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Abstract

Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To
examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that
edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was
supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close
to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were
synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor
cells were examined at the lowest (,50 mm) and highest (.500 mm) gel positions. GBMs adopted bipolar morphologies,
displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away
from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced
slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed
with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single
hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system
and should be considered in 3D hydrogel cell culture systems.
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Introduction

Cell migration is a complex, broad-ranging phenomenon

strongly influenced by cues from the external environment such

as its chemical nature, topographical architecture, and rigidity [1].

It is now widely appreciated that cells can sense the stiffness of

their environment and accordingly alter their response [2]. This

was first established in a landmark publication by Pelham and

Wang [3], who showed that fibroblasts as well as kidney epithelial

cells alter their spreading behavior and motility when plated on

substrates with different moduli. Since then, several studies in both

two dimensional (2D) and three dimensional (3D) environments

have corroborated this finding with other cell types in vitro (e.g.,

neurons [4], endothelial cells [5], myoblasts [6], cancer cells [7]).

Both artificial (e.g., poly(acrylamide) and poly(ethylene glycol)-

based systems [8]) and natural (e.g., collagen [9]) polymer

hydrogels have been extensively employed to study the effect of

cell response to changing substrate rigidity. However, if a single

modulus hydrogel is used; several hydrogels are needed to explore

effects across a range of mechanical properties. Recently,

investigators have begun to incorporate stiffness gradients into

hydrogel systems [10–18]. These gradients have been shown to

better mimic in vivo cell response compared to culture in a single

modulus mechanical environment [19]. Additionally, they can

induce directed cell migration (referred to as ‘‘durotaxis’’ or

‘‘mechanotaxis’’), in contrast to the random migration that occurs

in uniformly rigid microenvironments. However, most of these

approaches limit cell culture to 2D, which has been shown to differ

from 3D in vivo conditions. There are very few studies in 3D

exploring the effects of mechanical gradients on cell behaviors

[14,20].

Here, we explore mechanical gradients produced by edge effects

at the interface of a rigid support with a soft gel on tumor cell

behavior in 3D. Edge effects are a specific engineering

phenomenon in which properties of a material alter as a result

of interactions with the surrounding medium. This occurs both at

the material interface and also in an interfacial boundary region

adjacent to the interface. As such, we have examined cell

behaviors at a hydrogel-support interface, in a ,200 mm region

surrounding this interface, and as a control, in the bulk of the gel

(.500 mm from the rigid support). We speculated the existence of

these gradients in hydrogels, as softer gels (e.g., Matrigel, modulus
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,450 Pa [21]) are usually supported on rigid plastic/glass tissue

culture plates (modulus of glass, plastic .100,000 Pa [22]),

providing a sharp interface between mechanical moduli. We

performed finite-element analyses to support our expectation of

the presence of these gradients. We then explored the response of

glioblastoma multiforme (GBM) cells, a type of brain cancer

previously shown to be sensitive to stiffness in 2D [23] and 3D

[24], in this system, characterizing cell spreading and morphology,

intracellular actin organization, and migration capacity. As a

model, we used Matrigel hydrogels, which have previously been

employed as a substrate to study GBMs in the traditional transwell

insert assay and as individual gels [25,26], supported on glass.

These inherent stiffness gradients do not require external devices

or alteration of ligand density or chemical composition and could

easily be expanded to other hydrogels and substrates. Further, to

our knowledge, this is one of the first studies to show that inherent

interfacial mechanical environments in a single, 3D hydrogel

influence tumor cell response.

Materials and Methods

Ethics Statement
The Ohio State University’s Institutional Review Board

approved this study under IRB protocol 2005C0075 (dated

November 7, 2008). Written consent from all participants in the

study was obtained in accordance with the protocol.

Modeling
A Finite Element Model (FEM) was created using ABAQUS

CAE 6.8-1 software (Dassault Systèmes Simulia Corporation,

Providence, RI, 2008). This model focused on the mechanical

environment exhibited by 100% v/v Matrigel in the vicinity of the

bottom of a cell culture well plate having a diameter of ,7 mm.

The sides of the gel were free and without curvature at the bottom

thus forming a cylinder. The model simulated an indentation test

where a steel indenter tool was used to compress the top of

Matrigel with heights of 12.5 mm, 25 mm, 50 mm, 100 mm, and

200 mm. The tip of the indentation tool was spherical and had a

diameter of 10 mm, which is approximately the same diameter as

the cells being studied. Following the Matrigel indentation, the

mechanical properties were obtained. The effective stiffness was

determined by fitting a straight line to the force-deflection curve.

An axisymmetric model captured the cylindrical geometry of the

Matrigel and spherical indenter. The bottom of the Matrigel was

fixed mechanically to simulate the hard substrate at the well

bottom, by preventing the nodes of the elements from horizontal

and vertical translation. Finally, modeling results for heights

.200 mm are not included, as additional changes in height did not

influence results.

