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Abstract
Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile
properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian
NM II isoforms have both overlapping and unique properties. Owing to its position downstream of
convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and
tissue architecture. Recent insight into the role of NM II in these processes has been gained from
loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion
dynamics and the discovery of NM II mutations that cause monogenic diseases.

Myosins constitute a superfamily of motor proteins that play important parts in several cellular
processes that require force and translocation1–3. Recent analyses of genomic databases have
yielded an increasing number of myosin classes in eukaryotic cells4,5. Myosin molecules can
walk along, propel the sliding of or produce tension on actin filaments. This requires energy,
which is provided by the hydrolysis of ATP, and requires myosins to have catalytic sites with
ATPase activity. Myosin catalytic sites are usually found in the amino-terminal (head) region
of the molecule, and they are often activated when myosin binds to actin. The carboxy-terminal
region of some myosins binds to and moves cargo in a cell, whereas the C-terminal domains
of other myosins self-associate into filaments, which allows their heads to tether actin filaments
and exert tension. Myosins can also act indirectly through actin to bring adhesion-related
proteins, such as integrins, or signal transduction molecules into close proximity2,3.

Most myosins belong to class II and, together with actin, make up the major contractile proteins
of cardiac, skeletal and smooth muscle, in which the sliding crossbridges that connect thick
myosin filaments with thin actin filaments provide the force to, for example, pump blood, lift
objects and expel babies6,7. Importantly, myosin II molecules that resemble their muscle
counterparts, with respect to both structure and function, are also present in all non-muscle
eukaryotic cells8–11. Like muscle myosin II, non-muscle myosin II (NM II) molecules are
comprised of three pairs of peptides: two heavy chains of 230 kDa, two 20 kDa regulatory light
chains (RLCs) that regulate NM II activity and two 17 kDa essential light chains (ELCs) that
stabilize the heavy chain structure (FIG. 1a). Although these myosins are referred to as ‘non-
muscle’ myosin IIs to distinguish them from their muscle counterparts, they are also present
in muscle cells, where they have distinct functions during skeletal muscle development and
differentiation12, as well as in the maintenance of tension in smooth muscle13,14.
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NM II has a fundamental role in processes that require cellular reshaping and movement, such
as cell adhesion, cell migration and cell division. NM II can use its actin cross-linking and
contractile functions, which are regulated by phosphorylation and the ability of NM II to form
filaments, to regulate the actin cytoskeleton.

In this Review, we provide an overview of the structure and regulation of NM II, with emphasis
on its central role in cell adhesion and cell migration, and also outline the relationship between
NM II mutations and disease.

Domain structure of NM II
The two globular head domains of NM II contain a binding site for both ATP and actin and
they are followed by neck regions, each of which binds the two functionally different light
chains. The neck domain acts as a lever arm to amplify head rotation while the chemical energy
of ATP is converted into the mechanical movement of the myosin head1. This neck domain is
followed by a long α-helical coiled coil, which forms an extended rod-shaped domain that
effects dimerization between the heavy chains and terminates in a relatively short non-helical
tail (FIG. 1a). The rod domains of NM II self-associate to form bipolar filaments (anti-parallel
arrays of myosin molecules), which are considerably smaller than those found in cardiac and
skeletal muscle15,16 (FIG. 1b).

Three different genes in mammalian cells (myosin heavy chain 9 (MYH9), MYH10 and
MYH14) encode the NM II heavy chain (NMHC II) proteins (NMHC IIA, NMHC IIb and
NMHC IIC, respectively), although there is only one NMHC II gene, zipper, in Drosophila
melanogaster17. We refer to the whole myosin II molecule (heavy chains and light chains) as
NM II and the heavy chains alone as NMHCs. The NMHC isoform determines the NM II
isoform, which are named NM IIA, NM IIB or NM IIC, accordingly. For NM II motors to
retain their normal, native and active conformations, the light chains must be bound to the
heavy chains. Deletion of a specific NMHC II results in the loss of that NM II isoform.

The mammalian heavy chain pre-mRNAs that are transcribed in humans and mice from
MYH10 and MYH14 undergo alternative splicing, predominantly in neuronal tissue, which
increases the total number of expressed NMHC II proteins to nine18. Although there is evidence
for alternative splicing of the MYH9 transcripts at locations homologous to those in MYH10
and MYH14, it is not known whether these transcripts are translated19. The light chains are
encoded by a different set of genes, which can also undergo alternative splicing, and there is
currently no known specificity of light chains for particular NMHC IIs. The two light chain
pairs are very tightly, but non-covalently, bound to α-helical stretches of each heavy chain.
Despite having a high degree of homology, particularly in their actin-binding globular heads,
the myosin isoforms are spatially segregated in some areas of cells, but clearly overlap in
others20,21. As detailed below, some cellular functions are isoform-specific, whereas others
are redundant22,23.

The short, non-helical tails of NMHC II proteins differ sufficiently among the three mammalian
isoforms that peptides can be synthesized to mimic these sequences for the generation of
isoform-specific antibodies24. There is no evidence for heterodimer formation between the
three NMHC II isoforms, and when immunoprecipitation experiments are performed on a
mixture of isoforms with specific antibodies only the antibody-specific isoform is detected24.
Two important kinetic properties that differ among the NM II isoforms are the actin-activated
Mg2+-ATPase activity (the increase in ATP hydrolysis by myosin when bound to actin) and
the duty ratio (the time that myosin is bound to actin in a force-generating state). NM IIA has
the highest rate of ATP hydrolysis of the three NM II isoforms and it propels actin filaments
more rapidly than NM IIB and NM IIC25. NM IIb has a significantly higher duty ratio than
NM IIA26,27. NM IIB also has an extremely high affinity for ADP when compared to other
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myosins, and the release of ADP from NM IIB is markedly slowed by backward strain on the
myosin head (the force exerted on myosin heads by the actin filaments, opposite to the direction
of myosin head movement)28. Thus, NM IIB is particularly well suited to exert tension on
actin filaments for longer periods of time and with less expenditure of energy than NM IIA.
Indeed, NM IIB has recently been shown to play an ancillary role in smooth muscle contraction,
in which it may be responsible for a portion of the tension maintenance during tonic
contractions13. These differences in kinetic properties between NM IIA and NM IIB might
help to explain why expressing NMHC IIA under the control of the endogenous MYH10
promoter can rescue some, but not all, of the abnormalities found in NM IIB-ablated mice29.

