
Polymers to direct cell fate by controlling the microenvironment
R Warren Sands and David J Mooney
Enhanced understanding of the signals within the

microenvironment that regulate cell fate has led to the

development of increasingly sophisticated polymeric

biomaterials for tissue engineering and regenerative medicine

applications. This advancement is exemplified by biomaterials

with precisely controlled scaffold architecture that regulate the

spatio-temporal release of growth factors and morphogens,

and respond dynamically to microenvironmental cues. Further

understanding of the biology, qualitatively and quantitatively, of

cells within their microenvironments and at the tissue–material

interface will expand the design space of future biomaterials.
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Introduction
Tissue engineering and regenerative medicine hold the

promise to treat and even cure a wide range of diseases

ranging from acute pathology (e.g. traumatic injury) to

chronic diseases (e.g. cardiovascular disease, cancer, and

diabetes) and materials will typically play a prominent role

in these therapies. In addition to maintaining, replacing or

regenerating lost, diseased, or damaged tissues, tissue

engineering, and regenerative medicine may provide arti-

ficial tissues for extracorporeal support, pharmacologic

testing, or the enhancement of normal tissue function.

The field has already contributed model systems to facili-

tate basic biological studies and led to the development of

FDA-approved therapies [1]. Materials are a cornerstone of

tissue engineering and regenerative medicine and have

grown from inert mechanical supports, physical bridges, or

cell and drug delivery vehicles with poorly understood

biologic functions or limited control to dynamic substrates

that serve as cell instructive materials by directing inter-

actions at the tissue–material interface. By better under-

standing and incorporating elements of the cellular

microenvironment, this new generation of materials
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promises to allow greater control over cell fate and ultimate

tissue structure and function. This review will address the

recent progress in material designs and fabrication

approaches that are leading to the development of increas-

ingly multifunctional mimics of the native cellular micro-

environment. As the fundamental biology of the cellular

microenvironment is often the inspiration for material

design, this review will begin with a brief discussion of

the cellular milieu, and then highlight polymers that direct

the tissue–material interface through the controlled pres-

entation of specific cues in time or space, or in response to

external signals. Finally, a discussion of current and poten-

tial future approaches to further develop a quantitative

understanding of the biology within cellular microenvir-

onments and at the tissue–material interface will be pro-

vided as this knowledge will enrich the palette for future

polymer design. The chemistry and physical properties of

materials are critical parameters for directing cell fate and

are discussed as they pertain to the spatial control of the

scaffold architecture, the spatial and temporal control of

morphogen and growth factor delivery, and dynamic poly-

mer design; for a more comprehensive review on these

topics the reader is encouraged to refer to other recent

articles [2,3].

The cellular microenvironment
The cell is immersed in a dynamic landscape composed

of insoluble macromolecules of the extracellular matrix

(ECM), soluble bioactive factors, and neighboring cells

(Figure 1). The landscape varies from tissue to tissue and

changes during disease and aging. Three of the principle

molecular signals within this environment include inso-

luble hydrated macromolecules, soluble molecules, and

cell surface proteins [4]. These signals are sensed, inte-

grated, and processed by the cell to determine behavior

and function, and information is passed bi-directionally

as the microenvironment is remodeled by the cells.

Information is encoded within the chemical identity,

localization, duration, and context of these molecular

cues. Spatial cues are displayed in 3D [5] and can include

signaling gradients such as that observed during chemo-

taxis, haptotaxis, and mechanotaxis. Moreover, spatial

cues are found at many length scales. Architectures range

from the nanometer to the centimeter length scales

[2,6–10], exemplified by ECM fibers, cells, and tissue

tubes, folds, and bends. In addition, the concentration,

duration, and context of the molecular cues contain

information that dictates cell fate. As exemplified by

angiogenesis, certain growth factors initiate angiogen-

esis, while a second group of growth factors induces

maturation. Later, a third cohort of molecules maintains

the integrity of the established vasculature [11,12]. If the
www.sciencedirect.com
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Figure 1