The following assumptions were made for the model:

a) The Matrigel was assumed to be elastic and isotropic with an

elastic modulus of 450 Pa [21]. A linear elastic model was

chosen for simplicity. It is recognized that Matrigel may in

fact exhibit viscoelastic properties; however, because the

model examines effective stiffness (i.e., instantaneous elastic

response), the material will appear stiffer near the rigid

support regardless of the model chosen.

b) The contact surface between the indenter and Matrigel was

assumed to be frictionless. Cells interact with gels via both

compression and tension forces. Compression was chosen for

this model as this is the least sensitive to the adhesion between

the Matrigel and glass. However, results using a tension or

shear model would be qualitatively similar.

OSU-2 Cell Isolation and In Vitro Cell Culture
OSU-2 cells were isolated from a GBM patient at the Ohio

State University under human IRB protocol 2005C0075. Briefly,

tumors were washed with media containing 200 units penicillin,

200 mg streptomycin, and 0.5 mg/ml amphotericin B (all from

Invitrogen). Tumor samples were then subjected to 200 units/ml

type 1A collagenase (Sigma) for ,4 hours, triturated, centrifuged

at 250 g (,5 min), and resuspended in cell culture media

(DMEM/F12, Invitrogen) containing 10% fetal bovine serum

(Invitrogen), 100 units penicillin, 100 mg streptomycin, 0.25 mg/ml

amphotericin B. Cells were cultured in a 37uC, 5% CO2

environment, fed 2–3 times weekly, and passaged on reaching

confluency. Histopathology at the time of operation confirmed

tumor type and grade (data not shown) and to further confirm

their astrocyte lineage, OSU-2 cells were stained with the glial

fibrillary acidic protein (GFAP) marker (Figure 1).

OSU-2 Cell Seeding in BD Matrigel
To encapsulate cells in BD Matrigel (BD Biosciences), OSU-2

cells were pre-labeled with Cell Tracker Green CMFDA

(Invitrogen), suspended in cell culture medium, and mixed at

,3000 cells/80 mL hydrogel with ice-cold Matrigel at varying

concentrations (40, 55, 70, 85 v/v %) in an ice bath. Constructs

were incubated at 37uC, 5% CO2 for ,0.5 hours prior to addition

of additional OSU-2 cell culture media to encapsulate the cells.

Cells were also seeded on BD Matrigel in 2D after the initial

gelation of Matrigel constructs at similar concentrations. All

Matrigel constructs were prepared in 16-well Lab-Tek chamber

slides (Thermo scientific).

OSU-2 Morphology and Cell Spreading Characterization
in 3D Matrigel

OSU-2 laden Matrigel constructs were prepared as described

above. After ,16 hours, still images were captured from each gel

at different gel heights using an inverted microscope (Olympus

IX71) (N = 3 hydrogels for every formulation) equipped with a

spinning disk confocal attachment and a Photometrics Evolve

EMCCD camera. Data were subjected to image analysis using

NIH ImageJ image analysis software. Discrete cells that were in

focus in each image were analyzed to obtain cell area and aspect

ratio at different gel heights. Cell areas and aspect ratios versus

height are reported as average 6 S.D. for total cells found at a

particular gel height. Cell areas at the lowest and highest gel

positions (images obtained using a confocal microscope (LSM 510;

Zeiss, Minneapolis, MN)) were compared and analyzed for

Figure 1. OSU-2 cells in culture. (A) Hoechst stain labels the nucleus
blue; rhodamine-GFAP (e.g., glial fibrillary acidic protein) labels the
cytoskeleton. GFAP is an intermediate protein expressed by astrocytes.
GFAP staining was performed to confirm astrocytic lineage. (B) Phase
contrast image of OSU-2 cells in culture. Scale bar indicates 100 mm.
doi:10.1371/journal.pone.0035852.g001
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statistical differences. Because of variations in surface roughness,

cell height was measured from the first plane of observed cells.

Thus, the zero point of each chart is equivalent to the lowest plane

in which cells were observed and not necessarily the bottom of the

substrate. To further quantify cell position, confocal Z-stacks were

collected and prepared using the ImageJ Volume Viewer Plugin

(metadata available on request).

Immunostaining for Actin in 3D Matrigel
OSU-2 cells were seeded in Matrigel constructs as described

above. After ,16 hours, cell-gel constructs were fixed in 4 wt/v%

paraformaldehyde (Sigma) for 20 min, washed with phosphate

buffer saline (PBS), extracted with Triton X-100 (Sigma) solution

for 15 min, and blocked with bovine serum albumin (BSA)

(Jackson ImmunoResearch) solution overnight at 4uC. Constructs

were then incubated with Alexa FluorH 633 phalloidin (Invitrogen)

overnight at 4uC and imaged using fluorescence microscopy to

observe actin distribution in 3D Matrigel constructs.

