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Cells of the mammary gland are in intimate contact with other cells and with the extracellular
matrix (ECM), both of which provide not only a biochemical context, but a mechanical
context as well. Cell-mediated contraction allows cells to sense the stiffness of their micro-
environment, and respond with appropriate mechanosignaling events that regulate gene
expression and differentiation. ECM composition and organization are tightly regulated
throughout development of the mammary gland, resulting in corresponding regulation
of the mechanical environment and proper tissue architecture. Mechanical regulation is
also at play during breast carcinoma progression, as changes in ECM deposition, compo-
sition, and organization accompany breast carcinoma. These changes result in stiffer
matrices that activate mechanosignaling pathways and thereby induce cell proliferation,
facilitate local tumor cell invasion, and promote progression. Thus, understanding the role
of forces in the mammary gland is crucial to understanding both normal developmental
and pathological processes.

While it has long been appreciated that the
biochemical environment provided by

the extracellular matrix (ECM) is a key determi-
nant of normal and pathological progression in
the mammary gland, recently the realization
that there is also a mechanical aspect to cell
responses to the ECM has emerged. The signal-
transduction response of cells to the physical
aspects of their environment is termed “me-
chanosignaling,” and is the general subject of
this article. It is anticipated that the mammary

gland will prove to be a powerful developmental
model to investigate mechanosignaling due to
its postnatal development, which extends the
time-course and provides a large tissue source
for biochemical studies. However, ultimately,
the power of this model lies in the fact that the
normal mammary gland exists in many dif-
ferent developmental states, each with unique
tissue tension requirements. For this review,
we include studies from non-mammary cells
to help inform what may be occurring in the
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context of the mammary gland, and try to indi-
cate where information is specifically obtained
in a mammary system.

The recognition that a cell is in a physical
continuum with its ECM was discerned early
on from images obtained by quick freeze, deep-
etch electron microscopy, a rapid, chemical-
fixation-free method that preserves native
macromolecular structure with high fidelity.
Using this approach to study cells within their
tissue context, fine ECM fibers were found to
radiate orthogonally from the plasma mem-
brane surface and to exist as a continuum with
the cytoplasmic cytoskeleton (Mecham and
Heuser 1990; Singer 1979; Singer et al. 1984).
The clear registry of cellular microtubules and
actin cytoskeleton with extracellular matrix
fibers in fibroblasts (Tomasek et al. 1982) and
corneal epithelium (Sugrue and Hay 1981) led
Dr. Elizabeth D. Hay to propose that the physi-
cal continuum between ECM and cytoskeletal
organization reflects a functional continuum
(Bissell 1981; Emerman et al. 1981; Hay 1981).

Independently, involvement of the cytoske-
letal components in growth regulation (Teng
et al. 1977), the connection between extracellu-
lar matrix (ECM) and gene expression in mam-
mary epithelial cells (Emerman et al. 1981;
Bissell 1981), and the importance of 3D context
in functional differentiation (Hall et al. 1982;
Hall and Bissell 1986) led Mina Bissell to state
that the microenvironment regulates gene
expression (Bissell 1981; Bissell et al. 1982).
Subsequent studies evaluating human embry-
onic lung epithelial cells showed concomitant
organization of fibronectin fibers secreted by
and deposited beneath the cell and the micro-
filament bundles within the cell (Hynes and
Yamada 1982) as well as collagen fibers with
intermediate filaments (Hall and Bissell 1986).
This non-random orientation of ECM fibers
with respect to the cell surface is called aniso-
tropy and leads to spatially oriented matrix
networks that serve as adhesion sites, migration
routes, as well as concentration gradients of
fibrils that generate differential tension and dis-
tinct gene expression patterns.

The major structural protein in the mam-
mary gland, and indeed in the entire body, is

fibrillar collagen. In addition to providing a bio-
chemical ligand for several receptors, collagen
provides structural support for the gland, which
is appreciated when one sees the relationship of
collagen fibers to the epithelial cells (Fig. 1A).
Fibrillar collagen is closely associated with the
basal lamina, a highly organized and specialized
ECM region that separates the epithelium from
the less structured underlying collagen1-rich
stromal compartment (Monaghan et al. 1983).
The proteins comprising the basal lamina were
classically identified as collagen IV, the lami-
nins, entactin, and proteoglycans. While the
mechanical properties of the basal lamina per
se are currently not clear, no doubt several basal
lamina proteins contribute to the mechanical
properties of the ECM, and their roles are
expected to emerge in coming years. In this
article, we focus predominantly on the stromal
ECM and the fibrillar collagens as the major
structural proteins that affect the mechanical
environment of mammary epithelial cells, as
this is the aspect that is best understood.

Cells adhere to the ECM through several dif-
ferent receptors, the most prominent of which
belong to the integrin family. Several reviews
of integrin structure and function exist, and
the reader is referred there for more information
(Liu et al. 2000; Hynes 2002; Katsumi et al.
2004). Beta-1 family integrins in particular are
implicated in maintaining the normal phenotype
of breast epithelial cells (Streuli et al. 1991), and
contribute to the architecture and branching
morphogenesis of the gland. Knockout of the
b1 integrin subunit results in disrupted differen-
tiation and alveologenesis, presumably through
loss of critical adhesion sites (Li et al. 2005; Nay-
lor et al. 2005). Moreover, knockout of the a2
subunit, a key receptor for collagens in the mam-
mary gland, leads to a loss of branching complex-
ity (Chen et al. 2002). While a classic biochemical
receptor/ligand relationship between integrins
and ECM molecules has been the model, emerg-
ing is the concept that receptors for ECM work at
the interface of linking mechanical signals into
biochemical signals in the cell.

The mechanical properties of the ECM are
regulated by numerous growth factors acting
on cells such as fibroblasts, which deposit
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stroma and arrange collagen. TGF-b1 is a
primary activator of quiescent fibroblasts to
highly contractile myofibroblasts involved in
tissue fibrosis. Using culture conditions that
permit tension modulation of the ECM, pri-
mary rat lung fibroblasts activated TGF-b1
stored in the ECM only under high tension con-
ditions (Wipff et al. 2007). The authors propose
that a requirement of high tissue tension for
TGF-b activation restricts generation of myofi-
broblasts to a stiffened ECM, thus imposing a
physical limitation to fibrosis. Relevance to the
mammary gland is likely, as latent TGF-b stored
within the mammary matrix, and known to
be activated in response to irradiation-induced

fibrosis (Barcellos-Hoff and Ravani 2000), is
ovarian-hormone regulated.

