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Abstract
Cancer cells exist in a constantly evolving tissue microenvironment of diverse cell types within a
proteinaceous extracellular matrix. As tumors evolve, the physical forces within this complex
microenvironment change, with pleiotropic effects on both cell- and tissue-level behaviors. Recent
work suggests that these biomechanical factors direct tissue development and modulate tissue
homeostasis, and, when altered, critically influence tumor evolution. In this review, we discuss the
biomechanical regulation of cell and tissue homeostasis from the molecular, cellular and tissue
levels, including how modifications of this physical dialogue could contribute to cancer etiology.
Because of the broad impact of biomechanical factors on cell and tissue functions, an
understanding of tumor evolution from the biomechanical perspective should improve risk
assessment, clinical diagnosis and the efficacy of cancer treatment.

1. TUMOR EVOLUTION WITHIN A BIOMECHANICAL CONTEXT
Tumors are composed of a heterogeneous collection of cells surrounded by various soluble
factors and an evolving extracellular matrix (ECM). In addition to the roles of genetic and
biochemical events in tumor development, recent studies support the notion that
biomechanical factors also critically direct tissue development, sculpt tissue organization
and maintain tissue homeostasis 1. Central to this assumption is the concept that every tissue
component (e.g. cells, proteins) is a biomaterial possessing unique mechanical properties
that respond specifically to various physical forces. Mechanical inputs, such as tumor
expansion leading to tissue compression and increased interstitial pressure, can increase both
cell and tissue tension within the confined stroma, leading to the release, concentration and
activation of various growth factors, ultimately assisting in tumor progression 2,3.
Additionally, within the tumor, oncogene-mediated alterations in cellular actomyosin
contractility and RhoGTPase activity can compromise cell-cell junction integrity to destroy
tissue polarity and promote cell invasion while ECM remodeling and stiffening drive
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integrin clustering and actin remodeling to re-enforce focal adhesions. Taken together, these
alterations enhance intracellular growth factor receptor signaling within the increased
extracellular pool of activated growth factors, drive tumor cell growth and survival, and
confer tumor drug resistance 4–6.

In this review, the effects of cell and tissue level forces on tissue behavior are discussed,
with recent studies on the role of mechanics in tumor development and evolution
highlighted. Because the composition and organization of tumors is continuously evolving,
the influence of cell and tissue architecture on the material properties and physical behavior
at the molecular, cellular and tissue levels are discussed. Finally, the clinical implications of
current research on tumor mechanics, as well as future research directions, are discussed.

2. TISSUE MECHANICS AND MECHANOTRANSDUCTION
Cells and tissues experience various physical forces, which can be classified as externally
applied or cell-generated. These physical forces can directly and indirectly affect many
fundamental biological processes and, in turn, contribute to normal physiological and
pathological phenomena. The direct impact of these forces on the cells and tissues subjected
to these cues include displacement, deformation, and an alteration of tissue morphology and
organization. For example, externally applied compression force can deform the ECM and
decrease the interstitial space, which alters the transport and distribution of soluble factors
within the ECM thereby modifying cell behavior 7. Indirect effects of mechanical force on
tissues include changes in levels and/or activity of various growth, differentiation and
motility regulators, as well as ECM remodeling. The specificity of these force-induced
effects can depend on the direction of the force (e.g. tension, compression and shear forces,
see Glossary) as well as its magnitude and duration. For instance, transient tensile forces up-
regulate TGF- 1 expression in smooth muscle cells whereas constant tensile forces up-
regulate both TGF- 1 and collagen I expression 8. Dynamic loading (Glossary) increases
MMP-9 (Matrix metalloproteinase-9) in fibroblasts whereas static loading up-regulates
MMP-2 9. Hydrostatic pressure decreases cell proliferation and increases hyaluronan
production 10.