Real time Cell Tracking in 3D Matrigel
OSU-2 cells (,5000 cells/well) pre-labeled with Cell Tracker

Green CMFDA (Invitrogen) were encapsulated in varying

Matrigel concentrations as described above. OSU-2 cell migration

experiments were performed using a confocal microscope (LSM

510; Zeiss, Minneapolis, MN) equipped with a weather station to

maintain a 37uC, 5% CO2 environment. After ,16 hours, a series

of still images of cells in the lowest and highest planes (difference in

lowest and highest plane heights $,900 mm) inside the gels were

captured every 20 minutes for 12 hours. These images were then

concatenated and converted to movies using NIH Image J and

were subsequently tracked using the M-Track J plug-in. At least 15

individual cells were tracked at the lowest and highest gel positions

(N = 3 hydrogels per condition). In most cases, considerable gel

movement (i.e., swelling) was observed as the experiment

progressed. This was corrected using the StackReg plugin

(available at http://bigwww.epfl.ch/thevenaz/stackreg/) that

permitted stack alignment at different time points. Migration

speeds were then computed for individual cells by dividing the

total length of movement by the observation time and are reported

as average 6 SD for the lowest and highest gel planes examined

per condition.

Statistical Analysis
Statistical analysis was performed using JMP software (Version

9). All measurements at the highest and lowest gel positions were

compared using ANOVA and the Student’s t- test.

Results

Modeling the substrate/gel interface
Recognizing that there are often edge effects at the interface of

two materials with dramatically different moduli, we hypothesized

that hydrogels supported by rigid substrates (i.e., glass or tissue

culture plates) would display edge effects in their mechanical

moduli near the substrate interface. We further hypothesized that

these inherent mechanical gradients might influence cell behavior

in a single, 3D hydrogel construct. To determine the potential

extent of edge effects, we modeled the substrate-hydrogel interface

for Matrigel, a common hydrogel biomaterial, on glass using a

finite element model. Because it would be difficult to measure

forces directly within 3D gels, FEM was employed on gels of

different heights to imitate different z positions within a thick 3D

gel. However, the cell-laden gels used for experimentation were of

the same height (,2 mm) with cells occupying different positions

within the gel.

In each simulation, the indenter was displaced by 5 mm and the

resulting force and stress contour were obtained (Figure 2). As

Matrigel thickness approached the size of the indenter tip, which

represents the size of the cell, the maximum stress in the gel

increased. For Matrigel samples with heights greater than 50 mm,

the stress field around the indenter did not interact with the rigid

well bottom, whereas for heights less than 50 mm the stress field

did interact with the well bottom. Consequently, decreasing the gel

thickness led to a stiffer response, since the indenter (i.e., cell)

started to feel the effects of the rigid substrate beneath the

Matrigel.

The influence of gel height on stiffness was also examined using

the slope generated by plotting the reaction force experienced by

the Matrigel due to the indenter displacement (Figure 3). The

stiffness of the Matrigel is its resistance to deformation due to an

applied force, represented by the slope of the curves in Figure 3.

The stiffness of the Matrigel decreased as the thickness of the

Figure 2. Mechanics of the gel-glass interface modeled using
FEM. (A) Stress contour plots of Matrigel with varying height.
Axisymmetric elements used. Von Mises stress is an equivalent stress
that includes both normal stress (tension/compression) and shear stress
contributions. It is calculated from the stress components acting at each
location and gives a convenient way of comparing the overall
magnitude of stress in different regions. (B) Stress felt at the Matrigel-
glass interface as a function of gel height.
doi:10.1371/journal.pone.0035852.g002
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Matrigel increased (Figure 3), as evidenced by the decrease in

slope of the reaction force versus displacement curve. Changes in

stiffness were more dramatic for smaller thicknesses of Matrigel

(i.e., ,50 mm), whereas at heights .50 mm changes in stiffness

with increasing gel height were negligible.

OSU-2 Cell Spreading in 3D Matrigel
To examine the influence of inherent interfacial mechanical

gradients on cell behavior, OSU-2 cells encapsulated in Matrigel

were analyzed for cell spreading area and aspect ratio. Because of

variations in surface roughness, zero height was normalized to the

first plane in which cells were observed. To further verify cell

position, confocal imaging was performed. Z-stack 3D views of

cells in interfacial regions (e.g., ,0–50 mm and 0–100 mm) are

shown in Figures S1 and S2 taken from Stacks S1 and S2,

respectively. These stacks and images indicate that cells at

positions lower than ,15 mm most likely make some contact with

the rigid support, whereas cells at positions above ,30 mm are

most probably fully embedded in hydrogel. However, cells at the

lowest observation plane (i.e., position 0) demonstrated a distinct

morphology from those cultured on 2D rigid supports. These cells

displayed mostly spindle-shaped morphologies with large processes

versus those on bare 2D glass surfaces, which evidenced mostly

fan- or tear drop-shaped morphologies (Video S1 vs. Video S9).