Changes in the composition of the ECM
during both mammary development and with
tumor progression will affect the mechanical
environment of the cells. Tumor progression
in particular is characterized by increased
ECM deposition, termed “desmoplasia.” More-
over, collagen V is increased in desmopla-
stic stroma (Barsky et al. 1982), which is
mechanically significant as collagen V changes
the structure of collagen I fibrils (Wenstrup
et al. 2004; Berendsen et al. 2006; Breuls et al.
2009). In addition, several other proteins such
as fibronectin and proteoglycans bind to
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Figure 1. Mammary epithelial cells respond to the stiffness of a collagen matrix. (A) Scanning electron mi-
croscopy image of mammary acini showing individual mammary epithelial cells (M) surrounded by oriented
collagen fibers (arrows). (SEM image courtesy of Paolo Provenzano.) Bar, 30 um. (B) Elastic modulus of collagen
gels increases with increased collagen concentration. Modulus was measured by tension as described (Proven-
zano et al. 2009). Triangles represent data from Provenzano et al. (2009), squares from Roeder et al. (2002). Data
was fitted and the resulting equation shown. (C) MCF10A cells cultured in a low-density (1.0 mg/ml) collagen
gel form polarized acinar structures (a), while the same cells cultured in a high-density (2.0 mg/ml) collagen gel
proliferate in a disorganized manner (c). Addition of HGF to low-density cultures results in tubule formation
(b), while HGF added to cells in high-density culture results in an invasive phenotype (d). (Panels B and C
reprinted from Provenzano et al. 2009 with permission from Nature Publishing Group # 2009.)
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collagens and affect the organization of collagen
fibers, and thereby have effects on the mechan-
ical milieu. The properties of the ECM are fur-
ther changed by remodeling and the function
of several matrix proteases, which will not be
extensively covered in this article. The reader
is referred to a couple of recent reviews on this
topic (Page-McCaw et al. 2007; Rowe and Weiss
2008; Wolf and Friedl 2009). Finally, cross-
linking of collagen fibers and collagen arrange-
ment will also affect the mechanical properties
of the ECM (Raub et al. 2007, 2008).

In addition to the ECM, several other
aspects of mammary gland structure contribute
to the mechanical environment. Normal mam-
mary epithelial cells are polarized, and adhere
in part via a6b4 integrin to the basement mem-
brane at hemidesmosomes, which will have
their own mechanical properties. In addition,
tight junctions and adherens junctions between
cells provide sites of attachment and medi-
ate forces exerted between cells. This aspect of
mechanosignaling is not well understood in
the mammary gland, and will not be extensively
covered here. The reader is referred to recent
reviews on this subject regarding other cell types
and developmental systems (Pokutta and Weis
2007; Wozniak and Chen 2009). The actin cyto-
skeleton, linked to force and contractility by
interaction with myosin, links the adherens
junctions with the integrin-mediated adhesions
and hemidesmosomes, creating a potentially
integrated tensile structure. Finally, myoepi-
thelial cells, which tightly surround ductal
epithelium and loosely encase the luminal epi-
thelial cells, are specifically designed for contrac-
tility, and likely create mechanical events within
the gland that differ between ductal and alveolar
cells and with hormone status. Thus, every
aspect of the mammary gland is a source of pos-
sible mechanical stimuli that can impact the
behavior of mammary epithelial cells.

DYNAMIC NATURE OF TENSILE FORCES
IN THE MAMMARY GLAND

Forces exerted on cells can occur in multiple
dimensions: Tissues can be compressed or
stretched in axial or multiaxial directions. The

mammary gland is subject to several forces of
both types in the course of daily activities
such as walking, exercising, or physical work.
Compression in the mammary gland is prob-
ably most relevant during lactation and tumor
growth, where the cells may be pushing out
on their local environment, as well as during
mammography and other examinations where
external pressure is applied. In order to sense
a tensile mechanical environment, a cell needs
to adhere, experience force exerted upon it,
and meet that force with some level of resis-
tance. It is proposed that forces within the cell
reach a tensional balance with the stiffness
outside the cell, a concept termed “tensional
homeostasis” (Paszek et al. 2005), and thus
understanding and measuring cellular forces
and matrix stiffness has become an area of
intense interest.

DEFINING MATRIX STIFFNESS

Each ECM will have material properties based
on the structure and arrangement of its com-
ponent parts. Collagen itself is a viscoelastic
material, meaning that it exhibits behaviors of
both viscous and elastic materials, and its de-
formation depends on the rate at which it is
strained. The viscoelastic property is quantified
by applying force as tension, shear, or compres-
sion, and measuring the relationship between
stress and displacement in order to determine
a property termed the elastic modulus. A full
description is beyond the scope of this article,
and the reader is referred to a few excellent texts
on the subject (Fung 1993; Humphrey and
Delang 2004; Janmey et al. 2007).

The tensional moduli of gels composed of
predominantly collagen I have been reported
(Roeder et al. 2002; Provenzano et al. 2009)
and demonstrate that an increase in the con-
centration of collagen from 1.0 to 4.0 mg/ml
results in a non-linear increase in the elastic
modulus of the gel (Fig. 1B). Compression
studies of collagen gels across the same concen-
tration range give a similar finding: Modulus
increases as collagen concentration increases
(Paszek et al. 2005; Gehler et al. 2009). Note
that the modulus measured by tensional forces
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results in a value in the kPa range, while modu-
lus measured by compression is in the Pa range.
Importantly, when actual mammary tissue,
more complex because it contains heteroge-
neous stroma and cells, is measured by com-
pression, there is an increase in the modulus
for mammary tumors compared to normal tis-
sue (Paszek et al. 2005). This makes sense, as
mammary tumors can be found by their in-
creased stiffness upon palpation. It is important
to note here that the compression modulus of
normal mammary tissue is similar to the com-
pression modulus of lower concentration colla-
gen gels, while the compression modulus of
tumor tissue is similar to the compression
modulus of higher concentration collagen gels
(Paszek et al. 2005). Engineered environments
differing in stiffness can also be created by coat-
ing flexible polyacrylamide gels with collagen,
fibronectin, or other proteins. Further, by
altering the proportion of bis-acrylamide, the
modulus can be altered in precise ways (Wang
et al. 2000).

Functionally, differences in matrix stiffness
result in profound cellular responses. Mam-
mary epithelial cells cultured in lower con-
centration 3D collagen gels organize into
polarized acinar and ductal structures, while
those in higher concentration collagen gels,
which are stiffer, lose this polarization and
instead become locally invasive (Fig. 1C). Cells
cultured in stiffer matrices have an increase in
cellular proliferation and changes in gene
expression compared to cells in less stiff or com-
pliant matrices. This finding is true in mam-
mary epithelial cells (Wozniak et al. 2003;
Paszek et al. 2005; Provenzano et al. 2009) as
well as several other cell types (Chen et al.
1997; Wang et al. 2000; Discher et al. 2005).
Moreover, stem cells differentiate in a manner
that parallels the stiffness of their environment,
such that stem cells cultured in a matrix with a
stiffness similar to muscle become myogenic,
while those in even stiffer matrices that mimic
bone become osteogenic (Engler et al. 2006).
This differentiation may be related to the Wnt
pathway, as canonical Wnt signaling is
enhanced when bone is mechanically loaded
(Robinson et al. 2006). Moreover, cells migrate

preferentially onto stiffer surfaces (Wang et al.
2001), a process fundamental to embryonic
morphogenesis and termed “durotaxis.”