Importantly, cells can actively generate forces through multiple mechanisms including Rho-
dependent actin-myosin contraction and actin assembly, and transmit these forces through
cell-cell and cell-ECM interactions. These cell-generated forces contribute to the branching
morphogenesis of both embryonic lungs and cultured epithelial cell cysts, facilitate blood
vessel "sprouting" (angiogenesis), and influence convergent extension during embryonic
development 11–13. Accumulating data demonstrate that cell-generated forces play broad
roles in regulating cell survival, growth, migration and differentiation, as well as cell-cell
and cell-ECM communication and the spatial organization of cells and tissues 14. Externally
applied and cell-generated forces do not operate independently within normal tissues and
instead are typically balanced through multiple mechanisms. This orchestrated behavior
helps to maintain cell and tissue structure and homeostasis. To facilitate our understanding
of how externally applied and cell-generated forces are transmitted in both normal
physiological and pathological conditions, the basic concepts of the common mechanical
properties of cells and tissues are reviewed below.

Mechanical properties of tissues, cells and ECM
Tissues are composed of multiple cell types, various ECM proteins and other constituents,
each with unique mechanical characteristics such as elasticity, plasticity, viscosity, tensile
strength and stiffness (Glossary). These physical properties collectively define the material
properties of the tissue and dictate how the tissue responds to mechanical cues and how it
will sense and transmit force. Specifically, the elasticity and stiffness of cells and tissues
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have been implicated in cancer biology. Methods such as tissue level tensile, compression
and shear testing, and cellular and subcellular level atomic force microscopy (AFM) have
been employed to measure these properties. These techniques have yielded valuable
information that demonstrates the unique mechanical properties of each cell type that are
reflected in its function, cellular origin and microenvironment (Table 1). These parameters
allow the monitoring of differentiation or activation status of cells, as well as a method of
assessing the state of disease progression.

The viscoelasticity of a tissue is dictated by its ECM and individual cellular constituents.
Differences in the elastic moduli of various cell types or cellular states are partly due to
structural variations in the cytoskeletal elements including filamentous actin, intermediate
filaments and microtubules, and their organization 15. In response to biochemical and
biomechanical cues from their local environment (e.g. ECM and adjacent interacting cells),
cells can tune their elastic moduli by altering their transmembrane receptors, intracellular
cytoskeletal organization, actomyosin contraction and cytoskeletal tension, and remodel the
local microenvironment to achieve mechanical equilibrium (Figure 1). This active
adaptation to the rigidity of the environment also contributes to the elasticity of a cell 16,17.
Cellular elasticity and cell-generated forces are therefore closely related; the intracellular
and extracellular mechano-responsive elements are linked by these dynamic and reciprocal
conversations (Figure 1). Together, the extracellular and intracellular forces, the mechano-
responsive elements, their mechanical properties and the cross-talk with intracellular
signaling pathways maintain mechanical equilibrium and regulate diverse cellular behaviors
such as adhesion, spreading, receptor signaling, gene expression and extracellular
microenvironment remodeling 7. This mechanical regulatory paradigm is essential for
normal tissue structure and function, as demonstrated by the fact that tissue-specific cells
often prefer mechanical microenvironments that closely mimic those of their native tissues
such as the improved growth of CNS neurites in neurite and glial cell co-cultures and the
morphogenesis of normal mammary epithelial cells on soft matrices 18–20.