Whereas the different enzymatic and motor activities of NM IIs reside in their N-terminal
domain, the C-terminal rod and non-helical tail determine the assembly of myosin filaments
and the intracellular localization of the NM II isoforms. Two assembly-competent domains in
the NM IIb rod that have a crucial role in filament formation30, and two regions in the NM IIb
rod that are involved in isoform-specific filament assembly, have been identified31.

Experiments using chimaeras of NM IIA and NM IIB have shown that the intracellular
localization of these isoforms is determined by the C-terminal 179–190 amino acids, which
contain one of the assembly-competent domains and the non-helical tail32,33.

Regulation of NM II activity
In contrast to skeletal and cardiac myosins, which are regulated by a separate set of proteins
that are bound to the actin filaments, the regulation of Mg2+-ATP hydrolysis and filament
formation of NM II involves the reversible phosphorylation of specific amino acids present in
the pair of 20 kDa RLCs and the heavy chains. The function of the ELC pair is to stabilize the
NMHC and there is no evidence that they undergo reversible phosphorylation.

Regulation of NM II by RLC phosphorylation
The regulation of NM IIA, NM IIB, NM IIC and smooth muscle myosin, but not cardiac or
mammalian skeletal muscle myosin, depends on the reversible phosphorylation of the RLC on
ser19. This phosphorylation event greatly increases the Mg2+-ATPase activity of myosin in
the presence of actin34 by controlling the conformation of the myosin heads35. However,
phosphorylation has little or no effect on the affinity of myosin for actin36. Thr18 can also be
phosphorylated, and diphosphorylation of the RLC on ser19 and Thr18 often occurs in cultured
cells37. The additional phosphorylation of Thr18 in the presence of phosphorylated ser19
(REF. 38) further increases the total actin-activated Mg2+-ATPase activity at sub-saturating
actin concentrations, but does not affect the myosin vmax (the maximal actin-activ ated Mg2+-
ATPase activity of myosin at saturating actin concentrations) or the rate of movement of actin
filaments in vitro39.

There is compelling evidence from in vitro experiments that phosphorylation of the RLC also
regulates the assembly of NM II filaments40. In the presence of ATP, unphosphorylated NM
II folds into a compact conformation, in which one head blocks the second head of the same
molecule through an asymmetrical interaction (FIG. 1a; assembly-incompetent form)35,41–
44. The tail also folds at two points and interacts with the heads to further compact the molecule
and prevent filament assembly. Phosphorylation of RLCs disrupts the head–head and head–
tail interactions and causes the compact, faster sedimenting (10s) molecule to form an elongated
slower sedimenting (6s) species (FIG. 1a), which forms bipolar filaments at physiological ionic
strengths (FIG. 1b). Although these dramatic changes can be demonstrated in solution, there
is no firm evidence that they occur in vivo. The formation of assemblies comprising 14–20
myosin molecules in bipolar filaments promotes the interaction of myosin filaments with actin
filaments (FIG. 1b).
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More than a dozen kinases have been reported to phosphorylate the RLCs of NM II (FIG. 2),
including myosin light chain kinase (MLCK; also known as MYLK), Rho-associated, coiled
coil-containing kinase (ROCK), citron kinase, leucine zipper interacting kinase (ZIPK; also
known as DAPK3) and myotonic dystrophy kinase-related CDC42-binding kinase (MRCK;
also known as CDC42bP)6,34,45,46. These kinases phosphorylate RLCs on ser19, Thr18 or
both, to relieve the inhibition imposed on the myosin molecule by unphosphorylated RLCs
and the head–head interaction outlined above. However, the activating signals for these kinases
differ. Ca2+–calmodulin activates MLCK, which seems to be specific for the NM II RLCs,
whereas the small GTP-binding protein RHOA activates ROCK and citron kinase. unlike
MLCK, ROCK and citron kinase phosphorylate several substrates in addition to the RLCs of
NM II. For example, although ROCK can phosphorylate RLCs directly, it primarily acts to
inhibit the major myosin phosphatase, protein phosphatase 1 (PP1), which is responsible for
the dephosphorylation of NM II47. Phosphorylation of the regulatory subunit myosin
phosphatase-targeting sub unit 1 (MYPT1; also known as PPP1R12A) of this trimeric
phosphatase inactivates the enzymatic activity, resulting in increased NM II phosphorylation
and activation. MLCK, at least in some cells, is more peripherally localized, wherase ROCK
is more central48,49. This differential localization means that the actomyosin structures in the
cell centre (such as stress fibres and mature focal adhesions) are much more stable than those
at the periphery, which are more responsive to upstream stimuli. Protein kinase C (PKC) differs
from the above kinases in that it phosphorylates RLCs on ser1, ser2 and Thr9, which renders
the RLC a poorer substrate for MLCK and therefore decreases the activity of NM II50 (FIG.
2). For example, PKC phosphorylation of the RLC on ser1 or ser2 initiated by stimulation of
platelet-derived growth factor receptor inhibits NM II activity to promote the reorganization
of actomyosin filaments51. As noted below, in addition to phosphorylating the RLCs, PKC
also phosphorylates the heavy chains.

Regulation of NM II by NMHC phosphorylation
Although phosphorylation of NMHC II plays an important part in regulating the activity of
Dictyostelium discoideum myosin II (reviewed in REF. 52), the roles in regulating the structure
and activity of mammalian NM II are still being defined. There are several phosphorylation
sites near the C-termini of NMHCs, in both the coiled-coil domain and the non-helical tail,
including sites that are phosphorylated by PKC53, casein kinase II (CK II)54 and transient
receptor potential melastatin 7 (TRPM7)55 (FIG. 2; see below). In each case phosphorylation
of the NMHC either dissociates myosin filaments or prevents their formation in vitro. A number
of laboratories have reported that ser1917 in rat NMHC IIA (equivalent to ser1916 in human
NMHC IIA) is phosphorylated by PKC, and phosphorylation of this site by PKCβ correlates
with exocytosis in mast cells56,57. ser1943 in the non-helical NMHC tail is a substrate for
phosphorylation by CK II, and phosphorylation of this residue, or of ser1917 by PKC, inhibits
the assembly of NM IIA rods into filaments54.

