 mN, where we have taken the
density of steel to be 7800 kg/m3 and the density of the
solution to be 1000 kg/m3. Similarly, the weight of the glass
indenter is calculated to be 12.33 mN. We measured the
indentation depths for seven gel samples with the same
Biophysical Journal 101(3) 643–650



FIGURE 5 Correcting the finite thickness effect in microsphere indenta-

tion experiments. The circles are the EH value calculated using Hertz theory

and the measured d. The squares are the corrected modulus E calculated

using Eq. 6 and the measured d. Error bars represent the SD from six

measurements. The solid lines indicate the average values of the corrected

modulus: (A) 249 Pa and (B) 750 Pa. The dashed lines are guidelines for

data points from Hertz theory. The solid level lines indicate that the gel

modulus is independent of the gel thickness.
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composition but different thicknesses using the z-control of
the microscope stage (Olympus IX 51). We found the
contact point by finding the position of the fluorescent
bead located at the contact point. The data are summarized
in Table 1. Note that samples 1–6 were indented by the steel
ball, whereas the glass sphere was used for sample 7.

For the data shown in Table 1, we calculated the Young’s
modulus EH directly using Hertz theory (Eq. 1). We found
large discrepancies in EH for these samples with the same
gel composition but different thicknesses, demonstrating
the effect of finite thickness and the limitations of Hertz
theory, especially for thin samples. We then corrected EH

using the correction factor j given in Eq. 6. Because the
polyacrylamide gels used in the experiments contain
>90% water, we expected a low interface friction, and
hence the frictionless condition was assumed on the inter-
face between the microsphere and the gel substrate. After
this correction, the moduli for all samples were much closer
to each other. The mean 5 standard deviation (SD) of the
gel modulus is 2495 75 Pa (using samples 1–6). One might
notice that the SD in the corrected modulus decreases with
increased sample thickness. This is because the indentation
depth of the thin samples is much smaller than that of the
thick samples, which makes the thin samples more sensitive
to measurement errors in the indentation method.

Also listed in Table 1 is the corrected modulus EL, which
we obtained using a correction factor based on linear elas-
ticity theory in Dimitriadis et al. (21). Although this theory
was specifically developed for AFM indentation and applies
to the small-strain condition where d/h % 0.1, and all our
experiments were carried out when d/hR 0.1, the correction
factor from linear theory also shows significant improve-
ments from the Hertz theory. The consistency of the data
(characterized by the difference of the maximum and
minimum of the modulus divided by the average modulus)
from the nonlinear elasticity theory is improved ~13% in
comparison with that of linear elasticity theory, assuming
that the gels in all of the samples have the same Young’s
modulus.

To highlight the contrast between the uncorrected
modulus EH and the corrected modulus E, we plot the re-
sults of samples 1–6 as a function of gel thickness h in
Fig. 5 A. A horizontal line at 249 Pa (i.e., the average cor-
rected modulus) is inserted into Fig. 5 A as a reference line.
We also plot a dashed curve in Fig. 5 A that shows the results
from Hertz theory. We obtained this curve by first solving
for d in Eq. 4 with E ¼ 249 Pa, F ¼ 8.9 mN, R ¼ 317.5 mm,
and f replaced by j�1 (j is given in Eq. 6) for different
thicknesses h, and then substituting d in Eq. 1 to calculate
EH. Note that this curve is in excellent agreement with EH

obtained by direct measurement of d and using Eq. 1 (circles
in Fig. 5). The dashed curve converges to the horizontal
line (at 249 Pa) as the thickness increases, as is expected
because Hertz theory becomes more accurate for thicker
substrate. At h ¼ 1000 mm, Hertz theory still overestimates
Biophysical Journal 101(3) 643–650
the gel modulus by 15%. We emphasize that the validity of
Hertz theory does not depend on the absolute value of
the substrate thickness, h, but on the relative ratios, u h
(Rd/h2)3/2 and R/h.