Mechano-sensing and transduction
To respond to a mechanical stimulus, the cell must possess elements capable of responding
to the applied force and translating this mechanical information into a biochemical signal.
These cellular mechano-signaling pathways often overlap, feed into, and are themselves
regulated by biochemical cascades. Several mechano-sensors that respond to different
magnitudes and types of force have been identified, including highly specialized structures
such as the mechano-sensory apparatus of the auditory hair bundle and the primary cilia in
tubular epithelial cells 21,22. Biochemical signaling can be initiated by force-induced
conformational changes and exposure of functional sites of signaling proteins (e.g. tension-
induced conformation changes in fibronectin, intracellular talin and membrane ion channels)
(Figure 2A) 23–25. Alternatively, intracellular signaling cascades can be activated by force-
mediated alterations in membrane curvature, tension, and the distribution of membrane
signaling molecules as seen with the transactivation of Ephrin receptors 26 and with integrin
clustering 27 (Figure 2B). Cells can also sense force via cell-cell junctions deformed by
mechanical forces, leading to a global remodeling of their cytoskeletal filaments (Figure 2C)
28,29. Many of these mechano-sensitive mechanisms operate concurrently, overlapping and
interacting with simultaneously occurring biochemical pathways. When these mechano-
sensing and transudation events at cellular and subcellular level are coordinated at the
multicellular and organ levels, they contribute to tissue and organ functions, such as wound
closure and muscle contraction (Figure 2, D and E).
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3. DYNAMIC DIALOGUE BETWEEN BIOMECHANICAL AND BIOLOGICAL
SIGNALING DURING TUMOR EVOLUTION

Normal tissue structure is disrupted during tumor initiation and progression. The
microenvironment becomes both mechanically and biologically active, highlighted by
continuous and progressive remodeling of the tumor mass and the stromal compartments.
Within the tumor mass, the transformation of tumor cells is accompanied by increased cell
division, reduced apoptosis, loss of tissue polarity, and alterations in the composition and
organization of extracellular matrix components. Adjacent to the tumor mass, the tumor
stroma assists tumor development via multiple stromal cells, ECM molecules, soluble
factors and the circulatory systems (blood and lymphatic vessels). Tumor-associated stromal
cells, including fibroblasts, myofibroblasts, endothelial cells, mesenchymal stem cells,
inflammatory cells and immune cells are often recruited, locally differentiated or activated
during different tumor development stages. These cells actively participate in ECM
remodeling and tumor angiogenesis, providing growth factors and chemokines that promote
tumor growth and metastasis 30,31. The non-cellular components of the tumor stroma, such
as collagens, fibronectin, tenascin and proteoglycans, can be abnormally expressed and
remodeled, resulting in new biochemical and mechanical signals 32. Soluble signals,
produced by tumor or stromal cells, released from cleaved ECM molecules and delivered
from the circulatory system, can re-distribute within this tumor stromal compartment and
regulate cell functions and ECM composition during tumor progression 32.

