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Stochastic Collective Movement of Cells and Fingering Morphology:
No Maverick Cells

Gaddiel Yonathan Ouaknin* and Pinhas Zvi Bar-Yoseph
Computational Biomechanics Laboratory, Faculty of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa, Israel

ABSTRACT The classical approach to model collective biological cell movement is through coupled nonlinear reaction-diffu-
sion equations for biological cells and diffusive chemicals that interact with the biological cells. This approach takes into account
the diffusion of cells, proliferation, death of cells, and chemotaxis. Whereas the classical approach has many advantages, it fails
to consider many factors that affect multicell movement. In this work, a multiscale approach, the Glazier-Graner-Hogeweg model,
is used. This model is implemented for biological cells coupled with the finite element method for a diffusive chemical. The
Glazier-Graner-Hogeweg model takes the biological cell state as discrete and allows it to include cohesive forces between
biological cells, deformation of cells, following the path of a single cell, and stochastic behavior of the cells. Where the continuity
of the tissue at the epidermis is violated, biological cells regenerate skin to heal the wound. We assume that the cells secrete
a diffusive chemical when they feel a wounded region and that the cells are attracted by the chemical they release (chemotaxis).
Under certain parameters, the front encounters a fingering morphology, and two fronts progressing against each other are
attracted and correlated. Cell flow exhibits interesting patterns, and a drift effect on the chemical may influence the cells’ motion.
The effects of a polarized substrate are also discussed.
INTRODUCTION

Collective migration of cells has an important place in many

physiological processes, such as metastasis, morphogenesis,

bone remodeling, and wound and fracture healing. Cell

movement can be stimulated by different mechanisms,

such as chemotaxis (1), durotaxis (2), galvanotaxis, thermo-

taxis, and haptotaxis, as well as polarization of the extracel-

lular matrix, which can direct the cell motion (3). A single

biological cell moves with its internal mechanisms of regula-

tion of the proteins actin and myosin. Mathematical models

of a single cell have been developed, and some under-

standing has been reached (e.g., (4,5) and references therein).

Despite the complex biophysics of cell locomotion at the

cellular level, the multicell movement is coordinated

between the different cells that constitute the tissue. Via

chemical signals and strong cadherin contacts, cells are

able to move in a collective way. Collective cell movement

leads to patterns that cannot be deduced by studying single

cell movement only.

Wound healing, the body’s response when epidermal

tissue is removed from the skin, is a complex and dynamic

process of restoring cellular structures and tissue layers.

Cells close to the wound send signals, start to move, and

proliferate to contract the wound. In trying to understand

how the different biological factors affect collective move-

ment and especially wound healing, many biological exper-

iments have been carried out. In wound healing, many

biochemical cascades of signals occur; thus, it is almost

impossible to decouple all the effects on each other. In
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each experiment, attempts are made to isolate another factor

and to decouple it from the others.

In one study, Poujade et al. (6) used a novel experimental

approach to simulate wound healing. Instead of the classical

wound scratch assay, they used an original approach in which

a virgin surface is presented to a confluent epithelium of

Madin-Darby canine kidney cells with no damage to the cells.

In their experiment, the cells at the border remain intact, allow-

ing uncoupling of the effect of damaged cells to the process.

The cells start moving to the unwounded region dragged by

leader cells. The front exhibits a fingering morphology and

a very complex flow of cells is observed (6,7).

Nikolie et al. (8) also investigated the role of boundary

conditions during epithelial wound healing. They show

that injury triggers faster cell motion than free surface alone.

In addition, in this case (8), a fingering morphology is clearly

seen, and the collective cell movement shows high coordina-

tion.

In another study, Farooqui and Fenteany (9), using the

same type of cells, investigated wound healing and focused

on the differences in velocity of the different cells inside

the undamaged tissue as a function of their initial distance

from the wound front. Additionally, Grasso et al. (10) inves-

tigated wound geometry, wound size, and extracellular

matrix (ECM) roles in the healing of bovine corneal endothe-

lial cells in culture. In both of these cases as well, a fingering

morphology clearly appears later in Figs. 9 and 10. Bind-

schadler and McGrath (11) investigated L1 fibroblasts with

the scratch-wound assay and found that sheet migration

can be explained by a simple single-cell movement model

and does not require intercellular interaction.