Phosphorylation of NM IIA also affects the binding of s100A4 (also known as MTs1) to the
NMHC. This protein, which is a member of the s100 family of Ca2+-binding proteins, promotes
the invasion of metastatic tumour cells. binding of s100A4 to NMHC IIA prevents filament
formation, but s100A4–NMHC IIA binding is blocked by the phosphorylation of ser1943 by
CK II58. An alpha kinase from the same family as D. discoideum NMHC kinase A, TRPM7,
and its close homologue TRPM6, phosphorylate NM IIB and NM IIC at several sites in the
non-helical tails59. Although the effects of these phosphorylation events on filament assembly
have not yet been studied, the more specific phosphorylations catalysed by TRPM7 in the
helical portion of the rod in NM IIA at Thr1800, ser1803 and ser1808 seem to decrease filament
formation and alter the subcellular localization of NM IIA55. As yet, there is no evidence for
the endogenous phosphorylation of these sites.
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Phosphorylation of NM IIB by aPKCζ, which is regulated by p21-activated kinase 1 (PAK1),
was studied in a prostate cancer cell line. This phosphorylation, which occurs on ser1937 in
the non-helical tail region of NMHC IIB, is stimulated by epidermal growth factor (EGF) and
leads to slower filament assembly in cultured cells53. Recently, phosphorylation of both the
non-helical tail and the rod of the NMHC has been reported for NM IIC. Phosphorylation
increases the solubility of NM IIC and also has an effect on cellular localization60. Thus, it is
clear that considerable regulation of NM II occurs through phosphorylation of the heavy chains,
particularly in the tail region (FIG. 2). The continued characterization of the roles of these
different phosphorylation events on NM II function and isoform-specific regulation should
produce important new insights.

NM II in cell migration, adhesion and polarity
NM II is an important regulator of adhesion and polarity in cell migration. These processes
involve the dynamic remodelling of the actin cytoskeleton and the interaction of the cell with
its environment. Each of the NM II isoforms affects these processes differently, as discussed
below.

NM II regulates protrusion and cell migration
In migrating cells, actin organizes into several distinct structures and its polymerization in
cellular protrusions drives cell migration. Protrusions generally contain two actin-based
structures: the lamellipodium and the lamellum61. Different classes of regulatory molecules
organize actin in these two structures. The actin nucleator Arp2/3 generates the lamellipodium.
In vitro, Arp2/3 binds to the sides of actin filaments and generates branches at a fixed angle
(70°) to form a dendritic network62. However, the in vivo data are still under debate. A recent
study has reported actin filaments with variable angles (15°–90°) in the lamellipodium, which
challenges the dendritic network notion63. The relative positioning of the lamellipodium and
the lamellum is also unclear. It was recently proposed that these two actin networks overlap at
the leading edge, with the lamellipodium superimposed onto the lamellum64, but a more
traditional view is that the lamellipodium is spatially anterior to the lamellum61. In the
lamellum, actin filaments coalesce into thicker bundles (FIG. 3a). The lamellipodium and the
lamellum are kinetically different: the lamelli podium is distinguished by a fast retrograde flow
of actin, whereas the lamellum exhibits slower retrograde flow. The convergent zone between
the two is characterized by active depolymerization of the dendritic network and the
reorganization of actin64,65 (FIG. 3b).

NM II does not reside in or seem to play a part in the physical organization of the lamellipodium,
but it can affect the net rate of cellular protrusion22,64,66 (FIG. 3b). When NM II is knocked
out, knocked down by small interfering RNA or inhibited with blebbistatin, large actin bundles
are not observed in the lamellum, whereas the lamellipodium remains intact64. In many cells,
advancement of the protrusion is interrupted by NM II-generated pauses67 that are absent when
myosin is inhibited or deleted22.

one hypothesis for the role of NM II in protrusion formation is that NM II generates the
retrograde flow of actin in the lamellum, which is connected to the lamellipodium64,68 (FIG.
3b). Inhibition of NM II activity with blebbistatin, or genetic deletion of NM II, greatly
decreases the rate of actin retrograde flow in the lamellum64,66 and inhibits coalescence of
actin into proto-bundles at the lamellipodium–lamellum interface69,70, which increases
protrusiveness22,66,71 (FIG. 3b). NM II-generated retrograde flow counters the actin
polymerization-mediated advancement of the leading edge and thereby reduces the observed
protrusion rate. Thus, periodic contractions of the lamellipodium could cyclically inhibit the
protrusion rate. In this model, the protrusion rate is the difference between the actin
polymerization and the retrograde flow rates. Adhesion modulates this balance by coupling

Vicente-Manzanares et al. Page 5

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.uniprot.org/uniprot/Q13153
http://www.uniprot.org/uniprot/P01133


actin to the substratum, thereby creating traction points that counter actin retrograde flow72.
such a mechanism presumably increases the rate of protrusion by diverting the forces created
by the retrograde flow of the actin to the substratum. Thus, the linkage between actin and the
substratum constitutes a ‘molecular clutch’. These observations, first made in neuronal growth
cones but later extended to many other cell types, constitute the clutch hypothesis72–74, which
integrates adhesion, retrograde flow and actin polymerization.

NM II in integrin-mediated adhesion
NM II is dispensable for the assembly and disassembly of nascent adhesions inside the
lamellipodium75,76. However, it is required for their subsequent maturation, which involves
elongation and growth. Adhesions mature along thin actin bundles that originate near the
transition zone at the lamellipodium and lamellum interface75 (FIG. 3b). The probability that
a nascent adhesion in the lamellipodium matures, rather than disassembles, seems to depend
on the level of active NM II75. However, the mechanism by which adhesions elongate and
grow, and how NM II mediates this maturation, is not completely understood. The actin
bundling function of NM II seems to be sufficient, at least for the initial stages of adhesion
maturation, because motor-deficient NM II mutants that still bind to actin support growth and
elongation of adhesions75.