MEASUREMENTS OF CELL FORCE

Several means have emerged to measure cell-
generated forces. Force applied to cells with
“laser tweezers” to optically trap beads coated
with fibronectin results in a strengthening of
the integrin-cytoplasmic linkages (Choquet
et al. 1997). By altering this force, the point at
which the bond to the bead is broken occurs at
2 pN (picoNewtons), suggesting this is the force
of the integrin-mediated link between the ECM
and the cytoskeleton (Jiang et al. 2003). Because
contraction of a collagen gel is a balance between
the stiffness of the collagen gel and the force
exerted by the cells therein, a change in collagen
gel contraction suggests a change in the force
exerted by the cells. Thus, another force measure
can be implied by cellular displacement of
collagen fibers (Miron-Mendoza et al. 2008).
Using this approach, it was found that enhanced
filamin binding to integrins results in an in-
creased ability to contract a stiff collagen gel,
and relates to increased contractility signaling
(Gehler et al. 2009). When the elastic modulus
of the environment is known, force can also be
computed from the displacement of beads
within that environment. Such measurements
demonstrate that cellular forces are greatest
and more dynamic at the leading edge of a
migrating cell compared to the trailing edge
(Pelham and Wang 1997, 1999). Cell-mediated
forces also have been measured by placing cells
on micro-patterned flexible posts that vary in
geometry and stiffness, and measuring the
displacement of those posts, which demon-
strates that cells exert greater forces as they
become more spread (Tan et al. 2003). Similarly,
as cells crawl over a micromachined device, cell
forces are demonstrated to move toward the
center of the cell (Galbraith and Sheetz 1997).

The question of whether cell force exerted
on matrix influences large-scale anisotropic
patterning of ECM, such as that observed in
the mammary gland, is of obvious interest. In
vivo, individual mammary acini and ducts are
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frequently circumscribed with 10–100 mm or
larger bands of organized collagen-rich fibrillar
stroma. In vitro, force exertion experiments,
such as those described above, may provide
insight into this macro-scale patterning. Pellets
of fibroblast cells on an isotropic collagen-1 gel
and separated by distances of 1000 mm reorgan-
ize the collagen into bundles running parallel
between the cell foci (Sawhney and Howard
2002, 2004). The initial rate of collagen traction
was 0.28 mm/min with an estimated collagen
translocation of �10 mm at the cell surface.
Surprisingly, this localized cell surface force
was sufficient to rearrange the collagen over
the 1000 mm gap between cell pellets. Further,
while the fibroblasts interacted with the collagen
at their cell surface, the induction of the bands
of collagen was transmitted simultaneously
throughout the gel, rather than progressively
from the cell surface as predicted if the gel was
a collection of distinct fibers. Instead, these
data indicate that the collagen gel has properties
of an interconnected mesh, where tension
exerted in one location is rapidly transmitted
to distant sites due to its interconnected nature
(Sawhney and Howard 2002, 2004).

Global self-organization of ECM by mam-
mary epithelial cells has been observed in a
3D culture model designed to evaluate rapid

effects of endogenous matrices on acinar orga-
nization in the absence of cell proliferation.
Using Matrigel spiked with either FN or mam-
mary matrix isolated from nulliparous rats,
highly organized bands of matrix were found
to extend 20–30 mm from the basal side of
the acini, with further matrix organization per-
sisting even deeper into the matrix pad (Fig. 2A)
(Schedin et al. 2004, 2000b). Thus, organizing
antistrophic ECM at the cell periphery and at
a distance appears to be an intrinsic property
of mammary epithelial cells, much like the
properties of cell and acinar size regulation
and polarity. Further, these observations indi-
cate that tissue-extracted matrix, whether from
EHS sarcoma or from rat mammary gland,
retains viscoelastic and mechanosignaling
properties and acts more like an interconnected
mesh than as a collection of individual matrix
components.

CONTRACTILE PATHWAYS
GENERATE FORCE

In large part, cells sense the stiffness of their
environment by pulling against the ECM using
intracellular contractile mechanisms derived
from actin-myosin interactions. Thus, in addi-
tion to the concept that external forces may
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Figure 2. Anisotropic organization of matrix is an intrinsic property of MECs and is developmentally regulated.
(A) Macro-patterning of anisotropic ECM by mammary epithelial cells in 3D culture. Bar, 15 um. (B) Collagen
fibers in blue (Trichrome stain) show increased deposition in regressing mammary lobules (white asterisks) in
comparison to lactating lobules (black star). Bar, 100 mm. (C) Comparison of fibronectin and laminin ratios
between rat mammary ECM and EHS reconstituted basement membrane (Matrigel). Lane 1: 10.8 mg EHS
tumor matrix. Lane 2: 10.8 mg Day 4 involution rat mammary matrix. Based on scanning densitometry, rat
mammary matrix has �five-fold more FN per mg protein than EHS matrix, whereas EHS matrix has
�10-fold more LN per mg protein than rat mammary matrix, with a FN/LN ratio of 50 or higher in rat mam-
mary matrix compared to EHS matrix.
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be exerted upon cells, cells exert forces upon
themselves when they contract against the
ECM. In a compliant matrix, the cells will pull
the components of that matrix in toward
themselves, and when in a stiffer matrix, the
cells will generate forces that result in focal
adhesions and stress fiber formation (Grinnell
2000; Wozniak et al. 2003; Miron-Mendoza
et al. 2008; Gehler et al. 2009).

Contractility is positively affected by phos-
phorylation of the myosin regulatory light
chain (MLC). Both MLC-kinase and the Rho
effector, Rho-Kinase (ROCK), can directly
phosphorylate MLC (Amano et al. 1996).
Also, ROCK can inhibit the phosphatase that
acts on MLC, further enhancing phosphoryla-
tion of MLC (Kimura et al. 1996). Of these
two pathways, the Rho-ROCK pathway is the
one predominantly linked to mammary epithe-
lial cell response to matrix stiffness (Wozniak
et al. 2003; Paszek et al. 2005; Wyckoff et al.
2006). Rho activity is itself linked to matrix stiff-
ness, as a compliant matrix leads to down-
regulation of Rho-GTP (Wozniak et al. 2003).
It appears that part of the mechanism by which
Rho plays a role involves controlling the degree
of cell spreading, as endothelial cells confined in
their shape on a patterned 2D surface have
increased proliferation only if allowed to spread
(Chen et al. 1997). This effect involves a
bi-modal regulation of focal adhesion kinase
(FAK) function, such that phosphorylated
FAK promotes proliferation, while unphos-
phorylated FAK in rounded cells prevents pro-
liferation (Pirone et al. 2006). Moreover, cell
shape regulates the differentiation of mesenchy-
mal stem cells in a Rho-ROCK dependent man-
ner (McBeath et al. 2004). The relationship of
cell spreading to Rho is also bi-directional, as
spread cells are able to activate the Rho-ROCK
pathway (Bhadriraju et al. 2007).