Also, calculation of individual cell aspect ratios (ratio of major to

minor axis of a single cell by fitting an ellipse) showed that cells at

the lowest position had statistically higher aspect ratios compared

to those plated on glass (Figure S3, 40% (v/v) Matrigel, data for

55%, 70% and 85% (v/v) compositions are also significantly

higher compared to glass, not shown).

Morphology in 3D gels varied with changing gel height. For

example, cells near the lowest observation plane (i.e., ,,50 mm)

showed more elongated, highly bipolar morphologies, whereas

cells at higher observation planes (i.e., .,500 mm) showed

rounded morphologies with short processes in some cases

(Figure 4). [Still images, with their observations planes, from a

typical experiment of cells encapsulated in 40% v/v Matrigel are

shown in Figure 4C]. This behavior was quantified as a function of

observation plane (Figure 4, S4, S5, and S6) with OSU-2 cells

displaying drastically reduced cell area as well as aspect ratio as

distance from the lowest observation plane increased for all gel

formulations investigated. For instance, OSU-2 cells encapsulated

in 40% v/v Matrigel at the lowest observation plane displayed an

average cell area of ,13406470 mm2 (aspect ratio ,10.467.3)

versus cells at the highest position investigated displaying an

average area of ,4006270 mm2 (aspect ratio ,1.660.8). In

comparison, the area of cells cultured on bare glass was

230961232 mm2 (aspect ratio ,2.261.5), distinct from observa-

tions in both higher and lower positions. Also, deviations in cell

area measurements reduced with increasing distance from the

lowest observation plane. The large deviations observed at low

observation planes are a result of the presence of two populations

of cells (Figure 4): cells displaying spindle-shaped spread

morphology and rounded cells, whereas at more distant

observation planes, cells were primarily rounded. Statistical

analysis (Student’s t-test as well as non-parametric data compar-

ison using Wilcoxon method) confirmed that cell areas for highest

and lowest observation planes were statistically significant for all

formulations (p = 0.0003 for 40% v/v and 55% v/v, p = 0.0005 for

70% v/v, p = 0.0001 for 85% v/v reported for the Wilcoxon

method). For comparison, we also examined cells plated on 2D

Matrigel (i.e., cultured on top of Matrigel surfaces), which behaved

similar to those at the highest 3D gel positions for all gel

formulations (Figure S7).

OSU-2 Intracellular Morphology in 3D Matrigel (Actin
Organization)

To further evaluate the influence of inherent mechanical

gradients on cell behavior, we also examined actin organization

in cells as a function of gel position. Consistent with OSU-2 cell

morphology observations, actin filaments in OSU-2 cells at the

lowest observation plane were highly organized and resulted in the

formation of mature stress fibers. In contrast, cells at higher

observation planes, displayed actin fibers that were not organized,

poorly developed and did not display stress fiber formation

(Figure 5). This behavior was also maintained for cells plated on

2D Matrigel (data not shown).

OSU-2 Cell Migration in 3D Matrigel
OSU-2 cells encapsulated in Matrigel were tracked in real

time to gain insight into their migration patterns as well as to

quantify migration speeds. There were striking differences in

migration speeds and patterns of OSU-2 cells at the lowest

observation plane, where edge effects were expected to

dominate, compared to those near the gel surface. For example,

in the case of 40% v/v Matrigel, cells at the lowest observation

plane migrated at ,29.5611.3 mm/hr, ,46 faster than cells

near the gel surface that migrated at ,7.663.1 mm/hr. This

trend was maintained at all concentrations of Matrigel

investigated. OSU-2 cells at lower observation planes migrated

by displaying highly bipolar cell bodies and long processes (see

videos S1, S3, S5 and S7), whereas cells at higher gel positions

migrated by displaying short processes and mostly rounded or

ellipsoid cell bodies (see videos S2, S4, S6, S8). [Migration stills

from a typical time lapse experiment for cells at lower and

higher observation planes in the 40% v/v gel are shown in

Figure 6.] Migration speeds for each gel formulation were

computed for the lowest and highest observation planes

investigated and were compared with cells plated on the bottom

of glass surface controls using ANOVA and the Student’s t-test.