An integrin–actin linkage translates the effect of NM II to adhesions and mediates adhesion
formation and maturation. Different adhesion proteins seem to participate in this linkage,
including α-actinin, vinculin and talin (FIG. 4). There are two non-exclusive hypotheses for
how NM II mediates adhesion maturation. one is that NM II bundles actin filaments, and as a
consequence adhesion proteins at the ends of these actin filaments are brought together and
clustered. This increases molecular inter actions between adhesion proteins and results in
increased integrin avidity (the combined strength of multiple integrin–ligand interactions) and
signalling. For example, the actomyosin-driven binding of vinculin to talin induces integrin
clustering77. The second hypothesis is that NM II-generated force induces conformational
changes that expose cryptic binding or activation sites in key adhesion components78–80.
Talin, an actin–integrin linkage protein, binds vinculin when mechanically stretched79 and is
required to translate NM II-generated forces to the substratum81 (FIG. 4). The adhesion scaffold
protein CRK-associated substrate (p130CAS; also known as BCAR1) is also activated when
stretched78. Furthermore, both ends of the adhesive linkage respond to force. Fibronectin
undergoes conformational changes induced by mechanical force that result in the exposure of
its cryptic sites82, and integrins are activated by tension80. Finally, NM II itself can also undergo
force-dependent conformational changes83. Interestingly, the force-dependent modulation of
mechanoreactive NM II molecules also impinges on other signalling molecules that are not
mechanosensitive themselves. It has recently been proposed that NM II also controls EGF-
induced paxillin phosphorylation and its subsequent dephosphorylation, which regulates
cellular protrusion and retraction84. In addition, zyxin associates and dissociates from
adhesions in response to extracellular forces85, and focal adhesion kinase (FAK), a prominent
adhesion-associated tyrosine kinase, is required for durotaxis (that is, the tendency of cells to
migrate towards stiffer substrates)86.

NM II is also an integral part of the cellular response to mechanical stimulation. It reacts to
mechanical stimuli through cellular signalling pathways that regulate its activation. In this way,
NM II provides a convergence point for external and cell-generated forces. For example,
application of external forces produces post-translational modifications such as
phosphorylation, or conformational changes in different signalling molecules, which inhibit
protrusion formation and lead to adhesion maturation and actin filament bundling87.
Conversely, cells in which NM II is inhibited do not respond to external forces88. In addition,
cells sense substrate pliability, in part through the activation of NM II by RLC
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phosphorylation89,90. When cells are plated on low-pliability substrates, NM II activation is
low, actin is not highly bundled and adhesions are small. As rigidity increases, NM II activation
increases, actin is visibly bundled and adhesions become large and elongated.

Adhesive signalling in NM II activation
NM II influences adhesive signalling through clustering and/or conformational changes, but
adhesive signalling also controls NM II activation (FIG. 4). For example, integrin activation
induces Tyr phosphorylation of the adhesion adaptor paxillin on Tyr31 and Tyr118 and of FAK
on Tyr397. These phosphorylations trigger the activation and recruitment to adhesions of
signalling intermediates such as the p130CAS–CRK and G protein-coupled receptor kinase
interacting ArfGAP (GIT)–β-Pix (also known as ARHGEF7) complexes, relaying activation
signals to Rho GTPases, particularly Rac (reviewed in REFS 91–93). Among other functions,
Rac triggers actin polymerization through the Arp2/3 complex and also inhibits NM II
activation (FIG. 4). other signalling pathways activated by adhesion have the opposite effect
and promote NM II activation through RHOA94,95. Rac is activated by signals generated in
small adhesions close to the leading edge that actively undergo turnover and reassemble.
RHOA activation mediates actin filament formation and adhesion maturation as the protrusion
moves away and the adhesions become more central. This induces further activation of NM II
and the coalescence of thick actomyosin bundles. During adhesion maturation, Rac signalling
decreases and RHOA-mediated activation of NM II increases, which results in enhanced
actomyosin bundling87,89,96.

NM II is a dual regulator of protrusion, through its effects on actin retrograde flow and
adhesion-generated signalling22,66. Increased activation of NM II results in large actin bundles
and stable adhesions, decreased signalling to Rac and decreased protrusion. Lower levels of
active NM II result in less actin bundling and increased protrusion. This can explain, in part,
the underlying differences in migration among different cell types. Specifically, highly
migratory cells such as leukocytes do not exhibit large adhesions97, probably reflecting low
levels of NM II activation or an intrinsic inability to re arrange their actin cytoskeleton into
large bundles, whereas slow moving cells such as fibroblasts have adhesions that tend to mature
into large, elongated structures as a result of NM II activation and robust actin bundling.

NM II activation promotes adhesion maturation through its actin bundling and contractile
activities. Cycles of Rac and Rho activation inactivate and activate NM II, resulting in
protrusion and actin bundling, respectively. The role of NM II in adhesion depends on its ability
to exert force on adhesions, even though it is not physically present in the adhesions but attaches
to the actin bundles with which adhesions are associated22. Thus, NM II influences adhesion
from a distance.

NM II determines the polarity of migrating cell
Directional migration requires an initial symmetry break and the polarization of the migratory
machinery. There is strong evidence that NM II contractility initiates symmetry breaking by
forming the prospective rear of the cell98–100, which allows for protrusion to occur at the
opposite end. The signals leading to specification of the cell rear and protrusion are spatially
segregated101.

The leading protrusion resides at the cell front, and the cell rear often adopts a defined
morphology, such as flat and parallel to the leading edge in keratocytes, or lagging and
triangular in some fibroblasts. The molecular composition and organization of these front and
rear compartments is distinct102, particularly with regards to the actin cytoskeleton and the
adhesions in these regions. The tail region is usually comprised of larger actin filament bundles
that support adhesion disassembly and retraction of the rear, and large, stable adhesions that
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do not signal to Rac. By contrast, adhesions at the front are smaller and more dynamic and
mediate robust Rac signalling, which drives protrusion.