FOCAL COMPLEXES AS MECHANICAL
SENSORS

Mechanosignaling entails the conversion of a
mechanical event, such as cellular deformation,
into a biochemical event typically thought of

in signal transduction, such as protein phos-
phorylation or generation of second messengers
(Fig. 3). There is much speculation regarding the
identityof putative mechano-responsive sensors
within cells, but much more information is
needed before understanding this process fully.
It makes intuitive sense that mechanosensing
proteins or cellular structures should have the
property of being conformationally regulated
when forces are exerted upon them and that
these conformational changes should alter the
signaling properties of the sensor, for example
by regulating catalytic activity or by exposing
binding sites for other molecules.

Integrin-mediated focal complexes as a unit
could represent a mechanical sensor, as these
structures are assembled in response to mechan-
ical strain and substratum stiffness (Choquet
et al. 1997; Pelham and Wang 1997; Katz et al.
2000) (for review, see Galbraith et al. 2002).
While some have suggested that focal adhesions
do not exist in three-dimensional matrices (Fra-
ley et al. 2010), it should be noted that this
observation was made in the context of a com-
pliant 3D matrix. In stiff matrices, specialized
focal adhesions termed “3D matrix adhesions”
(Cuikerman et al. 2001) have been noted (Woz-
niak et al. 2003; Pasek et al. 2005; Provenzano et
al. 2009). Integrins are proposed to themselves
represent mechano-sensors (Katsumi et al.
2004, 2005), as they have profound conforma-
tional changes upon ligand binding. Moreover,
integrin-cytoskeletal linkages are enhanced
when force is exerted on integrins, suggesting
that binding sites within the complex are
exposed under strain (Choquet et al. 1997).
Many of the molecules resident in focal com-
plexes are implicated in mechanosensing, in-
cluding talin (Giannone et al. 2003; Jiang et al.
2003), vinculin, FAK, Src, and p130Cas (Felsen-
feld et al. 1999; Wang et al. 2001; Li et al. 2002;
Frame 2004; Kostic and Sheetz 2006; Sawada
et al. 2006), and indeed the proteins resident
in focal adhesions may function cooperatively
as a mechanosensing complex.

Talin in particular is a candidate mechano-
sensor in focal complexes. Talin is uniquely in-
volved in direct activation of integrin function,
as talin binding to integrin b cytoplasmic tails
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induces conformational changes that propagate
across the membrane and enhance ligand bind-
ing (Critchley 2000; Calderwood and Ginsberg
2003; Garacia-Alvarez et al. 2003; Calderwood
et al. 2004; Wegener et al. 2007; Himmel et al.
2009). Talin binding to integrins involves both
the N-terminal FERM domain (Calderwood
et al. 1999; Wegener et al. 2007) as well as a C-
terminal binding site in the rod domain (Ging-
ras et al. 2009). The N- and C-terminal sites
work in a potentially cooperative manner, as
talin is auto-inhibitory when not bound to
integrins (Goksoy et al. 2008). Calpain cleavage
can release some of this auto-inhibition (Yan
et al. 2001). As well, there is likely a mechanical
component to talin function. Force applied to
the talin rod domain stretches a series of helical
bundles in the rod domain, opening up not only

the cryptic C-terminal integrin binding site, but
also binding sites for vinculin and actin (Hyto-
nen and Vogel 2008; del Rio et al. 2009). Thus,
integrin activation by talin is likely mecha-
nically regulated and indeed is necessary for
vinculin recruitment and cytoskeletal streng-
thening when force is applied to integrins
(Giannone et al. 2003). Vinculin, too, is confor-
mationally regulated such that it is active at focal
adhesions (Chen et al. 2005).

The scaffolding molecule, p130Cas, has
recently emerged as a putative mechanosensor.
p130Cas contains a highly phosphorylated
substrate domain in the middle of the molecule
that is phosphorylated predominantly by Src,
and may be the means by which Src partici-
pates in mechano-signaling (Honda et al. 1999;
Sawada et al. 2006). Stretching of p130Cas
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exposes this domain, and results in increased
phosphorylation through the Src-family kinase,
fyn (Kostic and Sheetz 2006; Sawada et al.
2006). Once phosphorylated, p130Cas scaffolds
several molecules, and results in signaling
through myosin light chain to promote cellular
contractility (Cheresh et al. 1999), as well as
activation of Dock180 to promote Rac activa-
tion (Kiyokawa et al. 1998). Importantly, expo-
sure of the p130Cas substrate domain occurs at
protrusive edges of spreading cells (Sawada et al.
2006), suggesting spatial regulation that may
allow p130Cas to translate mechanical cues
into migration, and may explain part of the
mechanism underlying durotaxis.

Filamin is a large scaffolding molecule that
has several folded domains, and is hypothesized
to unfold upon mechanical forces placed on
the molecule, exposing several binding sites for
signaling molecules such as Rho, ROCK, PAK,
and PKC (Stossel et al. 2001; Vadlamudi et al.
2002; reviewed in Feng and Walsh 2004). Fila-
mins are poised to mediate mechanical cues
from the ECM, as they bind directly on one
end to integrins and on the other to the actin
cytoskeleton. Importantly, filamin-integrin
linkages regulate mechanical responses such as
cell migration and collagen gel contraction,
and may serve to “tune” the response of mam-
mary epithelial cells to matrix stiffness (Calder-
wood et al. 2001; Gehler et al. 2009). Moreover,
filamin alters the mechanical properties of actin
networks (DiDonna and Levine 2006; Gardel
et al. 2006).

FAK is also implicated in mechanosensing.
In particular, phosphorylation of FAK at Y397
is up-regulated when cells are on stiff ma-
trices compared to compliant matrices (Yano
et al. 1996; Cukierman et al. 2001; Wozniak
et al. 2003). Cells devoid of FAK lose the ability
to migrate in response to mechanical cues
(Wang et al. 2001; Li et al. 2002). FAK is also
recruited to focal adhesions in cells undergo-
ing mechanical strain within stiff 3D matrices
(Wozniak et al. 2000; Provenzano et al. 2009),
where it is necessary for subsequent mechani-
cally responsive signaling (Schober et al.
2007). Src is intimately linked to FAK function,
and has also emerged as a molecule that is

both responsive to and necessary for cellular
responses to mechanical cues (Felsenfeld et al.
1999; Frame 2004). Src and focal adhesion reg-
ulation are implicated in cellular responses to
osmotic forces (Volonte et al. 2001). Src activa-
tion has been used as an in situ mechano-
sensitive reporter, with data suggesting that
mechanical signaling to Src propogates through
the cell via both actin filaments and microtu-
bules (Wang et al. 2005).