In all gel formulations, statistically significant differences

(p,0.001 in all cases) were detected for cell migration speeds

at lower vs. higher observation planes (Figure 7). Migration

speeds of cells at lower observation planes were not statistically

significant from those of cells on glass substrates (video S9)

(OSU-2 cell speed = 28.269.7 mm/hr). It is likely that cells at

the ‘‘zero’’ observation plane are in contact with the glass

surface; however, sequential data collected from cells throughout

the 0–200 mm interfacial region (e.g., Figure 4B, S1, S2, Stack

Figure 3. Reaction force vs. 5 mm displacement of the indenter.
Insert illustrates a decrease in stiffness with increasing Matrigel height
due to a 5 mm indenter displacement. The stiffness insert is the slope
extracted from the displacement vs. reaction force plot using the
reaction force experienced by Matrigel when the indenter reaches a
displacement of 5 mm.
doi:10.1371/journal.pone.0035852.g003
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S1, Stack S2) clearly demonstrates that cell area decreases with

gel height, supporting the hypothesis that interfacial gradients

are influencing cell behavior.

Discussion

Mechanical gradients that exist in vivo (e.g., in the brain) have

been shown to modulate cell migration, differentiation, prolifer-

Figure 4. OSU-2 cell behaviors as a function of observation plane in 40% (v/v) Matrigel. (A) Schematic of cell-hydrogel constructs showing
morphology observation at different ‘‘z’’ planes. (B) OSU-2 cell area. Representative cell morphologies are shown in the insets. As a result of surface
roughness, zero height was set to the first plane of observed cells, which may not necessarily correspond to the substrate surface. (C) OSU-2
morphology at different heights. Representative heights are shown in the chart. Scale bar = 200 mm. (D) OSU-2 aspect ratio.
doi:10.1371/journal.pone.0035852.g004
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ation, and cytoskeletal organization [19]. We hypothesized the

existence of mechanical gradients at the interface of soft hydrogel

materials and rigid substrate supports that could influence cell

behavior. To support our expectation of the presence of these

gradients, FEM was used to simulate an indentation test on 100%

v/v Matrigel supported on glass. Other computational models that

examine similar interfaces focus on the cell and gel simultaneously

[27,28]. Despite the fact that our simplified FEM does not

consider either a 2D [28] or 3D matrix [27] in contact with cells,

our results corroborate those of more complex models. FEM

shows that the stiffness exhibited by Matrigel changes as the

Matrigel depth approaches the size of the cells. Specifically, the

model shows an increase in stiffness for Matrigel heights #50 mm

from the hard substrate. This increased stiffness yields an increase

in Matrigel stresses near the well bottom. In addition to FEM,

active microrheology could be further employed to experimentally

support simulation observations. In particular, this could be

achieved by embedding micro beads in 3D hydrogels and tracking

their response to external fields (e.g., using magnetic fields, or

optical tweezers) at different gel heights. This could then be

translated to appropriate stress-strain relationships and mechanical

properties.

Experimentally, GBM tumor cells responded to this increased

stiffness by exhibiting a spread or bipolar morphology. Morpho-

logical changes exhibited an exponential response (Figure 4),

decaying with increasing distance from the rigid support. Cells also

displayed an increased migration capacity, in stark contrast to cells

distant from the interface. This outcome is in agreement with

recent studies, which show that the stiffness of the gel and substrate

are crucial factors affecting cell morphology during migration

[7,10,29]. This was also evident from individual cell area and

aspect ratio analyses in which cells at lower observation planes

exhibited higher and statistically significant cell areas and aspect

ratios compared to cells more distant from the interface. Thus,

these data show that inherent gradients in 3D culture systems can

dramatically influence the ability of cells to attach and spread, and

demonstrate that tumor cells encapsulated in 3D hydrogels can

‘‘sense’’ the stiffness of an underlying rigid support (in this case,

glass).

This phenomenon has been previously observed by Discher and

colleagues in 2D gels for mesenchymal stem cells [22,30] and

others [31–33]. A similar result has also been obtained

computationally by van Dommelen et al. [34], who showed that

glass plates used to support brain tissue samples played a

significant role on the force level in indentation. Our simulations

and experimental findings complement these studies by examining

tumor cell behaviors in a 3D setting. Our findings also suggest

caution in interpretation of cellular outcomes in 3D hydrogels

depending upon the location of these cells in hydrogels, as edge

effects can significantly alter findings. Further, individual cells can

influence the behavior of neighboring cells several microns distant

[29], and hence the influence of edge effects could extend beyond

the interfacial region. Our findings are consistent with a recent

study that demonstrated that an underlying rigid support

dramatically influences human mesenchymal stem fate when

cultured on 2D collagen gels of different heights (i.e., 130 mm

versus 1440 mm) [35]. Several experimental and computational

studies have attempted to identify a ‘‘critical’’ height that defines

how far cells can sense microenvironments in 2D [22,28,31–33].

Our computational findings suggest a possible threshold of

,50 mm for a 3D Matrigel model. This is comparable to values

obtained in previous studies, which yield ‘‘critical’’ height values

that range from on the order of focal adhesions (i.e., a few microns)

[22,28,32] to ,2–3 times the cell length (e.g., ,60 microns)

[31,33].