NM II activation is essential for the formation of a defined rear compartment. NM II localizes
to the posterior part of migrating leukocytes and D. discoideum103,104. Here, it creates stable
adhesions and highly bundled actin, which prevent protrusion and thereby generate non-
protrusive areas that constitute the sides and the trailing edge of the migrating cell33,98.

In migrating fibroblasts, the NM II isoforms have different roles in cell polarization. NM IIA
is dynamic and assembles actomyosin bundles in protrusions22,66. By contrast, NM IIB
incorporates into preformed actin bundles and remains stationary, defining the centre and rear
of the migrating cell33. In this manner, the cooperative functions of NM IIA and NM IIB induce
big, non-dynamic actomyosin structures that define the non-protrusive parts of the cell (the
centre and the trailing edge), whereas dynamic filaments in protruding regions of the cell are
comprised of NM IIA alone33. NM IIA specifically mediates retraction of the trailing edge
during migration105 (FIG. 3c). When NM IIA is inhibited, cells become elongated owing to
their failure to retract105,106.

In addition to differences in actin and adhesion organization and function, the position of the
nucleus, the microtubule-organizing centre (MTOC) and the Golgi apparatus are also hallmarks
of migratory cell polarization. The MTOC and Golgi apparatus reposition in front of the nucleus
towards the direction of protrusion107. Data from experiments in which NM II activity was
inhibited by blebbistatin reveal that NM II also regulates nucleus repositioning108 (FIG. 3d).
NM IIB seems to play a prominent part in nuclear dynamics during migration as cells depleted
of NM IIB exhibit multidirectional protrusions109, lack a clear front and back, have a
mislocalized Golgi and MTOC, exhibit inappropriate rotation of the nucleus and fail to
reposition the nucleus properly during polarized migration22. One hypothesis is that NM IIB
directly anchors the perinuclear actin at the nucleus by interacting with nuclear transmembrane
receptors such as nesprins, which are involved in nuclear redistribution during cell
migration110,111. Another possibility is that NM IIB provides tension or structural rigidity to
the perinuclear actin and this force prevents inappropriate rotation of the nucleus and moves
it forwards (FIG. 3d).

NM II in cell–cell adhesion and morphogenesis
NM II is not only pivotal in controlling integrin-mediated adhesion and migration, it also
regulates epithelial cell adhesion, polarization and morphogenesis. Well-defined cell–cell
junctions are a key feature of epithelial sheets and represent a different type of adhesive
structure that is controlled by NM II. Although these cell–cell junctions use cadherins as the
main adhesion receptors, they contain scaffolds and signalling intermediates analogous to those
found in integrin-mediated complexes. In aggregates, epithelial cells have apical and
basolateral regions as well as integrin-based adhesions to the extracellular matrix (ECM) at
the basal surface (FIG. 5). Epithelial cell sheets can move as multicellular cohorts, with the
leading cells showing protrusions and the trailing cells retracting, or they can detach from the
sheet and move away as single cells. In free edges of the sheet, the migrating cells undergo a
polarity switch from apicobasal (FIG. 5) to front–back (FIG. 3).

NM II controls the formation and stability of the cell–cell junctions. NM IIA is required for
cadherin clustering112,113 (FIG. 5) and the stability of the cell–cell junction. The initiation of
the contact is driven by actin polymerization114, and NM II-driven contractility mediates the
later stages of contact formation (compaction). Active RHOA and phosphorylated RLCs
localize to the periphery of the junction and drive the contraction and compaction of the cell–
cell contact114 (FIG. 5). RHOA activation, which activates NM II, also mediates contact
inhibition of movement (that is, the inhibition of protrusion by cell–cell contact)115. NM IIA
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probably plays a similar part during the formation of T cell–antigen-presenting cell conjugates
in antigenic presentation116.

NM II-driven mechanisms also govern the three-dimensional organization of epithelial tissues.
In three dimensions, the force applied to a single cell is potentially multi-directional, rather
than planar or one-dimensional. The rigidity of the cellular microenvironment is crucial. There
is much evidence that NM II is part of the mechanism by which the cell both generates and
responds to force. Three dimensional responses have been studied in Xenopus laevis and D.
melanogaster during early embryonic development and organogenesis. In both systems, the
same general principles of regulation of NM II apply. In D. melanogaster, NM II (NMHC
encoded by zipper) is activated by phosphorylation of the RLCs (encoded by spaghetti
squash), which is under the control of Rho kinase (ROK)117–119. NM II is also implicated in
epithelial processes involving contraction, such as gastrulation120, trachea formation121,122,
ventral furrow formation123,124, dorsal closure117 and morphogenesis of the vertebrate neural
tube124–126, as well as in the re organization of cell contacts in the plane of the epithelium
during convergent extension127,128. In D. melanogaster eye imaginal disc formation,
morphogenetic signalling is under the control of Hedgehog, which activates NM II through the
RHOA–ROK pathway129.

Finally, NM II provides the tension and traction that cells use to form and remodel a functional
ECM during tissue morphogenesis and wound repair. This includes NM II-powered collagen
fibre remodelling130 and fibronectin fibrillogenesis82,131. Recently, a link between cell–cell
contact organization and fibrillogenesis was proposed. Actomyosin reorganization driven by
cadherins translates into ECM remodelling through integrins, suggesting that cadherin-
generated signals regulate integrin activation by modulating cytoskeletal tension132 (FIG. 5).

NM II mutations and disease
An early indication that NM IIA, NM IIB and NM IIC have different roles during development
came from studies in mice showing that disruption of the genes encoding the heavy chains of
these proteins (MYH9, MYH10 and MYH14, respectively) leads to different phenotypes.
NMHC IIA germline-ablated mice fail to form a polarized visceral endoderm and show defects
in cell–cell adhesion that result in death by embryonic day (E) 6.5, before organ
formation133. Mice in which NMHC IIB has been deleted or mutated survive to E14.5 and
show cardiac and brain defects, which reflects the enrichment of the NM IIB isoform in these
organs in wild-type mice134,135. As noted below, the brain defects were due to failures in
both cell adhesion and cell migration.