To highlight the importance of measuring the gel modulus
in situ, we present another set of data obtained using the
same gel composition (3% acrylamide and 0.1% BIS-acryl-
amide) and protocol (23), but with one different step in the
polymerization procedure. Fig. 5 A shows the corrected
modulus measurement of 249 Pa from a gel that was poly-
merized under a 100% humidity chamber for 2 h, and
Fig. 5 B shows the result of 750 Pa from a gel that was poly-
merized under a biohood with ~16% humidity for 30 min. In
an independent measurement of the gel modulus using a
rheometer, Yeung et al. (35) obtained a modulus of 1000 Pa,
which compares favorably with our measurement of 750 Pa
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obtained using the same gel-making protocol and polymer-
ization on a bench with low humidity for 30 min. We also
found that the gel modulus increases if the vacuum pressure
used in the degassing step of the protocol is lower, possibly
due to the increased polymer concentration as a result of
evaporation. These results suggest that the gel modulus
depends sensitively on every step of the protocol, and high-
light the importance of measuring the gel modulus in situ
when performing cell-related experiments.
DISCUSSION

Our FEM results show that the Young’s modulus E mea-
sured in a microsphere indentation experiment is given by

E ¼ EHjðu;R=hÞ; u ¼ �
Rd=h2

�3=2
; (9)

where EH is the Hertz modulus given by Eq. 1 and j is the
correction factor given by Eq. 6. For our material model, we
used the neo-Hookean model, which approaches Hooke’s
law in the limit of small strains. It should be noted that
the neo-Hookean model is accurate only for moderate
strains. For very large deformations, this model may not
accurately capture the nonlinear elastic behavior of a mate-
rial. For example, it is well known the neo-Hookean model
substantially underestimates the amount of strain hardening
of elastomers and rubbers when the deformation is very
large (36). As a result, one should use caution when
applying Eq. 6 for very large indentation depths (e.g., for
d/h R 0.8). In combination with the modified Hertz theory
that accounts for finite gel thickness and large deformation
effects, the microsphere indentation method offers an alter-
native way to accurately measure the modulus of soft gels
in situ without the need for expensive equipment such as
an atomic force microscope or rheometer.

Here we comment on assumption 4 (see above) of the
Hertz theory. Adhesion increases the contact area predicted
by the Hertz model. Adhesive interactions of gels and elas-
tomers with hard surfaces are typically governed by disper-
sive forces. The thermodynamic work of adhesion, W, on
these surfaces is quite low, on the order of 40–80 mJ/m2;
nevertheless, their effect on contact mechanics can be
important, particularly when the indentation depth is
small. Indeed, overestimation of E at shallow indentation
depth is often attributed to surface interaction between the
indenter and the substrate in an indentation test (22). One
can quantify the effect of adhesion by using the Johnson-
Kendall-Roberts (JKR) theory (37). We include this result
in the Supporting Material because it is not directly relevant
to this work.

One might notice in Table 1 that there is a systematic
decrease in the modulus value with the increase of sample
thickness. In theory, the modulus should be independent
of sample thickness after correction. This result may indi-
cate that the gels in the thicker samples were softer than
those in the thinner ones. In early experiments, we found
that it took a longer time for thicker samples to fully poly-
merize compared with the thin samples. To ensure that the
thick samples were fully polymerized, we developed a
new (to our knowledge) polymerization procedure in which
the samples were placed under a 100% humidity condition
for 2 h, in contrast to the usual 30 min polymerization
time on a bench top used in recent studies (35). Samples
of all thicknesses shown in Table 1 were prepared using
the same procedure.

Finally, we would like to emphasize the importance of
in situ gel characterization, because the gel modulus depends
sensitively on detailed gel preparation steps, including
the humidity, degassing vacuum pressure, and duration of
polymerization. In the future, we would like to extend this
method to measure the modulus of a cell-embedded bio-
matrix layer and probe the process of cellular biomatrix
remodeling in real time.
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