The exact biophysical mechanism in wound healing is still

unclear. Mathematical models to quantify the multicell
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migration in wound healing can contribute to a better under-

standing of wound healing. Such insights can be of great

concern for clinical purposes. For example, they can aid in

the development of drugs designed to efficiently contract

a wound or for aesthetic surgical purposes.

Many theoretical and numerical studies have already been

carried out to model the collective cell movement (12).

Usually these models assume a continuous distribution of

the chemicals and the cells, and they use nonlinear coupled

partial differential equations. These models include reaction,

diffusion, chemotaxis, proliferation, decay, and secretion of

chemicals by cells. The change in density of cells from

a certain type is due to cell migration, mitotic generation,

transition to other types and transition from other types,

and motion up or down of chemical gradients. In diffusive

chemicals, the change in density is due to diffusion, produc-

tion of chemicals by cells, and reaction between other chem-

icals, which can be a gain or a loss depending on the other

diffusive chemical concentrations.

The Sherratt and Murray (13) model uses Eqs. 1 and 2 to

describe epidermal wound healing:

vn

vt|{z}
Rate of increase

of cell density

¼ DnV2n|fflfflffl{zfflfflffl}
Cell migration

þ sðcÞn
�

1� n
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(2)

Sherratt and Murray assume migration with a constant

diffusion coefficient, and mitosis controlled by a diffusive

chemical. The interaction of the chemical with its surround-

ings is expressed by a single term (the last term in Eq. 2).

They solve these two coupled nonlinear equations using a

finite difference scheme in one dimension for a radial geom-

etry and get n(r), and c(r). This model was extended by Dale

et al. (14) to model corneal epithelium wound healing in

which they take the diffusion coefficient to be dependent

on the diffusive chemical. Maini et al. (15,16) solved the

Fisher equation in one dimension and fit the simulation

parameters using experimental data. They received a constant

front speed during the wound healing with this model. Cai

et al. (17) extended the one-dimensional Fisher equation

by introducing diffusivity that depends on the cell concentra-

tion:
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¼ D0
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vx
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DðnÞ ¼ n

A þ n
: (4)
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Cai et al. then used Eq. 3 to derive a master equation to include

stochastic effects and single cell tracking. The advantage of

this last model is that it permits a multiscale approach.

The continuous models of collective migration processes

cannot simply take into account the adhesion energy between

cells, the elastic energy of the cells, and the stochastic

behavior of the system, and therefore they cannot follow

the path of individual cells. To take the adhesion energy,

deformation energy, and stochastic behavior of the system

into consideration and to track cell paths, we use the well-

known Glazier-Graner-Hogeweg (GGH) model (18,19) to

model collective movement of cells in wound healing.

To make allowance for the adhesion between the cells as

a key factor of the biological process, Graner and Glazier

(18) used the Potts model from statistical mechanics and

simulated the arrangement of cells with different adhesion

constants. Since cells respond to chemical signals and they

themselves secrete chemicals, Savill and Hogeweg (19)

coupled the Potts model to a continuum reaction-diffusion

equation for a diffusive chemical to add chemotaxis and

secretion of chemicals by cells. They also further extended

it by adding an ordinary differential equation that regulates

the cell’s response to chemicals, and added barrier energy

to cell movement. Many studies on collective cell movement

succeeded using this method.

Using the GGH model, Turner and Sherratt (20) investi-

gated the fingering morphology in tumor invasion. They

extended the model and added the possibility of cell prolifer-

ation via a probability function that depends on biological

parameters. Popalawski et al. (21) also used the GGH model

for biofilms. In recent years, some work has been done to

bridge between the parameter values of the GGH model

and those of the continuum model. Moreover, Ouchia et al.

(22) systematically investigated the cell diffusion coeffi-

cient’s dependence on the different GGH parameters using

a computer simulation approach. Turner et al. (23) developed

a master equation for a one-dimensional cell and derived

from it a diffusion equation for the cells as a function of

the GGH parameters. Alber et al. (24) developed a master

equation for a one-dimensional cell with chemotactic interac-

tion with an external chemical and obtained a Fokker-Plank

equation for the cells. Alber et al. (25) extended this to multi-

cell behavior and two-dimensional cells. Implementation

details and strategies for how to develop a GGH program

were recently published (26,27).