To decipher the role of NM II in adhesion and migration, several investigators used mutants
that mimic the mutations found in humans in MYH9 and MYH14 and expressed the mutant
NMHC IIA and NMHC IIC proteins in mice, D. melanogaster and cultured cells. To date,
almost 40 mutations in NMHC IIA, distributed among the head and rod domains, have been
reported to cause MYH9-related diseases136 (TABLE 1). All of the patients with these diseases
were heterozygous for MYH9 mutations. one of the most common abnormalities in patients
with MYH9-related diseases is associated with dysfunction of the blood platelets, which play
an important part in blood clotting and clot retraction, and affected patients suffer from
macrothrombocytopenia. Platelets from patients with mutated NM IIA have an abnormal
cytoskeletal composition and fail to form and/or reorganize cytoskeletal structures on
stimulation with the thrombin receptor activating peptide137. The initial shape change and
internal contraction of the platelets following stimulation requires NM IIA activity, which in
turn is activated by RLC phosphorylation138,139. Baculoviral-expressed catalytic fragments
(heavy meromyosins) of NM IIA mutants that mimic the human mutations in the motor domain
(N93K and R702C in NMHC IIA), have a reduced actin-activated Mg2+-ATPase activity and
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an inability to translocate actin filaments in vitro140. It is therefore likely that impairment of
NM IIA motor function contributes to the platelet defects in these patients.

Both haploinsufficiency and the ability of mutant myosin to interfere with wild-type myosin
(dominant-negative effects) have been proposed as mechanisms by which mutated NM IIA
leads to MYH9-related diseases. A reduction in wild-type NM IIA, accompanied by no or very
low levels of the mutant form of NM IIA, has been observed in platelets and their precursors
(megakaryocytes) from patients with MYH9-related diseases. However, both
haploinsufficiency and dominant-negative effects have been reported in different tissues from
the same patient. Haploinsufficiency was shown to be the mechanism by which mutated NM
IIA leads to MYH9-related diseases in platelets, and dominant-negative effects were shown to
be the mechanism in granulocytes141,142. Mice with NM IIA specifically ablated from
megakaryocytes have thrombocytopenia with large platelets similar to those in patients with
MYH9-related diseases, as well as defects in cytoskeletal reorganization143,144.

So far there have been no reports of mutations in MYH10, which encodes NMHC IIB,
associated with human disease. To establish a putative mouse model for such diseases, mice
carrying the R709C mutation in NMHC IIB (a homologue of the R702C mutation in human
NMHC IIA) have been generated145. Homozygous mutant mice die by E14.5 and show major
morphogenetic defects, including a failure to close the ventral body wall, resulting in a cleft
palate, ectopia cordis and a large omphalocele, as well as defects in heart and diaphragm
development (X.M. and R.S.A., unpublished observations). These abnormalities are
reminiscent of a rare human syndrome known as Pentalogy of Cantrell146.

Mice ablated for NM IIB, in contrast to mice with point mutations in NMHC IIB, develop
hydrocephalus (in which circulation of the cerebral spinal fluid is blocked), one of the most
common congenital diseases that affects humans (1–3 per 1,000 live births). This is because
loss of NM IIB causes disruption of apical cell–cell adhesion of the neuroepithelial cells that
border the spinal canal147. Interestingly, this phenotype can be rescued by expression of the
NMHC IIB point mutant R709C, which has a motor that is deficient in enzyme activity, or by
using gene substitution to replace NM IIB with NM IIA29,147. NM IIA is normally not
detected in the neuroepithelial apical adhesion complex and demonstrates markedly increased
enzymatic motor properties compared with NM IIB, as well as a decreased duty ratio (see
above). Therefore it is likely that the structural properties of NM IIB, rather than its enzymatic
motor activity, are essential for maintaining the integrity of cell–cell adhesion in the
neuroepithelial cells that line the spinal canal10.

Finally, five mutations in MYH14, which encodes NMHC IIC, have been reported to occur in
both the myosin head and tail domains. All of these mutations result in deafness148,149. The
in vivo function of NM IIC is largely unknown and mice ablated for NM IIC show no obvious
abnormalities (X.M. and R.S.A., unpublished observations).

The pathophysiological roles of NM II are still not fully understood. Although there is no
evidence for heterodimer formation among the NMHC isoforms, there is evidence for
colocalization of NM II isoforms in filaments. This raises the interesting possibility that a
mutant isoform might interfere with a second (or third) wild-type isoform.

Studies from genetically manipulated mouse models demonstrate that NM II is involved in
cell–cell adhesion and cell migration in vivo. In maintaining the integrity of cell–cell adhesions,
NM IIA and NM IIB are functionally interchangeable and this function seems to be independent
of their actin-activated Mg2+-ATPase motor activity. In driving cell migration, however, the
ATPase activity of the myosin motor is essential and NM IIA and NM IIB cannot substitute
for each other.
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Concluding remarks
Through its effects on actin bundling and contractility, NM II acts as a master integrator of the
processes that drive cell migration and adhesion. It is also an important end point on which
many signalling pathways converge, largely through Rho GTPases. NM II itself is tightly
regulated at different levels, including at the level of folding, myosin filament assembly and
disassembly, actin binding and ATPase and motor activity. The regulation of the actin
cytoskeleton by NM II controls multiple interrelated processes, such as migration, cell–cell
and cell–matrix adhesion, cell differentiation, tissue morphogenesis and development.
Furthermore, NM II is at one end of the regulatory feedback loops that control the activation
of NM II’s own upstream signalling pathways, including the conformational activation of
adhesion molecules and actin organization. The importance of NM II is highlighted by the
profound and varied physiological effects of genetic deletion of NM II isoforms in animal
models and the high number of naturally occurring mutations in the genes encoding the NMHC
II proteins that cause human disease.