In addition to changes in cell spreading and morphology, we

also observed differences in cell migration at the lowest and the

highest observation planes. Individual cancer cells can migrate in a

mesenchymal or amoeboid fashion in 3D matrices [36]. In

mesenchymal migration, cells attach to the matrix via formation of

focal contacts that are dissolved during migration [36]. Cells

migrating in amoeboid mode squeeze their cell body through

matrix pores with minimal matrix contact or no attachment [36].

OSU-2 cells at lower observation planes migrated faster (,46)

and in a mesenchymal fashion with filopodia (finger like

protrusions) at the leading cell edges (e.g., Video S1). In contrast,

cells more distant from the rigid support showed continuous short

process extension and retraction (e.g., Video S2). Some cells seem

to migrate in an amoeboid fashion (e.g., Video S6); however, this

was not consistently maintained for all cells. Differences in

migration modes were further supported by data on actin

organization. Cells at lower observation planes displayed highly

organized stress fiber formation, which enables cells to generate

traction forces for migration, in contrast to cells more distant from

Figure 5. OSU-2 actin organization in 3D hydrogels at a higher
observation (.,500 mm) and lower observation (,,50 mm)
plane. Scale bar = 100 mm.
doi:10.1371/journal.pone.0035852.g005

Figure 6. OSU-2 cell migration in a representative 40% v/v Matrigel at (A) lower (,,50 mm) and (B) higher (.,500 mm) observation
planes shown as stills from time lapse microscopy. Time stamp is reported in hours (h). Scale bar = 100 mm.
doi:10.1371/journal.pone.0035852.g006
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this interface. These results demonstrate that tumor cells may

adopt different migration mechanisms in a single 3D hydrogel in

response to these inherent interfacial mechanical gradients.

Interestingly, no specific trends in cell behaviors (i.e., cell

spreading, migration, actin organization) were observed with

increasing Matrigel concentration (e.g., Figure 7). Thus, the

influence of edge effects observed here was more significant than

that of the increased modulus generated by increasing Matrigel

concentration. Across the concentration ranges investigated,

Matrigel demonstrates an ,5 fold difference in stiffness [7],

whereas interfacial gradients may access as much as a 10 fold

increase in stiffness (e.g., Figure 2). Furthermore, cells cultured in

single gels far from the substrate will experience a uniform

mechanical environment, as opposed to gradients, such as those

found near the interface with a support. Gradients can produce

different cell responses than uniform mechanical environments

[10–20]. Also, it should be noted that additional variables, such as

matrix porosity, which would differ in gradient and single gel

systems, may have influenced results. Thus, it is not surprising that

the responses seen with increasing gel concentration differ from

those produced by interfacial gradients.

There are several factors that may influence these results, which

could be minimized by experimental modifications. The addition

of fluorescent beads as markers of gel position or the use of

computational algorithms to reduce gel movement would

potentially permit tracking throughout the gel over longer time

frames. Additionally, dynamic investigations of cell behaviors

immediately after cell encapsulation should provide insight into

the metabolic rates of tumor cells that further relate to differential

cell spreading and migration behaviors. It should also be noted

that a possible limitation of this approach is that different

conditions in the bulk vs. at the gel-support interface (e.g., nutrient

supply, ligand or crosslinker density) could lead to differences in

properties that influence cell behaviors. The correlation between

interfacial stiffness and pore size at different gel heights should be

experimentally explored in detail. This will enable examination of

complex relationships of matrix parameters (i.e., pore size) on

tumor cell migration in 3D microenvironments.

Here, we demonstrate that inherent interfacial mechanical

gradients produced by edge effects between soft hydrogels and

rigid substrate supports can modulate cell behavior. To our

knowledge, this study is the first to examine the role of inherent

interfacial mechanical gradients on the behavior of tumor cells in a

single 3D hydrogel. These findings are broadly applicable to

virtually any hydrogel and adhesive rigid support combination,

and could have import for hydrogel-based, 3D cell culture. Thus,

inherent mechanical gradients can influence cell behavior in

single, 3D hydrogels.

Supporting Information

Figure S1 Still images taken from a Z-stack of fluorescently-

labeled cells in a 40% v/v Matrigel (0–50 mm, step size = 5 mm).

(A) Brightfield/fluorescence Z-stack shown as a montage. (B)

Rotated views of the Z-stack shown in A. White arrow indicates

the same cell, at position 30 mm, which is clearly embedded within

the hydrogel.