In this study, we take this model one step further to model

wound healing and assume that the secretion of cells depends

on the local cell density. We investigate the front morphology,

front-front interaction, and cell flow; furthermore, we investi-

gate the addition of a drift to the diffusion equation of the

chemical, substrate polarization effects. Moreover, we take

advantage of the GGH model to investigate cell dynamics at

the cellular level and to track the cell path.

This article is organized as follows: first, the mathematical

model is described; then, the fingering morphology with
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a chemotaxis mechanism is presented. The interaction

between two strips of cells and stochastic cell flow are then

discussed. Next, the effect of adding a drift to the chemical is

explained; and finally, the effect of a polarized substrate is

described.

THE COMPUTATIONAL MODEL

Living cells are complex bodies that can sense mechanical

forces and convert them into biological responses. Similarly,

biological and biochemical signals are known to influence

the abilities of cells to sense, generate, and bear mechanical

forces (28).

In the model presented below, several phenomena are

taken into account: the adhesive forces between biological

cells; the resistance of the biological cells to deformation;

and the attraction of biological cells to chemicals or biolog-

ical materials. It is further assumed that biological cells

secrete chemicals. Diffusion, reaction, and a source load

coming from the secretion of the biological cells are also

taken into account as part of the chemical dynamics. Cell

dynamics is introduced via an energetic approach.

The physical core of the method is to use the energy Boltz-

mann distribution for a system in thermal equilibrium with

a heat bath (29) and to simulate the dynamics with the Monte

Carlo Hasting Metropolis algorithm (30) assuming dissipa-

tive behavior of the biological cells. The domain is discre-

tized into elements, and each element contains a biological

cell or extracellular matrix (ECM), where each biological

cell has a different index,

½1%XðeÞ%Nc þ 1; e ¼ 1; 2;.:Nel� ; (5)

where ~X ¼ (X(1), X(2), ., X(Nel)) is the biological cells’

state; e is the element; Nc is the number of living cells; Nel

is the number of elements; and X(e) is the cell that lives in

element e. If X(e) ¼ Nc þ 1, at element e, there is no biolog-

ical cell but the ECM. A generalized cell is a collection of

connected elements with the same index value. The number

of elements in a cell is its area, and the number of elements

on its boundary (interfaces with other indices) is its perim-

eter. In two dimensions, in the second nearest-neighbor

approximation, each element has eight neighbors.

In our case, the energy of the system is composed of three

main components: adhesion, elastic, and chemical energy.

To model other physical constraints, additional terms can

be added to the energy (31).

The adhesion energy is the energy between a cell and its

surroundings. The interaction is also with the ECM and

can be represented using an adhesion matrix,

J
4
¼
�

Jcc Jcm

Jcm Jmm

�
; (6)

where c designates the cell type and m, the ECM type; Jcc

represents the cell-cell adhesion interaction; Jcm the cell-
ECM adhesion interaction; and Jmm the ECM-ECM adhe-

sion interaction, which is usually taken as zero, as

Hadhesion ¼
1

2

XNel

e¼ 1

X8

n¼ 1

JtypeðXðeÞÞ;typeðXðenÞÞ �
�
1� dXðeÞ;XðenÞ

�
;

(7)

where en is the nth neighbor of e. Both positive and negative

surface energies can be used where negative surface energies

between cells are more physical, since the biological cells are

cohesive (22). Adhesion energy mimics the physical behavior

of the cadherin proteins at the membrane. Real biological cells

may not have a constant protein density at the membrane, as

they may diffuse there or encounter chemical reactions. In

this model, adhesion energy is taken as a constant.

The deformation energy quantifies the energy needed to

deform the membrane. It calculates the deviation of the

cell from its target area and its target perimeter,

Hdeformation ¼
XNcðtÞ

j¼ 1

l1�
�
Aj � AtargetðjÞ

�2

þ l2�
�
Perj � PertargetðjÞ

�2
;

(8)

where Aj is the area of cell j; Perj is the perimeter of cell

j; l1,2 are the deformation parameters; Atarget(j) is the target

area of cell j; and Pertarget(j) is the target perimeter of cell

j. In the deformation energy, we include a parameter that

quantifies the deviation of the perimeter from its target

perimeter to prevent the cells from splitting and to control

the cell shape. This energy, in combination with the temper-

ature, controls the fluctuations of the membrane. Popalawski

(32) proposed deformation energy more consistent with clas-

sical elasticity. In fact, this term can be related to the consti-

tutive equation of a material. The curvature of the surface is

not taken explicitly as in other continuous models (33) in

deformation energy; however, the ratio between the area

perimeter and target perimeter controls the shape of the

biological cells.