Integrating these various signaling pathways
(Fig. 3), the model that emerges is one in which
cells pull against the ECM using Rho-ROCK-
mediated contraction of the actin cytoskeleton.
If the ECM around the cell is stiff and the cell
meets with resistance, the forces generated
result in tension across the adhesion receptors
and focal complexes. This in turn results in
adhesion strengthening, recruitment of signal-
ing molecules into the focal complexes, and
focal adhesion signaling. Moreover, a stiff ma-
trix provides enough traction that the cell is
able to spread and proliferate, or to migrate. If
the matrix is compliant, the cells will instead
deform the matrix and round up, resulting in
different signaling and phenotypic outcomes.

MECHANICAL SIGNALING REGULATES
PROLIFERATION AND DIFFERENTIATION

Signaling events related to mechanical stimuli
clearly have effects on gene expression down-
stream from these signals. A predominant out-
come found in cells of all types when they are
in rigid matrices or allowed to spread is cellular
proliferation (Chen et al. 1997; Fringer and
Grinnell 2001; Thery et al. 2005). Specifically,
mammary cells in a stiff matrix are more prolif-
erative (Wozniak et al. 2003; Paszek et al. 2005)
and up-regulate proliferative signals including
cyclin D1 (Klein et al. 2009) as well as an entire
set of genes identified as a proliferation signa-
ture in human breast carcinoma (Provenzano
et al. 2009). The pathway leading to prolifera-
tion is linked to function of MEK/ERK, as
inhibition of this pathway reverses expression of
the proliferation signature induced by rigid sub-
stratum (Assoian and Klein 2008; Provenzano
et al. 2009). Involvement of the MEK/ERK
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pathway also mediates the proliferation of fibro-
blasts cultured in a stiff matrix (Fringer and
Grinnell 2001, 2003).

In contrast to proliferation, mammary cells
within compliant matrices demonstrate growth
control, organization of glandular architecture,
and express proteins that are consistent with
a more “differentiated” phenotype (Emerman
and Pitelka 1977; Streuli et al. 1995; Wozniak
et al. 2003; Paszek et al. 2005; Provenzano
et al. 2009). For example, the expression of
b-casein, a marker of breast epithelial differen-
tiation, is coordinately regulated by both adhe-
sion to laminin and a compliant matrix (Alcaraz
et al. 2008). The polarization of the epithelial
cell is thought to drive these events, with com-
pliant matrices supporting and stiff matrices
abolishing polarity. During lactation, the
mammary epithelial cells is at its most polarized
state, as tight junction complexes close with lac-
tation, absolutely restricting transport between
the basolateral and luminal compartments of
the gland (Neville 2009). Proper lactogenesis
and signaling involves contact with the BM,
as well as the down-regulation of Rho activity
(Lee et al. 2009). The role of integrins in this
regulation is demonstrated by the finding that
inhibition of b1 integrin adhesion to the ECM
that mimics a more compliant environment
reverts the disorganized phenotype of mam-
mary carcinoma cells, resulting in restoration
of acinar structure (Weaver et al. 1997). Con-
versely, matrix cross-linking, which is associ-
ated with and enhances tumor progression,
acts to stimulate integrin signaling (Levental
et al. 2009). Compliance works in concert
with growth factor pathways to regulate cellular
proliferation and phenotype. For example,
when the ErbB2 receptor is driven to dimerize
in cells within compliant rBM, otherwise nor-
mal MECs lose growth control and proliferate
into the lumen of ascini (Muthuswamy et al.
2001). This result demonstrates that compliance
can be “overruled” by strong mitogenic signals,
but intriguingly raise the possibility that com-
pliance may also normally down-regulate these
pathways.

Given that apical/basal polarity defines epi-
thelium, the role of cell adhesion in regulating

polarity has been investigated in retinal pigment
epithelial cells using defined micro-patterned
ECM substrates that force single cells to have
patterned areas of adhesion and non-adhesion.
In this study, geometry of the ECM determined
positioning of the nucleus-centrosome com-
plex, with orientations reproducibly directed
toward cell adhesive edges. These data add the
property of ECM geometry, in concert with
composition and mechanical properties, in reg-
ulating gene expression patterns critical for cell
fate decisions (Thery et al. 2006).

CHANGES IN MAMMARY ECM DURING
NORMAL DEVELOPMENT—FOCUS ON
COLLAGEN AND FIBRONECTIN

While the mammary anlagen is formed em-
bryologically, the majority of ductal develop-
ment occurs with onset of sexual maturation
and alveolar development with pregnancy. The
mammary gland is also unique in that terminal
differentiation does not occur unless lactation
ensues, and further, with each estrous cycle,
the “immature” gland undergoes a cyclic expan-
sion followed by a modest regression phase
(Schedin et al. 2000a; Fata et al. 2001). Conse-
quently, the normal adult mammary gland
exists in many different developmental states
that vary with time.

Based on pioneering work from Mina Bis-
sell’s laboratory showing mammary epithelial
cells differentiate to a milk-secreting phenotype
when cultured on floating collagen pads (Lee
et al. 1984) or embedded in thick pads of
reconstituted basement membrane proteins
(Matrigel) (Li et al. 1987), the functional unit
of the mammary gland was defined as the epi-
thelial cell plus its ECM (Bissell and Barcellos-
Hoff 1987). A corollary to this hypothesis is
the ECM tensional requirements of the gland
would change to accommodate the distinct
demands required of the nulliparous, pregnant,
lactating, or involuting mammary epithelium.
Indeed, the microenvironment of the mammary
gland is highly dynamic as each developmental
state has a unique ECM protein signature,
and further, the responsiveness of the epithe-
lium to systemic hormones is facilitated through
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concomitant modification of the ECM (War-
burton et al. 1982; Silberstein and Daniel 1984;
Schedin et al. 2004).