4D pseudo-phase diagram of cell fate. The cellular microenvironment is composed of signals from neighboring cells, physical stimuli, soluble

factors including growth factors, and insoluble molecules such as the extracellular matrix. The effects of these variables are plotted as different

axes on this 4D diagram of cell fate (e.g. differentiation) and are symbolized in this illustration by the different shapes and colors of the cells

located at different positions in space. In advanced tissue engineering and regenerative medicine the biomaterial may direct cell fate through any

of the variables. The signals from the biomaterial may change over time as a result of pre-programmed spatio-temporal control or in response to

the microenvironment, allowing for the recapitulation of complex signaling pathways.
appropriate concentration, duration, and context (e.g.

presence and sequence of multiple factors) are not

achieved, poor vascularization results. Finally, the micro-

environment changes dynamically over time. The ECM

is continually processed, degraded, and synthesized

anew, altering the matrix’s presentation of chemical cues

and elasticity, and leaving behind proteolytic fragments

and cryptic domains that in turn affect cellular activity

[13,14]. Meanwhile, soluble bioactive factors are

secreted and destroyed as the cells migrate, differentiate,

proliferate, and undergo apoptosis.

Spatial control of the scaffold architecture
Polymeric materials designed in the past incorporated

many signals found within the microenvironment but

typically only provided one or two cues in a static manner.

The focus of current efforts is to dynamically encode the

localization, duration, and context of multiple cues to

adequately integrate signaling and direct cell fate in light

of the host microenvironment. This aim requires control

over architecture at multiple size scales, spatio-

temporally regulated release of signaling molecules,

and dynamic polymer design.

Within the past decade, a dramatic increase in the resol-

ution of control over scaffold architecture has been

achieved through microfabrication technologies and has

led to the recent widespread use of this technology for

tissue engineering and regenerative medicine appli-

cations. In comparison to traditional polymer processing

methods, microfabrication, and more recently nanofabri-

cation, may allow for design at the nanometer to the

supramillimeter length scale (Figure 2) [15,16] and for

exquisite control of the internal architecture of the

material a priori, facilitating the patterning of immobil-

ized chemicals, cells, and mechanical gradients [17].

High-resolution spatial control could benefit a wide

range of applications from artificial blood vessels with

compliances that match host tissue to directional nerve
www.sciencedirect.com
guidance channels to aid neural regeneration. In many

fabrication procedures, however, increased spatial resol-

ution comes at the expense of long fabrication times.

Thus, efforts are underway to create high throughput

technologies suitable for bulk fabrication of a wide range

of materials that can maintain spatial resolution.

Soft lithography and multiphoton photocrosslinking allow

for submicrometer to supramillimeter spatial control. Soft

lithography has been used with microfluidics to create

hydrogels with gradients of adhesive ligands and mech-

anical properties [18] and complex spatial gradients can

be readily generated [19]. Increased 3D resolution down

to the submicron range can be achieved with multiphoton

photocrosslinking but at the expense of fabrication time.

To decrease processing time, mask-based methods for

rapid prototyping have been developed [20] and could be

further improved if used in tandem with a micro-mirror-

based masking device [21�]. The utility of microfabrica-

tion techniques has been demonstrated in the design of

3D skin substitutes with an artificial epidermis containing

micrometer scale features similar to the rete ridges and

dermal papillae found in normal skin at the epidermal–

dermal junction [22]. The depth and width of the engin-

eered invaginations was demonstrated to influence ker-

atinocyte stratification and differentiation.

Electrospinning has emerged as a prominent method for

nanometer scale design not addressable with traditional

microfabrication techniques, at the expense of control over

internal scaffold architecture, void space connectivity, and

mechanical properties. However, both synthetic and

natural polymers can be electrospun into fibers with

diameters ranging from the 10s of nanometers to several

micrometers [23,24]. The goal of recent work has been to

create more complex materials with defined internal archi-

tectures. To this end, composite materials and aligned

fibers have been synthesized and utilized for vascular

[25] and meniscal [26] tissue engineering applications,
Current Opinion in Biotechnology 2007, 18:448–453
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Figure 2

Tissue engineering and regenerative medicine at many length scales. Many techniques are available to design biomaterials from the nanometer

to centimeter length scales, some of which are listed above (A). Examples of biomaterials mentioned in the review can be seen approximately

beneath their respective length scale (B–F). An illustration of a heparin-nucleating self-assembled peptide amphiphile (B) [29]. The fatty acid tail

segregates to the center of the nanofiber, while the heparin binding sequence bonds to heparin leading to charge shielding and gel formation.