The chemical energy depends on the chemical’s concen-

tration (c) and the cells’ chemical potential (m). The gradient

of the chemical concentration is the driving force of chemo-

taxis, where the cell velocity is proportional to the chemical

gradient~vNf V
/

c,

Hchemical ¼
XNc

j¼ 1

mj�
XAj

i¼ 1

cðeiÞ; (9)

where ei is the ith element of cell j.
The dynamics is simulated with the Monte Carlo Hasting

Metropolis method (30), which ensures detailed balance. At

each iteration, an element R1 is chosen randomly. Then, one

of its eight neighbors, R2, is also chosen randomly. If X(R1)¼
X(R2), the random selection is repeated. When we get an

X(R1) that differs from X(R2), we change the value of X(R1)

in X(R2) and calculate which change in energy it may cause, as
Biophysical Journal 97(7) 1811–1821
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FIGURE 1 Sequence of images of

one strip of biological cells moving

forward. (First row) Cell state. (Second

row) Chemical field. D ¼ 0.005; g ¼
50. The fingering morphology is well

seen in both the cell state and the chem-

ical state. (a) 0 MCS, (b) 600 MCS, (c)

900 MCS, and (d) 1800 MCS.
DH ¼ DHadhesion þ DHdeformation þ DHchemical: (10)

Not all the energy is calculated at each of the iterations, but

just the reversal between elements R1 and R2. Then, the at-

tempted change is accepted with probability,

PacceptanceðDHÞ ¼
1 if DH þ H0 < 0

e
�DHþH0

T if DH þ H0R0
;

(
(11)

where H0 is threshold energy due to the dissipation when

creating and breaking membrane contacts (22).The threshold

energy is a parameter of the model and is usually chosen in

the same size of order of the other energies. The threshold

energy reduces the probability of changes in the cell state

since it increases the energy.

The temperature T used in the GGH model is not the

temperature of a reservoir, but rather a temperature that

controls the fluctuations of the biological membrane. In fact,

it can be seen as an internal energy of the biological cell that

converts ATP into mechanical energy. In fact, what is impor-

tant in the GGH parameters is not their absolute value, but

rather their difference divided by the temperature: (DH þ
H0)/T. A value of l1/T that is too low will allow the cell to

shrink, whereas a value of l2/T that is too low will allow the

cells to split. Values of l1/T and l2/T that are too high will

lock the system around metastable states. The deformation

parameters with the temperature scale controls the fluctua-

tions of the membrane, whereas the chemical potential

divided by the temperature controls the chemical force applied

on the cells. The cell state is coupled to a diffusive chemical

field that is simulated with a reaction-diffusion equation,

266666666666664

ct ¼ D
�
cxx þ cyy

�
� gc þ f ð~XÞ on ð0; LxÞ �

�
0; Ly

�
cð0; x; yÞ ¼

	
1 if occupied by a cell;
0 else

ðInitial conditionsÞ
vc

vy
¼ 0 on y ¼ 0; y ¼ Ly

ðNo flux boundary conditionsÞ
cðx ¼ 0Þ ¼ cðc ¼ LxÞ;

vc

vx
jx¼ 0 ¼

vc

vx
jx¼ Lx

ðPeriodic boundary conditionsÞ

377777777777775
;

(12)
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where c is the concentration of the chemical, D is the diffu-

sion coefficient of the chemical, g is the decay rate of the

chemical, and ~X is the biological cells’ state. The external

source term f(~X) is a diffusible chemical secreted by the

biological cells. Each cell secretes a diffusive chemical as

a function of its local density. The local density is inversely

proportional to the noncontact cell-cell, and we assume the

cells at the front secrete a chemical at their interface with

the wounded region. We assume that when cells sense

a low local density, they are highly active, as in the literature

(12–14), and they secrete chemicals or biological products.