The recent interest in the cellular and tissue functions of NM II has produced many revealing
and insightful observations, although many basic and translational questions remain. For
example, the spatiotemporal regulation of NM II by subcellular localization and activation of
its regulating kinases in different cells and tissues has important ramifications in controlling
the NM II function but needs further investigation. Emerging evidence strongly indicates that
mechanical forces probably remodel the tumour cell microenvironment through NM II to affect
tumour progression and metastasis150, but the precise mechanism by which NM II responds
to and generates the microenvironment remains to be elucidated. In addition, the notion that
NM II is a central integrator of external force during cell and tissue differentiation, as well as
migration, opens up the possibility of manipulating both the rigidity of the microenvironment
and the expression and activation of NM II to guide cell proliferation and differentiation during
tissue regeneration and stem cell transplantation. In this way, the manipulation of NM II and
its regulators constitutes a potentially valuable approach in regenerative medicine.
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Glossary

Actin filament A strand of polymerized globular actin subunits that winds
around another strand to form a helix. Actin filaments are one
of the three major cytoskeletal elements of a cell, along with
microtubules and intermediate filaments.

Integrin One of a large family of heterodimeric transmembrane
proteins that functions as a receptor for ECM or cell adhesion
molecules.

Coiled coil A structural domain that can mediate oligomerization. The
myosin coiled-coil rod domain contains two α-helices that
twist around each other to form a supercoil.

Tonic contractions Sustained muscular contractions that develop slowly and
show a prolonged phase of relaxation.

Actomyosin filaments Produced when bipolar myosin filaments interact with
polymerized actin filaments to exert tension or produce
movement.

Lamellipodium A 1–2 µm-wide band that is made up of a network of dendritic
actin filaments and forms the outer edge of a cell protrusion.

Lamellum The cell region immediately behind the lamellipodium,
characterized by the absence of dendritic actin and the
presence of longer, bundled actin filaments and slow
retrograde flow.

Blebbistatin A small-molecule inhibitor with high affinity for myosin II
that blocks myosin in an actin-detached state.

Pliability The mechanical properties of the cellular environment. The
environment can show low pliability (that is, be elastic or
compliant) or high pliability (that is, be rigid or stiff).

Microtubule-organizing
centre

A eukaryotic cell structure from which microtubules emanate.
During mitosis, the MTOC organizes the mitotic spindle.

Cadherin A member of a family of type I transmembrane receptors that
mediate cell–cell adhesion through homophilic interactions.

Convergent extension A phase of gastrulation in which layers of cells intercalate
(converge) and become longer (extend). Extension is driven
by a rearrangement of the cells of the ventral part of the
epithelium, which converge towards the ventral midline.

Fibrillogenesis A cell-induced reorganization of the surrounding ECM
molecules into bundled fibres.

Macrothrombocytopenia A condition that is characterized by enlarged blood platelets
that are approximately the size of red blood cells, are reduced
in number and result in prolonged bleeding times.

Haploinsufficiency A state in which the loss of only one allele of a gene detectably
disables the encoded protein’s function.