A role for fibrillar collagen and thus tissue
tension in the development of the rudimentary
mammary anlagen to the fully elaborated ductal
tree was observed early on. Terminal end buds
(TEBs) are transient, mitotically active, and
motile structures that drive ductal elongation
and penetration through the mammary fat
pad. TEBS are characterized by a basement
membrane devoid of collagen-1 bundles. Colla-
gen deposition occurs along the flank of the
nascent ducts, where epithelial cell proliferation
is inhibited (Silberstein and Daniel 1982). By
implanting a slow release pellet containing
exogenous TGF-b at the tip of the growing duc-
tal tree, ductal growth was rapidly inhibited
concurrent with thick fibrillar collagen deposi-
tion around the TEBs (Silberstein and Daniel
1987). However, not only the presence, but
also the orientation of collagen is important
for proper mammary gland development.
Aligned collagen fibers are found radiating
from the terminal end bud (TEB) of the devel-
oping mammary gland just prior to the inva-
sion of the cells into the mammary fat pad
(Ingman et al. 2006). That these fibers might
assist morphogenesis of the mammary gland
is suggested by the finding that branching mor-
phogenesis follows patterns of ECM topogra-
phy in engineered matrices (Nelson et al. 2006).

To date, a relatively limited number of mam-
mary ECM proteins have been quantitatively
evaluated across gland development. Nonethe-
less, evidence that developmentally regulated
changes in mammary ECM composition result
in distinct viscoelastic and mechanical proper-
ties is compelling. Gene expression of numer-
ous collagens are differentially regulated by
reproductive state, including fibrillar collagens
type I, III, and V, bead-filament collagen VI,
FACIT family member collagen IX, and basal
lamina collagen IV (Schedin et al. 2007).
Collagen-associated proteins known to influ-
ence cross linking are similarly regulated in-
cluding elastin, fibrillin 1, decorin, lumican,
and biglycan (Schedin et al. 2007). Recently, fib-
rillar collagen deposition has been quantitated

in the rat mammary gland across the pregnancy,
lactation, and involution cycle, and the ratio of
collagen to epithelial cells differs by an order
of magnitude depending on developmental
state (O’Brien et al. 2010). The lactating gland
has very few fibrils of collagen between individ-
ual acini, an observation consistent with pre-
vious studies, demonstrating that a compliant
ECM is required for MEC differentiation in
vitro. Following weaning, high levels of fibrillar
collagen are deposited between involuting
ascini. This increase has been observed in
mouse, rat and human, suggesting the associ-
ated tensional changes are required for the
massive remodeling that occurs with involution
(Fig. 2B). In addition, numerous ECM proteins
including LN5 (Giannelli et al. 1997), entactin
(Alexander et al. 1996), FN (Schedin et al.
2000b), and collagen 1 (O’Brien et al. 2010)
are targeted for partial proteolysis during invo-
lution, which alters the viscoelastic properties of
the matrix significantly, as well as releasing
cryptic ECM fragments capable of engaging
additional integrin and non-integrin signaling
pathways (Werb et al. 1989; Schenk and Quar-
anta 2003; Mott and Werb 2004). In conclusion,
when considering the single ECM protein colla-
gen 1 and the myriad of regulatory controls
such as expression, cross linking, proteolysis,
and cellular engagement, the potential for fine
tuning mechanosignaling in the mammary
gland is evident and likely integral to tissue
function.

FN IS UNIQUELY POISED TO REGULATE
MAMMARY MECHANICAL PROPERTIES

FN is found in abundant quantities within the
normal rat mammary gland intra- and inter-
lobular stroma (Schedin et al. 2004). By Western
blot analysis, the relative abundance of FN in
mammary ECM has been compared to re-
constituted basement membrane preparations
derived from EHS tumors (Matrigel), and
mammary stroma has 50–100 fold higher levels
of FN than Matrigel (Fig. 2C) (Schedin et al.
2004). In what was somewhat of a surprise,
given that FN is not classically considered a
basal lamina protein, FN is also found in the
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highly organized and specialized mammary
basal lamina (Monaghan et al. 1983), implying
that FN can interact directly witha5b1-integrin
expressing mammary epithelial cells. Like
mammary epithelial cells themselves, FN and
a5b1-integrin expression are under endocrine
control, with expression up-regulated during
the pubertal and pregnancy windows of gland
expansion (Haslam and Woodward 2001;
Woodward et al. 2001), and precipitously
down-regulated at late pregnancy after comple-
tion of the proliferative phase, and with full
differentiation of the lactating gland (Schedin
et al. 2004). This is in contrast to mammary
LN mRNA, which appears to be constitutively
expressed across the pregnancy, lactation,
and involution cycle (Woodward et al. 2001;
Schedin et al. 2004). The in vivo FN studies
are supported by in vitro experiments where
intact FN induced proliferation, increased aci-
nar size in 3D culture, and stimulated prolifera-
tion of growth-arrested mammary epithelial
cells (Barkan et al. 2008; Williams et al. 2008).

Results from embryonic lethal FN knockout
mice demonstrating a requirement for aniso-
tropic FN fibrils in embryonic cell migration
has peaked interest in the potential role of FN
in mechanosignaling (Yang et al. 1999). Re-
cently, force generation has been identified as
the mechanism by which FN is required for
branching morphogenesis in the salivary gland
(Larsen et al. 2006). In an elegant series of ex-
periments, FN was observed to translocate dir-
ectionally by addition of new FN to the ends of
older FN fibrils. Old FN fibril accumulated at
the sites of cleft formation in a pattern consistent
with FN, driving a physical wedge between cells
at the cleft, resulting in bifurcation.

Numerous physical attributes enable fibril-
lar FN to contribute to tensional status of the
microenvironment. FN is a large approxima-
tely 440,000 kD glycoprotein consisting of two
similar 220,000 kD subunits bridged by a di-
sulfide bond. FN has a modular structure
and interacts directly with cells through two
heparin-binding domains and two distinct
RGD containing sites. Assembly of secreted
FN into fibrils appears to be nucleated through
a5b1 integrin binding, as a5b1 blocking

antibodies inhibit FN matrix formation in vitro
(Fogerty et al. 1990; Mao and Schwarzbauer
2005). It is thought that the requirement for
a5b1 permits precise tempo-spatial integration
between location of FN matrix assembly, local
tissue tension, and specific requirements of
the cell or tissue. FN fibrils also incorporate
directly into the ECM due to specific heparin,
fibrin I, fibrin II, and multiple collagen binding
domains. In fact, while fibrillar collagen for-
mation in vitro is driven by self assembly
thermodynamics, in vivo fibrillar collagen for-
mation has been demonstrated to be FN-
dependent due to a required conformational
change in FN (Kadler et al. 2008). This confor-
mational change is likely induced by contractile
forces exerted on FN by cells, as FN assembly
and thus subsequent collagen assembly is de-
pendent on Rho-mediated contractility (Zhang
et al. 1997). Evidence from biochemical studies
shows that FN directly modifies mechanical
and structural properties of collagen fibers.
The addition of FN to type I collagen prior to
collagen fibrillogenesis increases the percentage
of linear fibers and reduces the number of colla-
gen cross-links, suggesting that FN shifts the
balance towards linear collagen growth (Guar-
nieri et al. 2007). This shift correlates with a
reduction in elasticity at high FN concentra-
tions (Guarnieri et al. 2007). Recent data from
Viola Vogel’s laboratory has shown that FN
fibers display extraordinary extensibility, which
is reversible (Klotzsch et al. 2009). Further,
they demonstrate that FN extension increases
matrix rigidity and cryptic epitope exposure
(Klotzsch et al. 2009), directly implicating FN
in mechanotransduction processes (Smith
et al. 2007). Finally, bioactivity of FN fragments
was initially demonstrated in rabbit synovial
fibroblasts, where exposure to FN fragments,
but not intact FN, induced collagenase and stro-
melysin gene expression (Werb et al. 1989). FN
fragments were subsequently demonstrated to
up-regulate MMP2 activity in human breast
cancer cell lines as well as induce cell motility
and invasion (Schedin et al. 2000b). More
recently, the ability of FN fragments and a splice
variant named migration-stimulating factor
(MSF) to stimulate fibroblast migration has
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been mapped to specific sites (Schor et al. 2003).
Further, FN domains that mask the motogenic
site when FN is intact have been identified (Ellis
et al. 2010). Questions such as how matrix ten-
sion influences protease access to cryptic cleav-
age sites, and how specific FN fragments, in
turn, alter matrix tension remain intriguing
and to date, unanswered.