The nanofibers have a diameter of 6–7.5 nm and further aggregate to higher order structures with diameters of 50–100 nm. Mesenchymal stem

cells seeded on submicrometer electrospun poly(e-caprolactone) meshes (C) [26]. Anisotropic skeletal myotube formation after seven days of

culture (7 d) on poly(dimethylsiloxane) substrates patterned using soft lithography (D) [15]. Hematoxylin and eosin staining of a micropatterned

dermal analog composed of a collagen-glycosaminoglycan membrane laminated to a collagen sponge (E) [22]. Tissue-engineered blood vessel

produced by seeding smooth muscle cells onto a polyglycolic acid substrate and then culturing the substrate in a pulsatile bioreactor (F) [57��].

The vessel is approximately 5.5 cm in length and 3 mm in diameter. The scale bar in C, D, and E is 50 mm. The scale bar in D added to scale

from the control sample. W and D represent the width and depth of the invagination. The original image in F was cut to fit into the figure. Images

in B and D reproduced with permission, copyright 2006, American Chemical Society. Image in C reproduced with permission, copyright 2007,

Elsevier. Image in E reprinted with permission of John Wiley & Sons, Inc., Journal of Biomedical Materials Research Part A, 72A, 2005, 53,

copyright 2004, John Wiley & Sons, Inc. Image in F reproduced with permission, copyright 2006, National Academy of Sciences, USA.
respectively. The modulus of tissues formed from aligned

nanofibers can be dramatically increased as compared to

unaligned fibers [26]. Electric fields can be utilized during

the electrospinning process to create oriented polymers

within the nanofibers that further recapitulate the hier-

archical design found within natural anisotropic ECM [27].

Finally, soft lithography, multiphoton photocrosslinking,

and electrospinning may be used in combination with other

materials and processing methods to create scaffolds with

even greater control over spatial properties to potentially

enhance material performance.

Spatial and temporal control of morphogen
and growth factor delivery
Additional direction over cell fate, beyond control of

scaffold architecture, can be achieved through the spa-

tio-temporal control of morphogen and growth factor

delivery from the scaffolding material (Figure 3). Poly-

meric systems allow for independent regulation of the

localization, duration, and availability of one or more

soluble factors [28–30], while limiting the overall

quantity of drug and minimizing the potential side

effects of systemic dosing. Many techniques have been

developed to regulate the kinetics and distribution of

soluble factors, including multiple levels of encapsula-

tion [31] as well as noncovalently bonding the bioactive

factors to peptides with a range of dissociation constants
Current Opinion in Biotechnology 2007, 18:448–453
mimicking ECM immobilization of growth factors [32].

With respect to the latter, phage display has been a

powerful technique for identifying ligands that can

tightly control the kinetics of factor release [32]. Dual

delivery of multiple growth factors and morphogens

has been achieved in multiple systems including poly(-

lactide-co-glycolide) (PLG) [31], oligo(poly(ethylene

glycol) fumarate) [33], and alginate [34] scaffolds.

Multiple factors can be delivered sequentially, simul-

taneously, or both, and these techniques can be com-

bined with DNA or RNAi delivery to enable long-

standing protein expression [35] or abrogation of expres-

sion [36]. The physiologic relevance of control over

factors availability in time and space has been demon-

strated by differentiation of stem cells [37], regulation

over the extent of vascular network maturation with time

[31], enhanced delivery and integration of transplanted

cells [38], and the simultaneous formation of vascular

networks at distinct stages of maturation in distinct

spatial compartments [28].

Dynamic polymer design
One goal of biomaterial design is to develop systems that

respond dynamically and reversibly to external or micro-

environmental cues. At the extreme, a material may act as

a microprocessor, a closed-loop system that surveys the

external cues and the microenvironment, integrates the
www.sciencedirect.com
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Figure 3

Spatial and temporal control of morphogen and growth factor delivery.