(TIF)

Figure S2 Images from a brightfield/fluorescence Z-stack of

fluorescently-labeled cells in a 40% v/v Matrigel (0–100 mm, step

size = 5 mm). White arrow indicates a cell, at position 15 mm,

whose edge is in contact with the rigid glass support while the cell

body is embedded in the hydrogel. The asterisk indicates a cell, at

position 90 mm, fully embedded in the hydrogel.

(TIF)

Figure S3 Box plot of individual cell aspect ratios comparing

cells in the lowest observation plane (,,50 mm) in 40% (v/v)

Matrigel versus Bare Glass. * indicates statistical significance

(p,0.0001), n = 206 cells for glass, n = 20 for lowest observation

plane in 40% (v/v) Matrigel.

(TIF)

Figure 7. Quantification of migration speeds (average) of OSU-2 cells at the lowest (,,50 mm) and highest observation planes
(.,500 mm) investigated. * indicates statistical significance.
doi:10.1371/journal.pone.0035852.g007
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Figure S4 OSU-2 cell morphology quantification. (A) OSU-2

cell area and (B) aspect ratio as a function of observation plane in

55% (v/v) Matrigel.

(TIF)

Figure S5 OSU-2 cell morphology quantification. (A) OSU-2

cell area and (B) aspect ratio as a function of observation plane in

70% (v/v) Matrigel.

(TIF)

Figure S6 OSU-2 cell morphology quantification. (A) OSU-2

cell area and (B) aspect ratio as a function of observation plane in

85% (v/v) Matrigel.

(TIF)

Figure S7 OSU-2 cell morphology in 2D Matrigel for all

formulations. Scale bar = 200 mm.

(TIF)

Stack S1 Brightfield/fluorescence Z-stack of fluorescently-la-

beled cells in a 40% v/v Matrigel (0–50 mm, step size = 5 mm).

(AVI)

Stack S2 Brightfield/fluorescence Z-stack of fluorescently-la-

beled cells in a 40% v/v Matrigel (0–100 mm, step size = 5 mm).

(AVI)

Video S1 OSU-2 cell migration at a lower observation plane

(,,50 mm) in 40% v/v Matrigel.

(AVI)

Video S2 OSU-2 cell migration at a higher observation plane

(.,500 mm) in 40% v/v Matrigel.

(AVI)

Video S3 OSU-2 cell migration at a lower observation plane

(,,50 mm) in 55% v/v Matrigel.

(AVI)

Video S4 OSU-2 cell migration at a higher observation plane

(.,500 mm) in 55% v/v Matrigel.

(AVI)

Video S5 OSU-2 cell migration at a lower observation plane

(,,50 mm) in 70% v/v Matrigel.

(AVI)

Video S6 OSU-2 cell migration at a higher observation plane

(.,500 mm) in 70% v/v Matrigel.

(AVI)

Video S7 OSU-2 cell migration at a lower observation plane in

(,,50 mm) 85% v/v Matrigel.

(AVI)

Video S8 OSU-2 cell migration at a higher observation plane

(.,500 mm) in 85% v/v Matrigel.

(AVI)

Video S9 OSU-2 cell migration on a glass substrate. Note the

fan-like morphologies exhibited in traditional 2D cultures.

(AVI)

Author Contributions

Conceived and designed the experiments: SSR JOW. Performed the

experiments: SSR SB JD JL AH. Analyzed the data: SSR. Contributed

reagents/materials/analysis tools: AS. Wrote the paper: SSR SB RD AS

JOW.

References

1. Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell

Biol 17: 524–532.

2. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the

stiffness of their substrate. Science 310: 1139–1143.

3. Pelham RJ, Jr., Wang Y (1997) Cell locomotion and focal adhesions are

regulated by substrate flexibility. Proc Natl Acad Sci U S A 94: 13661–13665.

4. Flanagan LA, Ju YE, Marg B, Osterfield M, Janmey PA (2002) Neurite

branching on deformable substrates. Neuroreport 13: 2411–2415.

5. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, et al. (2005) Effects of

substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell

Motil Cytoskeleton 60: 24–34.

6. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, et al. (2004)

Myotubes differentiate optimally on substrates with tissue-like stiffness:

pathological implications for soft or stiff microenvironments. Journal of Cell

Biology 166: 877–887.

7. Zaman MH, Trapani LM, Siemeski A, MacKellar D, Gong HY, et al. (2006)

Migration of tumor cells in 3D matrices is governed by matrix stiffness along

with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 103:

10889–10894.

8. Nemir S, West JL (2010) Synthetic materials in the study of cell response to

substrate rigidity. Ann Biomed Eng 38: 2–20.

9. Willits RK, Skornia SL (2004) Effect of collagen gel stiffness on neurite

extension. J Biomater Sci Polym Ed 15: 1521–1531.

10. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the

rigidity of the substrate. Biophysical Journal 79: 144–152.