In turn, these chemicals may attract other cells, such as in

the literature (34,35). When they are surrounded, they exhibit

regular behavior, and they secrete chemicals simply to over-

come the degradation and no more: no maverick cells. The

diffusion equation of the diffusive chemical is solved with

the finite element method in space and finite difference in

time.

The values used for the decay rate and the diffusion coef-

ficient are normalized. The space unit is the horizontal length

of the simulated domain. One Monte Carlo Step (MCS) is

defined to be the number of elements times the number of

iterations of the Metropolis algorithm.

RESULTS AND DISCUSSION

In all the simulation results presented below, we assume

the cells adhere more strongly to other cells than to the

ECM (Jcc < Jcm). Additionally, we assume there is chemo-

taxis and secretion of a diffusive chemical by the epithelial

cells when they sense a wounded region in their surround-

ings. For all simulations, the GGH parameters are:

l1 ¼ 1; l2 ¼ 2; Jcc ¼ �1:6; Jcm ¼ 0:8; m ¼ �20;

H0 ¼ 0:4; T ¼ 10; Atarget ¼ 5� 5 ¼ 25; Ptarget ¼ 20:

Fingering morphology with chemotaxis
mechanism

First, the process is decoupled from proliferation. This mech-

anism assumes the secretion to be a function of the cell’s local

density. The fingering generation can be well understood: at
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FIGURE 2 Sequence of images of

one strip of biological cells moving

forward. (First row) Cell state. (Second
row) Chemical field. D ¼ 0.005; g ¼
10. The fingering morphology is well

seen also in this case in both the cell

state and the chemical state. (a)

0 MCS, (b) 600 MCS, (c) 900 MCS,

and (d) 1800 MCS.
a specific time, some cells sense low local density, which

leads to a cascade of chemical signals resulting in a release

of chemicals to the wounded region. Then, to reduce their

chemical energy, these cells at the front go to this region of

high chemical concentration, dragging the cells of the

submarginal layers and their neighbors in the same row after

them. When they get to this region, they sense lower local

density and then secrete even more chemicals, and so on.

In the simulations, one strip of cells with no flux boundary

condition on the y axis and periodic boundary condition on

the x axis is simulated using two different decay rates (see

Figs. 1 and 2). To monitor the internal cell dynamics, we

color the first and last row in red and black, and the columns

with other colors.

A look at the field of concentration of the diffusive chem-

ical for a constant y¼ 0.35 (Fig. 3 a) and a constant x¼ 0.45

(Fig. 3 b) clearly illustrates the fingering morphology. At x¼
0.45, t ¼ 1800 MCS (Fig. 3 b) between y ¼ 0.2 and y ¼ 0.3,

and c decreases since there are no biological cells. From

y ¼ 0.3 to y ¼ 0.4, c increases to almost two times its equi-

librium value, and the cells in this region sense a low local

density. They secrete enough chemical to multiply c by

almost 2. Then the cells migrate to this region of high

concentration to decrease their chemical energy. When

they get to this region of high concentration, they secrete

even more and so on. The decay rate influences the front

morphology. For g ¼ 50, the fingers are sharper than

when g ¼ 10. The secreted chemical in the case of g ¼ 50

decays too fast for the fingers to develop on its sides, and
the cells just advance forward. Where g ¼ 10, the cells

have enough time to spread to the sides.

Mean culture progression is an important subject of inves-

tigation. Poujade et al. (6) observe a linear increase of the

velocity, whereas in Murray (12), Sherratt and Murray

(13), Dale et al. (14), Maini et al. (15,16), and Cai et al.

(17), a constant velocity is assumed, and in Farooqui and

Fenteany (9) and Grasso et al. (10), the regime of the front

progression is not clear. In these studies, the advancing front

was measured with proliferation. In this study, the mean cell

displacements are calculated in the x and y directions as

a function of time for different initial rows (see Fig. 4) for

the simulation shown in Fig. 2, which lacks proliferation.