Different from the well-maintained tissue homeostasis and mechanical equilibrium in
normal physiological conditions, the loss of growth control and the disrupted tissue structure
and organization during tumor evolution lead to unbalanced physical forces and altered
material properties of each tumor component. As the behavior, structure and organization of
tumors are continuously changing as the cancer evolves, the mechanical state in a tumor also
evolves as the tumor develops (Figure 3). In breast cancer, the mechanical characteristics in
a hyperplasia, carcinoma in situ, invasive lesion and metastasis lesion can be very different.
A hyperplastic lesion typically involves the loss of normal cell polarization and
organization, cell-cell contacts and cell-ECM interactions, which result in altered cellular
tension and mechano-sensing and transduction 33,34. Increased matrix deposition, cell
proliferation and altered cell tension in hyperplastic lesions also result in the thickening and
remodeling of the basement membrane (BM) architecture (Figure 3A) 35. Carcinoma in situ
is characterized by active cell growth within an intact BM and interstitial ECM. This
uncontrolled cell growth confined by an intact BM leads to a restricted tumor volume
expansion and corresponding reaction forces within the various BM and stromal components
36–38. In turn, the resistance of the BM and ECM to the expanding tumor mass leads to
compression of the tumor mass 39. Simultaneously, ECM remodeling, as a consequence of
tumor compression and stromal reaction, results in altered mechanical properties of the
ECM that can further increase cell-generated forces and cell tension (Figure 3B) 40. In
advanced carcinoma in situ lesions, intra-tumor pressure can be further elevated due to
hypoxia and necrosis. Tumor and stromal cells secrete soluble factors, facilitating matrix
remodeling and angiogenesis 41. Inefficient transport and dense ECM networks result in
further increases in interstitial fluid pressure within the tumor 42. Increased interstitial flow
due to blood vessel and BM permeability in the tumor microenvironment can promote TGF-
dependent myofibroblast differentiation 43. In invasive tumors, cell-cell interactions further
decrease and intracellular contractility increases, leading to the dissemination of tumor cells
from the tumor mass and invasion through the BM and interstitial ECM. Invading cells are
accompanied by non-transformed stromal cells (e.g. fibroblasts, macophages) and migrate
through a progressively stiffened ECM and bio-chemical gradients towards the circulatory
system 44–47. Various mechanical forces, such as interstitial compression and shear,
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interstitial fluidic pressure and ECM stiffness can critically influence the rate and direction
of tumor cell migration (Figure 3C) 48. During intravasation, transportation (in the
bloodstream or lymphatic flow) and extravasation, tumor cells are exposed to shear forces
from adjacent cells and hydrodynamic flow. These shear forces assist tumor cell transport
and facilitate interactions with leukocytes and endothelial cells to permit extravasation
(Figure 3D) 49. Cancer cells display organ-specific metastasis which can depend on the
intrinsic genetics of the tumor cells, the affinity of tissues to host a metastatic lesion and the
pattern of circulation within the tissue 50–52. Additionally, different organs exhibit very
different mechanical properties (e.g. lung is soft whereas bone is very stiff). Since cells can
selectively grow on and within specific substrates according to their mechanical properties,
organ-specific mechanical properties may contribute to the preferential migration,
attachment, survival and proliferation of cancer cells in specific organs (Figure 3E and 3F)
(Table 1) 48,53–55.

Influence of the ECM and tumor cell biomechanics on tumor progression
ECM mechanics broadly impact cell transcription, cell cycle control, cell-cell interactions,
cell differentiation and migration. The mechanical influences of the ECM in tumor
progression directly depend on the ECM composition, structure and organization, as well as
the mechanical dialogue with intracellular mechano-responsive elements and cell generated
forces (Figure 1) 32,56,57. Recent work demonstrates that breast tumor progression is often
accompanied by increased deposition, cross-linking and de-regulated cleavage of type I
collagen 58. This collagen remodeling is largely due to the increased expression and activity
of various enzymes (lysyl oxidase, transglutaminase and MMPs) in the active tumor stroma
40,59–62. Increased collagen cross-linking and resulting tissue stiffening intensify the
biomechanical feedback in breast tissue and promote breast tumor progression 40. Disrupting
this feedback by targeting the cross-linking of fibrillar collagen through inhibition of the
enzyme lysyl oxidase could delay both malignant transformation and tumor progression
(Figure 4) 40. In addition, cell migration can be guided by the gradient of ECM stiffness
(“durotaxis”) 63,64, indicating such a gradient may serve as an important cue leading the
directional migration of cancer cells in the interstitial ECM toward the intravasation sites.
Other ECM proteins, such as fibronectin, tenasin, decorin, fibromodulin, lumican, and
osteopontin, are also involved in tumor development and modify the mechanical properties
of the ECM; however, their roles in tumor mechanics and tumor development have yet to be
clarified 32,65–67.