Ectopia cordis A congenital displacement of the heart outside the thoracic
cavity and chest wall.
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Omphalocele A protrusion that occurs at birth, whereby part of the intestine
protrudes through a large defect in the abdominal wall at the
umbilicus.
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Figure 1. Domain structure of NM II
a | The subunit and domain structure of non-muscle myosin II (NM II), which forms a dimer
through interactions between the α-helical coiled-coil rod domains. The globular head domain
contains the actin-binding regions and the enzymatic Mg2+-ATPase motor domains. The
essential light chains (ELCs) and the regulatory light chains (RLCs) bind to the heavy chains
at the lever arms that link the head and rod domains. In the absence of RLC phosphorylation,
NM II forms a compact molecule through a head to tail interaction. This results in an assembly-
incompetent form (10S; left) that is unable to associate with other NM II dimers. On RLC
phosphorylation, the 10S structure unfolds and becomes an assembly-competent form (6S).
S-1 is a fragment of NM II that contains the motor domain and neck but lacks the rod domain
and is unable to dimerize. Heavy meromyosin (HMM) is a fragment that contains the motor
domain, neck and enough of the rod to effect dimerization. b | NM II molecules assemble into
bipolar filaments through interactions between their rod domains. These filaments bind to actin
through their head domains and the ATPase activity of the head enables a conformational
change that moves actin filaments in an anti-parallel manner. Bipolar myosin filaments link
actin filaments together in thick bundles that form cellular structures such as stress fibres.
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Figure 2. Regulation of NM II activation and filament formation
Multiple kinases, including myosin light chain kinase (MLCK; also known as MYLK), Rho-
associated, coiled coil-containing kinase (ROCK), citron kinase, myotonic dystrophy kinase-
related CDC42-binding kinase (MRCK; also known as CDC42BP) and leucine zipper
interacting kinase (ZIPK; also known as DAPK3) can phosphorylate the regulatory light chain
(RLC) of non-muscle myosin II (NM II) on Ser19 or on Thr18 and Ser19 to activate it. Protein
kinase C (PKC) can phosphorylate the RLC on Ser1, Ser2 and Thr9 to inhibit NM II. Human
RLC is encoded by myosin light chain 9 (MYL9). In addition to RLC phosphorylation, NM II
filament assembly is regulated by phosphorylation of the NM II heavy chain (NMHC II) coiled-
coil and tail domains. The phosphorylation sites and the corresponding kinases, including
transient receptor potential melastatin 7 (TRPM7), PKC proteins and casein kinase II (CK II),
are shown for human NMHC IIA, NMHC IIB and NMHC IIC. Phosphorylation of NMHC II
by CK II blocks the binding of S100A4 (also known as MTS1) to the tail of NM II to prevent
it from inhibiting myosin filament assembly. Human NMHC IIA is encoded by myosin heavy
chain 9 (MYH9), NMHC IIB is encoded by MYH10 and NMHC IIC is encoded by MYH14.
Note that each phosphorylation site and the kinase that phosphorylates it are depicted in the
same colour.
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Figure 3. Multiple roles of NM II in cell migration
a | A polarized, migrating fibroblast. Areas of the cell in which non-muscle myosin II (NM II)
has an active role are boxed and expanded in parts b– d. b | NM II regulates retrograde flow
in the lamellum and promotes adhesion maturation, thereby limiting protrusion. Nascent
adhesions form in the lamellipodium, in which dendritic actin branching mediated by the
Arp2/3 complex also occurs. At the lamellipodium–lamellum interface, actin is depolymerized
or bundled and adhesions disassemble or mature. A schematic of adhesions maturing in the
lamellum is also shown. NM II localizes to actin bundles contacting growing adhesions,
forming a striated pattern with α-actinin. In other cells, such as in neuronal growth cones, NM
II may have a more direct role controlling retrograde flow in the peripheral zone151. c | NM II
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participates in adhesion disassembly at the rear of the cell. NM IIA-mediated contraction,
calpain-dependent cleavage of adhesion components and microtubule targeting coordinately
induce adhesion disassembly. d | NM II has a role in nuclear positioning and orienting the
microtubule-organizing centre (MTOC) and Golgi, which are important for cell polarization.
NM II is thought to act in concert with the CDC42–partitioning defective 3 (PAR3) or PAR6–
protein kinase Cζ (PKCζ) –glycogen synthase kinase 3 (GSK3) pathway to polarize the cell.
Myotonic dystrophy kinase-related CDC42-binding kinase (MRCK; also known as CDC42BP)
activates NM II and regulates its effect on nucleus repositioning. APC, adenomatous polyposis
coli; DIAPH1, diaphanous 1; EB1, end binding protein 1 (also known as MAPRE1).
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Figure 4. NM II in integrin-mediated adhesion
Integrins that are bound to the extracellular matrix (ECM) are linked to the actin cytoskeleton
through an actin linkage that is formed by multiple molecules, including talin, vinculin and α-
actinin. Kinases such as focal adhesion kinase (FAK) and Src, and adaptors such as paxillin,
are also recruited and trigger the downstream activation of Rho GTPases such as Rac through
adaptor and activating proteins. Representative pathways and associations are shown,
including the activation of Rac through paxillin by the CRK-associated substrate (p130CAS;
also known as BCAR1)–CRK–dedicator of cytokinesis 1 (DOCK1; also known as DOCK180)
and G protein-coupled receptor kinase interacting ArfGAP (GIT)–β−Pix (also known as
ARHGEF7) pathways. Activated Rac induces actin polymerization through the Arp2/3
complex, which can also interact with some of the molecules of the actin linkage, such as
vinculin and FAK. Rac is also thought to locally inhibit NM II activation. The activation of
RhoGEFs by integrins, and the subsequent activation of RHOA and Rho-associated, coiled
coil-containing kinase (ROCK), activates NM II. ROCK activates NM II directly by
phosphorylating the regulatory light chains (RLCs) or by inactivating myosin phosphatase,
which in turn promotes RLC dephosphorylation. The pathways are spatially and temporally
regulated. Additionally, the activation and inactivation of NM II itself affects adhesive
signalling by triggering conformational changes in the mechanoresponsive molecules shown
(pink boxes), which induces the clustering of the indicated adhesion proteins (blue boxes) by
reinforcing or weakening the linkage of the adhesion and the actin cytoskeleton. AM, adaptor
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module; MYPT1, myosin phosphatase-targeting subunit 1 (also known as PPP1R12A); PP1,
protein phosphatase 1.
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Figure 5. Roles of NM II in epithelial cell polarization
The different roles of non-muscle myosin II (NM II) in epithelial cell polarization. NM II is
involved in apical constriction (step 1), which leads to important morphogenic movements
such as dorsal closure (closure of the epidermis over the amnioserosa during embryogenesis)
in Drosophila melanogaster. In addition, NM II regulates nuclear positioning (step 2), in a
similar manner to how it does this in fibroblasts (see FIG 3). NM II and RHOA signalling also
stabilize cell–cell contacts by reinforcing them through actin cross-linking (known as contact
compaction; step 3). The initial contacts are formed as a result of Rac-driven actin
polymerization, but NM IIA is required for contact formation and reinforcement and cadherin
clustering. NM II also mediates crosstalk between homophilic cadherin contact-initiated
signalling and extracellular matrix (ECM) remodelling triggered by integrin activation and
clustering (step 4).
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Table 1

The 39 MYH9 mutations associated with MYH9-related diseases*

Exon Mutation clinical features (in addition to
macrothrombocytopenia)

Head

Exon 1 W33C and P35A152 or A95T Döhle-like inclusions‡

N93K Döhle-like inclusions and deafness

S96L Deafness and nephritis

Exon 10 K373N§ Döhle-like inclusions

Exon 16 R702C Döhle-like inclusions, deafness, nephritis and
cataracts

R702H Deafness and nephritis

R705H Deafness

Q706E or R718W|| Döhle-like inclusions

Rod

Exon 24 G1055_Q1068del153 Döhle-like inclusions, deafness and nephritis

E1066_A1072del Döhle-like inclusions, deafness and cataracts

E1066_A1072dup154 Döhle-like inclusions and cataracts

E1084del153 Döhle-like inclusions

Exon 25 V1092_R1162del or
T1155A||

Döhle-like inclusions

S1114P Nephritis

T1155I Döhle-like inclusions, deafness and nephritis

Exon 26 R1165C Döhle-like inclusions, deafness and cataracts

R1165L Döhle-like inclusions, deafness and nephritis

L1205_Q1207del Döhle-like inclusions

Exon 30 R1400W Nephritis

D1424Y, D1424N, D1447V||
or D1447H

Döhle-like inclusions

D1424H Döhle-like inclusions, deafness, nephritis and
cataracts

K910Q and D1424H155 Döhle-like inclusions, deafness, nephritis and
hypertension

Exon 31 V1516L Döhle-like inclusions

Exon 37 I1816V Döhle-like inclusions and nephritis

Exon 38 E1841K Döhle-like inclusions, deafness, nephritis and
cataracts

Exon 40 G1924fs or D1925fs¶ Döhle-like inclusions

Non-helical tail

Exon 40 P1927fs, R1933fs|| or
D1941fs

Döhle-like inclusions

R1933X Döhle-like inclusions and nephritis
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Exon Mutation clinical features (in addition to
macrothrombocytopenia)

E1945X Döhle-like inclusions and deafness

*
See also REF. 136.

‡
Basophilic spindle-shaped inclusion bodies in the granulocytes.

§
Originally reported as K371N.

||
Clinical features listed are based on common findings for myosin heavy chain 9 (MYH9)-related diseases, but were not described in the reference.

¶
Deletion of two different nucleotides both cause D1925fs. del, deletion; dup, duplication; fs, frame shift.
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