Polymeric systems allow for independent regulation of the localization,

duration, and availability of one or more soluble factors, exemplified

above by the delivery of two factors, A and B, with different release

kinetics. Factor A is released locally from the biomaterial (circle) within a

short duration of time. By contrast, factor B is released over a large

volume for a long period of time.
information, and responds accordingly in real-time. It is

unclear what level of complexity will be required for

advanced tissue engineering and regenerative medicine

applications; however, progress has been achieved to

create polymeric systems that alter their properties in

response to external or microenvironmental effectors.

Polypyrrole-based neural interfaces [39] and electroactive

self-assembled monolayers [40] respond dynamically to

external controls by functioning as electrical relays or

surfaces that change conformation, respectively, in

response to an electric potential. Other materials have

been designed to respond directly to microenvironmental

effectors. In the context of material degradation,

materials have been developed that incorporate proteo-

lytic domains [41] or bioactive linkers [42], and their

degradation and function is altered by contacting cells.

Other bioresponsive polymers change physical properties

irreversibly with or without material degradation in

response to small molecule receptors/ligands, or cell-

secreted factors such as enzymes or enzymatic substrates

[43]. Reversibility may often be desired and has been

demonstrated in response to cellular ligands [44] and

enzymes [45��]. In the former, the structure of calmodulin

was altered by ligand binding, leading to macroscopic
www.sciencedirect.com
shape changes in the hydrogel. In the latter, a pentapep-

tidic hydrogelator reversibly self-assembled or disas-

sembled as a result of its phosphorylation state.

Expanding the design space and developing
tomorrow’s biomaterials
A bottleneck in the successful clinical implementation for

many polymeric materials rests in our limited understand-

ing of biological principles, both in the fundamental

biology relating how cells interact with their environ-

ment, as well as in the quantitative aspects of these

interactions. The increasingly important question is not

how to make a material, but what and how biological cues

should be incorporated into the material. To this end, the

work of many interdisciplinary teams is helping to define

the future landscape of polymer design.

A quantitative understanding of biological processes is

and will be of great importance for material design.

Specifically, a quantitative understanding of the concen-

tration, distribution, and interaction of molecules within

normal, diseased, and regenerating systems as they

change with time is important to be able to adequately

design polymeric materials that can recapitulate these

events. For example, correlation microscopy studies are

defining integrin dynamics and focal adhesion-actin

coupling [46,47]. Other studies are teasing apart the

environmental factors that influence 3D cellular

migration [48�]; however, the quantitative relationship

between ligand bonding and integrin dynamics, focal

adhesion-actin coupling, and motility is largely unknown.

This relationship can be explored using techniques such

as fluorescence resonance energy transfer (FRET) to

quantify bond formation in real-time 3D culture [49��],
and the subsequent dynamic process of cell-mediated

ECM remodeling [50]. These events can ultimately be

correlated with cellular activity, such as the mechanism of

motility, and fabrication methods could then be applied

to incorporate the appropriate signaling cues for the

desired material performance. Additionally, recent stu-

dies suggest that the cellular reprogramming of somatic

cells requires a delicate balance of factors [50–54]. As the

expression of these factors becomes known, controlled

delivery may allow for in situ reprogramming to generate

stem cell and differentiated cell populations. Detailed

knowledge of cues regulating cell fate is already being

exploited to design materials that direct stem cell fate in
vivo [38].

A number of studies have also revealed complex bio-

logical subtleties at the tissue–material interface that

may greatly affect material performance. First, the influ-

ences of the material on the host, such as cell migration

into a scaffold or differentiation of autologous stem cells

within a polymer, will probably depend upon the sex,

disease state, and age of the patient [55,56,57��]. Second,

most materials elicit immunogenic responses following
Current Opinion in Biotechnology 2007, 18:448–453
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transplantation, and even some polymers that are typi-

cally considered biocompatible may harbor subtle, but

important immunogenic activity [58]. Understanding the

role of these activities for a given material in a specific

tissue engineering/regenerative medicine context may

provide routes to minimize detrimental immunologic

activity. Conversely, harnessing immunologic activity

may provide additional opportunities.

Conclusion
A deeper understanding of the interactions between cells

and their microenvironments has led to the development

of increasingly sophisticated polymeric materials for tis-

sue engineering and regenerative medicine. Future

advances in the biological sciences, particularly with

respect to qualitative and quantitative biology of cells

within their microenvironments and at the tissue–

material interface, will increase the design space of future

biomaterials.
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