In summary, in the mammary gland, FN
fibers present at the epithelial cell membrane
and within the intra and inter-lobular stromal
compartment can exert influence on micro-
patterning at the cellular scale, such as actin
cytoskeleton organization, cell polarity, signal
transduction, and altered gene expression, as
well as macropatterning at the tissue level,
including matrix rigidity, collagen fiber density,
orientation, and gradient formation. Further
studies to understand the relationships between
FN fibril thickness, length, orientation, partial
proteolysis, and mechanical strength are clearly
required to more fully understand its impor-
tance in mammary epithelial cell function.

CANCER IMPLICATIONS FOR HORMONAL
CONTROL OF MATRIX ASSEMBLY

The endocrine control of FN expression and
subsequent hormone-dependent matrix assem-
bly observed in the normal mammary gland
and described above has been documented in
breast cancer cells in vitro (Quinn et al. 2009).
Additional mechanisms for ECM regulation of
estrogen signaling in breast cancer have been
reported as well. MCF-7 cells cultured on stiff
collagen 1 matrix responded to estrogen stimu-
lation with up-regulation of the Rac1/JNK/
c-Jun pathway, cyclin D1 expression, and prolif-
eration, whereas this response was significantly
dampened in cells cultured on compliant
LN (Xie and Haslam 2008). ECM regulation
of ER expression has also been reported,
with ERb expressed when MDA-MB-231 cells
are cultured on rigid plastic, and expression
lost when cultured on basal lamina proteins
collagen IV and Laminin-111 (Neubauer et al.
2009). While these studies clearly demonstrate
ECM control over endocrine responsiveness
in both normal and transformed mammary

epithelial cells, the specific role mechanosignal-
ing plays remains to be confirmed. Nonetheless,
a recurrent theme is that substrata with higher
tension correlate with increased ER signaling,
even in the absence of ligand. The implica-
tions for collagen deposition as one primary
determinant of increased breast cancer risk
associated with high mammographic density
are clear, especially since mammographic den-
sity is hormonally responsive (Boyd et al. 2009).

ECM DENSITY AND ALIGNMENT IN
TUMOR PROGRESSION

Mammographic density is associated with a
4–6 fold increased relative risk of developing
breast carcinoma and is largely associated with
an increase in stromal collagen (Boyd et al.
2001; Guo et al. 2001). While the underlying
mechanism for the risk factor is not entirely
known, it was possible that density could be
merely a co-associated risk factor, but itself
had no contribution to carcinoma. However,
recent studies suggest that density per se con-
tributes to carcinoma progression, as tumor
formation and metastasis is enhanced in the
background of a mouse mammary gland
enriched in collagen because the collagen is pro-
tease resistant (Provenzano et al. 2008b).
A collagen-rich ECM is mechanically stiffer
(Paszek et al. 2005; Provenzano et al. 2009),
and this will promote the pro-tumorigenic
changes in signaling and gene expression dis-
cussed above. While it is not currently known
whether ECM stiffness is an initiating event in
mammary carcinoma, this possibility is consis-
tent with the fact that normal MECs cultured
on stiff substratum activate proliferation genes
and oncogenic signaling pathways such as
ERK (Paszek et al. 2005; Provenzano et al. 2009).

During breast carcinoma progression,
additional ECM deposition, or desmoplasia,
occurs and is associated with a poorer predicted
outcome (Walker 2001). In a study of triple-
negative breast carcinomas, it was found that
fibrosis was associated with distant metastasis
(Kreike et al. 2007). Not only does the total
amount of ECM components increase, but the
anisotropy of the ECM also increases. Collagen
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fibers thicken and straighten during tumor pro-
gression, and ultimately align perpendicular to
the tumor boundary concordant with tumor
invasion (Fig. 4) (Provenzano et al. 2006). These
changes, termed “Tumor Associated Collagen
Signatures” (TACS) manifest in specific ways
during mammary tumor progression in mice
(Provenzano et al. 2006). Changes in collagen
fiber organization may be due in part to FN as
described above or to an increase in the inter-
molecular cross-links between collagen fibers.
Lysyl oxidase, which catalyzes collagen cross-
links, is increased during tumor progression
(Peyrol et al. 1997; Decitre et al. 1998; Kirsch-
mann et al. 1999). Cross-linking is expected to
make the ECM stiffer, and therefore would
have consequences for mechanosignaling.

Studies in vitro help to suggest mechanisms
by which collagen might become aligned in
vivo. Collagen fibers are aligned when subjected

to externally applied mechanical load (Vader
et al. 2009). The load placed on collagen fibers
by cellular contractility can also align the
collagen in a Rho-ROCK-myosin-dependent
manner (Provenzano et al. 2009). This result
suggests that tumor cells themselves may help
set up the matrix alignment associated with
cellular invasion. Alignment of the ECM may
occur during the process of cell invasion, as
mammary carcinoma cells invading through
3D collagen matrices can simultaneously move
and align collagen fibers (Wolf et al. 2007).