Effectively, on average the velocity increases with y. In the

first-order, the cells perform a random motion in two dimen-

sions, with a drift term in the y direction as a function of y,

d~xi ¼ ~viðy; tÞdt þ ~sidW; (13)

for the ith cell, where dW is the increment of a random motion

and~si is the random component of the displacement of the ith

cell (36), and the velocity is due both to chemotaxis and cell-

cell adhesion interaction. These results are in accordance

with the experiments of Farooqui and Fenteany (9), which

show that the rate of migration is inversely proportional to

the initial distance from the margin. In addition, note that a

biological cell that starts at the front does not necessarily

stay there but may migrate back as complex cells flow occurs

(Figs. 1, 2, and later in Fig. 11). This will be discussed in the

section on stochastic cell flow.
FIGURE 3 (a) c(x) for y ¼ 0.35: concentration of

the chemical as function of x at the front. (b) c(y) for

x ¼ 0.45: concentration of the chemical for a constant

x, t ¼ 1800 MCS. D ¼ 0.005; g ¼ 10.
Biophysical Journal 97(7) 1811–1821
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FIGURE 4 Displacement for different initial rows (left)
hxi versus time: displacement parallel to the front; and

(right) hyi versus time: displacement perpendicular to the

front. D ¼ 0.005; g ¼ 50.
Fig. 5 shows the progression of four independent fingers

in the simulation shown in Fig. 1. Leader cells at the first

order thus have a constant velocity in the y direction (perpen-

dicular to the wound edge) added to a random motion in two

dimensions,

d~x ¼ vybydt þ ~sdW; (14)

for leaders’ cells.

Similar qualitative behavior is observed in the experiments

of Poujade et al. (6). There as well, the leader cells progress

much faster than the other cells at a constant velocity.

The influence of D and g on the front morphology is

systematically investigated. Fig. 6 shows the fingering

morphology dependence on the decay rate g and the diffu-

sion coefficient D. For g ¼ 0, there are net fingers for all

the diffusion coefficients D ¼ 0, 0.005, 0.01, and 0.02. For

the higher diffusion coefficients, the fingers are bigger since

they spread the chemical forward and the cells move after it.

In contrast, for D¼ 0, the fingers appear not to continue their

forward motion but instead, join other fingers. For g ¼ 0,

there are fingers for all the diffusion coefficients D ¼ 0,

0.005, 0.01, and 0.02. Again at D ¼ 0, the fingers do not

continue their forward motion but instead join other fingers.

In the case of higher diffusion coefficients, the fingers move

forward slowly since the chemical diffuses to the wounded

region, decays, and cannot attract any more cells to go

forward. For g ¼ 50, there are fingers only for the low diffu-

sion coefficients D ¼ 0 and 0.005, whereas for the higher

diffusion coefficients, the fingers do not manage to develop,

as the chemical diffuses into the wounded region. When the

cells begin to move, it is already too late: the chemical has

decayed and no longer exists. For g ¼ 100, there are fingers

for D ¼ 0. For the higher diffusion coefficients, the fingers

do not manage to develop, as in the case of g ¼ 50. In this

case for D ¼ 0, the fingers are sharp and do not join one

another; due to the high decay rate, they are not able to

send chemical signals to each other.

The simulation is stochastic, and using the same parame-

ters the results obtained are not exactly the same. This is

evident in Fig. 7: four simulations with the same parameters

show different results. In the experiment of Poujade et al. (6),

many strips of cells were cultured, also resulting in stochastic
Biophysical Journal 97(7) 1811–1821
behavior of the front. To check the general pattern that

repeats itself, we investigated the fingering morphology after

1800 MCS without proliferation by performing 30 simula-

tions with the same parameters. Using this set of simulations,

we calculated the correlation between two different points of

the front as

zðxÞ ðfront position at xÞbzðxÞ ¼ zðxÞ � hzðxÞix ðfront position at x;
the average front positionÞ;

(15)

hzðxÞix¼
1

Lx

Z Lx

0

zðxÞdx; (16)

G1ðDxÞ ¼
R Lx

0
bzðxÞ�bzðx þ DxÞdxR Lx

0
ðbzðxÞÞ2dx

; (17)

where G1(Dx) is the correlation between two points with

distance Dx.

Fig. 8 shows the two-point correlation for 30 simulations.

It is apparent that no general pattern exists. To get a typical

cell length, an instability analysis with deterministic

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

time[MCS]

di
sp

la
ce

m
en

t

Progression of the leaders for four independent fingers

 

progression parallel to the edge

progression perpendicular to the edge

FIGURE 5 Progression of the leaders for four independent fingers.