Growth factors bound by the ECM can be released and activated by mechanical
perturbation. For example, mechanical stretch or contraction of the ECM can release ECM-
bound TGF- into the extracellular space, increasing the availability of active TGF- 3,68.
TGF- plays a key role during tumor progression; it is a strong chemoattractant for both
monocytes and macrophages, a stimulant for pro-angiogenic factors such as bFGF (basic
Fibroblast Growth Factor), MCP-1 (Monocyte Chemotactic Protein-1), TNF- (Tumor
necrosis factor ) and IL-1 (Interleukin-1 ), an activator of ECM remodeling enzymes, a
potent activating and differentiating signal for stromal fibroblasts, and a key regulator of the
modes of cancer cell motility 69,70. Fibroblasts differentiated into myofibroblasts are able to
generate stronger adhesions and greater cellular contractility, which, in turn, increase ECM
tension, remodeling, and deposition that potentiate the further release of TGF- from the
ECM 68. Indeed, TGF- signaling and myofibroblast differentiation associate with invasive
human breast cancers, implying that the initiation of mechanical signaling by TGF- may be
very important in tumor development. Similarly, the expression and release of other factors,
such as PDGF (platelet-derived growth factor), VEGF (vascular endothelial growth factor)
and bFGF, which are also involved in tumor cell growth, angiogenesis, cell invasion, and
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matrix deposition, can also be regulated by mechanical loading and mechanical properties of
substrates 71–74.

Tumor cells exhibit very different mechanical properties than their normal counterparts
(Table 1). Studies with isolated cancer cells suggest that they become increasingly compliant
as they transform, such that highly metastatic tumor cells are less stiff than normal cells
75,76. However, this point is still under contention as all of these measurements were
conducted in culture and the apparent viscoelasticity of living cells in situ and in isolation
can be very different. Indeed, the viscoelasticity of living cells can be substantially modified
by many factors present in the context of a three-dimensional tissue including heterotypic
cell-cell interactions, localized effects of the vasculature and the ECM. In this respect,
isolated cancer cells are hypersensitive to substrate stiffness 20,54,77 and exhibit elevated
actomyosin-generated contractility when compared to matched normal cells 20. The
increased cell contractility exhibited by tumor cells is mediated by increased activation of
MLCK (myosin light chain kinase) and acto-myosin contraction through elevated Rho
GTPase activity and EGFR signaling (Figure 1). Pharmacologically or genetically inhibiting
these pathways is sufficient to reduce cell tension and normalize tumor tissue phenotype 20.
These results suggest that the intrinsic adhesion and cytoskeletal behavior of cancer cells
that participate in their tension behavior contribute to their tumor phenotype. This means
that enhanced mechano-responsiveness coupled with increased stiffening of the tissue ECM
could contribute to the progressive and incremental stiffening of tumor cells in situ (Lopez
et al., unpublished). Conversely, inhibiting cell or ECM tension may inhibit tumor
progression 40. Notably, ECM stiffness varies quite dramatically within the same tumor and
ECM organization is non-uniform, providing a provocative explanation for some of the
variability noted in tumor cell behavior within a cancerous tissue in vivo (Table 1) 40 (Lopez
et al., unpublished). The discrepancy between in situ analysis and those studies using
isolated tumor cells underscores the influences of the tissue microenvironment on cellular
mechanical properties and the intrinsic differences of the mechanical properties between
transformed and normal cells.

Importantly, the stromal cells associated with tumors also exhibit changes in their
viscoelastic properties as tumors progress. Activated, highly contractile myofibroblasts,
which frequently appear quite early during tumor progression, are stiffer than their non-
malignant counterparts 78. Additionally, activated tumor-associated macrophages are more
compliant than resting macrophages 79 and tumor-derived endothelial cells exhibit enhanced
mechanosensing 80 (Table 1). These stromal cells, as well as infiltrating lymphocytes,
monocytes and mesenchymal stem cells, frequently participate in the remodeling of
interstitial collagen and produce a wide array of growth factors, cytokines and chemokines
which help to establish the chemical and rigidity gradients for the growth, transformation
and directional metastasis of tumor cells 46,63,81–84. Indeed, intravital imaging has shown
that cancer cells and leukocytes migrate rapidly in collagen-rich regions 47,85 and that
paracrine signaling between cancer cells and leukocytes facilitate the directional migration
of cancer cells 82. Considering the many genetic and epigenetic modifications that occur in
tumor-associated stromal cells 86 and the functional diversity of these cells, it is clear that it
will be important to study the mechano-sensitivity of the vast array of tumor-related cells
and to understand how ECM remodeling, mechanical regulation and stromal cell activities
contribute to tumor progression.