Carcinoma-associated fibroblasts (CAFs)
also contribute to the ECM changes that accom-
pany tumor progression. CAFs differ from
normal mammary fibroblasts in their ability
to promote cellular proliferation and tumor
progression (Olumi et al. 1999; Orimo et al.
2005; Orimo and Weinberg 2006). In addition
to the mechanisms discussed above for a5b1

A C

B

E

TACS-2 D TACS-3 

T

T

Figure 4. Collagen alignment facilitates invasion. (A) Parallel alignment of collagen fibers (arrows) around a
non-invasive tumor (T), imaged in a live mammary tumor ex vivo by multiphoton laser scanning microscopy
and second harmonic generation (SHG) to image collagen. (B) Diagram of TACS-2 (example in A), in which
collagen fibers are denoted by tan-colored lines. (C) Perpendicular alignment of collagen fibers (arrows) at a
tumor (T) boundary, which is depicted by the red line. (Panel reprinted from Provenzano et al. 2006 with per-
mission from BioMed Central Ltd.# 2006.) Live tumor was imaged as in A. (D) Diagram of TACS-3 (example in
C), with cells invading out from the tumor along aligned collagen fibers. (E) Human T47D breast carcinoma
cells (yellow) aligns relative to collagen fibers (green) within an engineered collagen matrix. The orientation
of collagen fibers is depicted by the arrow. Live cell in matrix was imaged as in A.
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integrin-mediated FN deposition, there is also a
role for the cell-surface proteoglycan, syndecan-
1 (Sdc-1), which is expressed on CAFs but not
on normal mammary fibroblasts (Su et al.
2007). Sdc-1 expressing fibroblasts promote
tumor progression in vivo, and lead to a desmo-
plastic stroma (Maeda et al. 2006). The signal
that induces CAFs to express Sdc-1 in mam-
mary stroma is not yet known, but may be a
response of fibroblasts to matrix density or early
desmoplasia, as mechanical strain induces
Sdc-1 expression in smooth muscle cells (Julien
et al. 2007). Since FN can scaffold and direct
collagen fiber assembly (Kadler et al. 2008), it
is likely that the aligned matrix observed near
tumors is due, at least in part, to the role of
CAFs. Physiologically regulated changes in FN
fibrillogenesis, as discussed above, may inadver-
tently provide signals for Sdc-I expression and
anisotropic FN assembly by CAFs. Relevance
to cancer progression is suggested, as FN is a
classic marker of epithelial to mesenchymal
transition (EMT) as well as mammary cancer
initiating cells (Mani et al. 2008).

CELL INVASION AND
MECHANOSIGNALING

Aligned matrices found near tumors are not
only a sign of a reactive stroma, but likely act
to facilitate tumor cell invasion. Carcinoma cells
preferentially invade along aligned fibers, ver-
sus randomly organized fibers (Provenzano
et al. 2008c). Elegant intra-vital imaging dem-
onstrates that mammary carcinoma cells tra-
verse along radial collagen fibers in vivo
(Wyckoff et al. 2004). It is intriguing that tumor
cells may have co-opted the normal process of
TEB invasion that occurs along aligned fibers
in the developing mammary gland (see above)
(Ingman et al. 2006). In addition to carcinoma
cells, fibroblasts and myeloid cells also demon-
strate increased migration proximal to the
tumor (Egeblad et al. 2008), suggesting that
the local increase in ECM deposition and align-
ment may serve to recruit additional stromal
cells. This is significant for metastasis, as macro-
phages promote the local invasion of tumor
cells and their extravasation into blood vessels

(Goswami et al. 2005). Moreover, the produc-
tion of an aligned matrix may be facilitated by
macrophages (Ingman et al. 2006). Among the
many areas that are currently understudied,
the question of how collagen fibers are oriented
with respect to the involuting mammary epi-
thelium is of intense interest, given the rela-
tionships between collagen fiber orientation
(O’Brien et al. 2010), cancer metastasis, and
the poor prognosis of breast cancers diagnosed
in the post-partum window (Lyons et al. 2009;
O’Brien et al. 2010). Further research separating
roles of collagen deposition from alignment
is highlighted by recent evidence showing that
collagen levels increase in mammary glands of
rats treated with doses of tamoxifen that prevent
tumor progression, in part due to decreased
MMP activity (Hattar et al. 2009).

The precise mechanisms by which cells rec-
ognize and migrate along aligned ECMs are not
fully known. In vitro, cells preferentially migrate
along stiffer substrata in a manner dependent
on mechanical signaling through FAK, as FAK-
depleted cells lose their preference for stiff
substrata and will migrate as well on compliant
surfaces (Wang et al. 2001). A role for FAK in
tumor cell invasion in vivo was recently dem-
onstrated by four independent groups (Lahlou
et al. 2007; Provenzano et al. 2008a; Pylayeva
et al. 2009). Tumors can arise in the FAK-/-
mouse mammary epithelium, but are largely
non-invasive hyperplasias (Lahlou et al. 2007;
Provenzano et al. 2008a). Interestingly, this
points to a specific role for FAK in the epithe-
lium, as these animals have normal FAK expres-
sion in the stromal compartment (Provenzano
et al. 2008a).

Recent findings suggest that specific cyto-
skeletal regulators, including Arp2/3, cofilin,
and vinculin, are associated with an invasive
phenotype (Wang et al. 2004). An intriguing
possibility is that expression of these molecules
in invasive tumors reflects a role in sensing
ECM stiffness or alignment. A recent exciting
finding is the identification of splice variants
of the actin-organizing protein, Mena, that are
specifically up-regulated in breast carcinoma
cells and that increase invasion in 3D matrices
(Philippar et al. 2008; Goswami et al. 2009).
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Mena serves to alter the branching of the actin
cytoskeleton, and regulates migration of several
cell types (Bear et al. 2001). Mena is also
implicated in regulation of adherens junctions
(Vasioukhin and Fuchs 2001), suggesting an
important role in epithelial polarity as well.
Moreover, the expression of several cytoskele-
tal-regulating proteins is altered in non-invasive
FAK-/- mammary carcinoma cells (Provenzano
et al. 2008a). Because of the role of actin-myosin
contractility in sensing matrix stiffness, mole-
cules that regulate the cytoskeleton may con-
tribute to invasion along aligned matrices.

SUMMARY

While it is understood that the extracellular
microenvironment around normal tissues af-
fects cellular behavior, more recently it has
become clear that the ECM serves not only scaf-
folding and biochemical functions, but also
affects the mechanical environment. The dem-
onstration that cells within the mammary
gland respond to changes in the stiffness of their
environment points to an important role for
cellular force and mechanosignaling events in
the normal development and differentiation of
the gland at puberty, pregnancy, lactation, and
involution. The complexity and potential for
fine-tuning of tissue tension is highlighted by
the distinct yet interconnected roles of ECM
deposition, alignment, cross-linking, and par-
tial proteolysis. Moreover, force also plays an
important role in tumor progression, as stiff
matrices are associated with increased risk of
breast carcinoma, and promote cellular pro-
liferation as well as progression. In addition to
a general increase in the deposition of ECM
components with cancer progression, colla-
gen and fibronectin are deposited as aligned
matrices with various levels of cross-linking
and proteolysis that provide preferred surfaces
on which carcinoma cells invade, thus pro-
moting breast cancer metastasis. As our under-
standing of mechanical signaling events evolves,
we may find novel means by which to predict
outcome and hopefully target breast carcinoma
progression.
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