Leaders progress mostly perpendicularly to the initial edge at a constant

velocity. D ¼ 0.005; g ¼ 50.
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FIGURE 6 Fingering morphology for different D and g. t ¼ 1200 MCS. The diffusion coefficient and the decay rate clearly influence on the fingering

morphology: the upper triangular matrix exhibits a fingering morphology, but the rest do not.
equations may be performed. However, it is debatable

whether the fingering generation is a dynamic instability-

driven process or a continuous evolution of the system, as

was shown in the case of the vortex breakdown in confined

swirling flows (37).

These simulation results are biologically plausible. Pou-

jade et al. (6), Nikolie et al. (8), and Farooqui and Fenteany

(9) encountered a fingering morphology; Grasso et al. (10)

found holes close to the front and fingers can obviously

be seen. Moreover, the front cells spread their area, as
mentioned in Poujade et al. (6) and Farooqui and Fenteany

(9). In addition, the velocity of cells gradually increases as

they move closer to the wound (8,9) and the cell movement

shows a high coordination (8). For low cohesion between

cells (due to a decrease in the chemical energy), some cells

in the front move forward so fast that they break the conti-

nuity of the tissue and holes appear. Increasing the prolifer-

ation rate or decreasing the chemotaxis may make these

holes disappear. In these experimental studies (6,9,10), the

speculated possibilities that cells secrete chemical signals
FIGURE 7 Stochastic front behavior: for the same biophysical parameters and the same initial conditions, the cell dynamics and the final fingering

morphology are different. t ¼ 1800 MCS; D ¼ 0.005; decay rate ¼ 50.
Biophysical Journal 97(7) 1811–1821
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or ECM factors to initiate motility are mentioned, but are

neither proved nor disproved by experimental results.

Interaction between two strips of cells

Investigating one strip is advantageous for decoupling the

effects of its interaction with the counter front. Investigating

the possible interaction between two fronts is interesting

since when a wound contracts, two opposite borders pro-

gressing toward one another rejoin and contract the wound.

We show the possible interaction between the two fronts

as they progress toward each other. The process is still

decoupled from proliferation.

The previous section investigated the fingering

morphology generation of one strip for different diffusion

coefficients and different decay rates. The decay rate and

the diffusion coefficient also play an important role in the

possible chemical signaling between two strips of cells.

For a certain distance, under different values of diffusion

coefficients and decay rates, two strips may communicate

or not. However, it should be noted that the stochastic

behavior of the cells may overcome this interaction between

two strips of cells. To investigate the attraction between two

fronts, we define

sðtÞ ¼ 1=
X

i

jz1ðxi; tÞ � z2ðxi; tÞj; (18)

where s(t) ¼ 1/ is the sum of the distances between two

fronts at time t. We performed simulations for the same

parameters as those in the upper triangle of Fig. 6, where

fingers appear. For each of these combinations of parame-

ters, four simulations were run and the average s was calcu-

lated, as can be seen in Fig. 9. Fig. 9 shows that the diffusion

coefficient and the decay rate influence the attraction
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FIGURE 8 Correlation between two front points with distance Dx: no

general pattern can be deduced as the results are stochastic. D ¼ 0.005;

decay rate ¼ 50.
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between two fronts. As the decay rate increases, the interac-

tion between the two fronts decreases, and as the coefficient

of diffusion increases, the interaction increases.

Increasing the diffusion coefficient enhances the chemical

signaling between the two strips of cells and increases the

attraction and the correlation between these two strips,

whereas the decay rate annihilates the chemical signal

between the two strips of cells and there is no coordination

and attraction between the two strips. This is biologically

plausible, as Gov (7) points out in the experiments done by

Poujade et al. (6): the fingers of the two fronts meet them-

selves and may send chemical signals. This correlation can

also be observed in Fig. 10.