11. Zaari N, Rajagopalan P, Kim SK, Engler AJ, Wong JY (2004) Photopolymer-

ization in microfluidic gradient generators: Microscale control of substrate

compliance to manipulate cell response. Advanced Materials 16: 2133–2137.

12. Isenberg BC, Dimilla PA, Walker M, Kim S, Wong JY (2009) Vascular smooth

muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J

97: 1313–1322.

13. Cheung YK, Azeloglu EU, Shiovitz DA, Costa KD, Seliktar D, et al. (2009)

Microscale Control of Stiffness in a Cell-Adhesive Substrate Using Microfluidics-

Based Lithography. Angewandte Chemie-International Edition 48: 7188–7192.

14. Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI (2009) Neurite

growth in 3D collagen gels with gradients of mechanical properties. Biotechnol

Bioeng 102: 632–643.

15. Nemir S, Hayenga HN, West JL (2010) PEGDA hydrogels with patterned

elasticity: Novel tools for the study of cell response to substrate rigidity.

Biotechnol Bioeng 105: 636–644.

16. Kidoaki S, Matsuda T (2008) Microelastic gradient gelatinous gels to induce

cellular mechanotaxis. J Biotechnol 133: 225–230.

17. Marklein RA, Burdick JA (2010) Spatially controlled hydrogel mechanics to

modulate stem cell interactions. Soft Matter 6: 136–143.

18. Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of

vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:

1908–1913.

19. Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A (2010)

Biomimetic gradient hydrogels for tissue engineering. The Canadian Journal

of Chemical Engineering 88: 899–911.

20. Kotlarchyk MA, Shreim SG, Alvarez-Elizondo MB, Estrada LC, Singh R, et al.

(2011) Concentration independent modulation of local micromechanics in a

fibrin gel. PLoS One 6: e20201.

21. Soofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ (2009) The elastic

modulus of Matrigel (TM) as determined by atomic force microscopy. Journal of

Structural Biology 167: 216–219.

22. Buxboim A, Rajagopal K, Brown AE, Discher DE (2010) How deeply cells feel:

methods for thin gels. J Phys Condens Matter 22: 194116.

23. Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the

extracellular matrix regulates the structure, motility, and proliferation of glioma

cells. Cancer Res 69: 4167–4174.

24. Ulrich TA, Jain A, Tanner K, MacKay JL, Kumar S (2010) Probing cellular

mechanobiology in three-dimensional culture with collagen-agarose matrices.

Biomaterials 31: 1875–1884.

25. Bernstein JJ, Laws ER, Jr., Levine KV, Wood LR, Tadvalkar G, et al. (1991) C6

glioma-astrocytoma cell and fetal astrocyte migration into artificial basement

membrane: a permissive substrate for neural tumors but not fetal astrocytes.

Neurosurgery 28: 652–658.

26. Bernstein JJ, Goldberg WJ, Laws ER, Jr. (1994) Migration of fresh human

malignant astrocytoma cells into hydrated gel wafers in vitro. J Neurooncol 18:

151–161.

27. Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA (2005) Computa-

tional model for cell migration in three-dimensional matrices. Biophysical

Journal 89: 1389–1397.

28. Sen S, Engler AJ, Discher DE (2009) Matrix Strains Induced by Cells:

Computing How Far Cells Can Feel. Cellular and Molecular Bioengineering 2:

39–48.

29. Winer JP, Oake S, Janmey PA (2009) Non-linear elasticity of extracellular

matrices enables contractile cells to communicate local position and orientation.

PLoS One 4: e6382.

Inherent Interfacial Gradients in Hydrogels

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e35852



30. Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal

forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J Cell
Sci 123: 297–308.

31. Merkel R, Kirchgessner N, Cesa CM, Hoffmann B (2007) Cell force microscopy

on elastic layers of finite thickness. Biophys J 93: 3314–3323.
32. Maloney JM, Walton EB, Bruce CM, Van Vliet KJ (2008) Influence of finite

thickness and stiffness on cellular adhesion-induced deformation of compliant
substrata. Physical Review E 78: 041923.

33. Lin YC, Tambe DT, Park CY, Wasserman MR, Trepat X, et al. (2010)

Mechanosensing of substrate thickness. Phys Rev E Stat Nonlin Soft Matter
Phys 82: 041918.

34. van Dommelen JAW, van der Sande TPJ, Hrapko M, Peters GWM (2010)

Mechanical properties of brain tissue by indentation: Interregional variation.

Journal of the Mechanical Behavior of Biomedical Materials 3: 158–166.

35. Leong WS, Tay CY, Yu H, Li A, Wu SC, et al. (2010) Thickness sensing of

hMSCs on collagen gel directs stem cell fate. Biochem Biophys Res Commun

401: 287–292.

36. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and

escape mechanisms. Nat Rev Cancer 3: 362–374.

Inherent Interfacial Gradients in Hydrogels

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e35852