Stochastic cells flow

As in the experiment of Poujade et al. (6), and Haga et al. (3),

cell flow exhibits interesting patterns. Multicell movement

coordination during wound healing results in complex

flow. Fig. 11 shows the evolution of one strip that is able

to flow in its two free directions. In this figure, the stars indi-

cate the cell mass center position, and the arrows in red show

the cell mass center positions in the next 300 MCS. Due to

cohesive forces, the leader cells drag the rear cells and create

fingers. These fingers compete to pull the cell and some cells,

due to these competitive forces, do not know which finger to

follow and just turn around; moreover, the symmetry is

broken. Decreasing the width of one given strip slows

down the progression of the fingers due to competition

between the fingers of two different fronts pulling the cells.

At a certain width, the morphology of the strip may no longer

be a rectangle with fingers, but rather has an undefined

shape.

FIGURE 9 Front-front interaction as function of time: two fronts attract

each other via chemical signals. The interaction is higher for higher diffusion

coefficients and lower decay rates.
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FIGURE 10 During wound healing, two fronts that attract each other and are correlated as fingers send chemical signals and meet. D¼ 0.02, decay rate¼ 0.

(a) 0 MCS; (b) 160 MCS; (c) 320 MCS; and (d) 480 MCS.
The effect of drift on the chemical is discussed (see the

Supporting Material 1) as the effect of a polarized substrate

on an initial round geometry (see the Supporting Material 2).

CONCLUSIONS

In this study, we investigated wound healing as a multicell

problem in which the effects on cell scale were still able to

be examined. We made use of the GGH model with some

modifications. We proposed that cells at the border of a

wound secrete a chemical that initiates cell motion via

chemotaxis. Under this mechanism the front morphology

depends on the decay rate and the diffusion coefficient of

the diffusive chemical; furthermore, under certain values,

fingers develop. These cell fronts are correlated and attracted

when running one against another; the cell flow exhibits

interesting patterns, such as vortices, and the velocity normal

to the front gradually decreases as we move further away

from the front.

We also investigated the influence of drift on the chemical,

and noted that it may influence the collective cell motion.

Moreover, we tested an initial round geometry and the effect

of a polarized substrate. It will be interesting to include

dynamic proliferation that depends on the cell strain (Sup-

porting Material 3). These results are in accordance with

experimental results at the phenomenal level.
The model predicts many results that can be tested exper-

imentally.

Under a certain range of parameters, two fronts progress-

ing against each other are correlated. If this is experimentally

corroborated, it will increase the plausibility that cells send

chemical signals to orient themselves during epidermal

wound healing. However, if the cell fronts are not correlated,

this does not disprove the model totally: the diffusion coef-

ficient may be too low or the degradation of the chemical

too high to successively send the chemical to its counterpart

front.

Furthermore, it is possible to check whether the front-front

correlation and the fingering morphology correspond to the

predicted front-front correlation and the predicted fingering

morphology for some given values of the diffusion coeffi-

cient and the decay rate.

Applying a drift to the chemical may influence the collec-

tive cell motion as observed (Supporting Material 2). If this

is experimentally proven, it will indicate that the cell

dynamics is coupled to other chemicals or biological mate-

rials. In this case, the experiments may be hard to perform

since a drift has been applied such that it does not influence

the cells significantly but still drifts the chemical away.

An initial round geometry should be tested experimen-

tally, and the front morphology and dynamics at the cell level

should be investigated in this case. Furthermore, it would be
FIGURE 11 Stochastic cells flow: It

starts at t ¼ 0 MCS and it advances by

steps of 300 MCS. Leader cells generate

fingers and compete to pull the cells of

the submarginal layers. Many cells

belong to a particular finger but some

are pulled by more than one finger and

do not know where to go, and thus

simply turn around.
Biophysical Journal 97(7) 1811–1821



1820 Ouaknin and Bar-Yoseph
interesting to combine experiments on polarized substrates

with different geometries.

These results remain to be checked in the laboratory. New

experiments found that in addition to the role of the leader

cells in wound repair, traction forces driving collective cell

migration arise predominantly many cell rows behind the

leading front edge (38). Here, the mathematical model can

help offer speculations about plausible mechanisms, which

may enhance new experiments to support or disprove the

simulation results. Following this, the biological-mathemat-

ical modeler should build new models based on the previous

experiments. We believe that through such iterative interac-

tion between experimental biologists and biophysicists with

mathematical modelers and applied mathematicians, the

quantitative understanding of biological processes will be

advanced and lead to medical implications.

SUPPORTING MATERIAL

Four figures are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)01196-5.
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