Tissue mechanics and oncogenic transformation
Tumor cells encounter various ECM environments and physical forces during tumor
initiation, progression, and metastasis (Figure 3). Concurrently, tumor cells undergo
malignant transformation, adopting a series of genetic and epigenetic changes, including
genetic mutations and expression changes of different ECM adhesion receptors, cell
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adhesion receptors, growth factor receptors and intra-cellular signaling molecules. These
changes modify the ability of tumor cells to sense and respond to external and internal
forces, as well as to the mechanical properties of other cells and the ECM. One widely
studied family of mechano-sensors is the cell surface integrin family 87. Integrins can
mediate the sensing of mechanical properties of the ECM by changing their avidity,
conformation, clustering, and recruitment, and transducing these signals downstream to
focal adhesion kinase (FAK), which then leads to the stabilization of focal adhesions and the
activation of downstream intracellular signaling cascades. Stiff ECM substrates increase
integrin clustering, and induce focal adhesion formation and FAK activation, which
intensifies the oncogene ErbB2-mediated PI3K (Phosphoinositide 3-kinase) and ERK
(extracellular signal-regulated kinase) signaling pathways and promotes tumor cell
malignant transformation in both 3D culture and mouse models for breast cancer (Figure 4)
20,40. Inhibiting Rho GTPase-induced contractility normalizes tumor cell behavior and the
inhibition of ECM stiffening delays oncogene-induced tumor progression. Other studies
have demonstrated that elevated Rho signaling via oncogene Ras-driven ERK activation or
ErbB2-driven PI3K induce cytoskeletal contractility, cell growth, and destabilize tissue
architecture 88. These small GTPases and their effectors are key regulators of cytoskeleton
dynamics, cell polarity and migration, and are often found over-expressed in different types
of human tumors 89–93. Thus, knocking out specific small GTPase effectors including Tiam
(a Rac activation factor) and GEP100 (an Arf6 activation factor) in mice reduced tumor
incidences and metastasis 94,95. Taken together, these data suggest that the crosstalk
between mechanical and oncogene signaling pathways is essential for oncogene-initiated
tumor progression. Accordingly, targeting these abnormal mechanical stimuli and
mechanotransduction pathways with pharmacological reagents could potentially be of
benefit to clinical cancer therapies.

4. CONCLUSION AND FUTURE DIRECTIONS
Tumors are composed of heterogeneous tumor cell populations. This heterogeneity
originates from genetic instability and/or the differentiation spectrum of cancer stem cells
(CSCs), potentially leading to drug resistance in cancer therapies 96. Therefore, an
understanding of the properties and regulation of tumor heterogeneity might improve
clinical cancer treatment. As discussed in this review, the tumor microenvironment is also
heterogeneous and can induce a series of non-uniform biological and biomechanical
modifications in tumor cells and the surrounding ECM. Particularly, the biomechanical
changes in a tumor microenvironment caused by multiple variable factors including tumor
growth and expansion, increased interstitial pressure, cell contraction and ECM deposition
and remodeling can modify the biochemical and biomechanical properties of both the tumor
stromal microenvironment and tumor cells. This biomechanically modified tumor
microenvironment exerts a higher resistance to drug delivery and penetration 97, enhancing
the survival of tumor cells due to mechano-chemical coupling in the three-dimensional
context and rendering the cells further resistant to drug-induced cell death 98. Drugs
targeting certain oncogenes or signaling pathways may be less effective when these
oncogenes and signaling pathways are connected to mechanical signaling at multiple levels
(e.g. integrins, ERK, PI3K, Rho GTPase) (Figure 1, Figure 4).

Current work suggests CSCs contribute to drug resistance because of their special
properties, including the ability to remain quiescent during tumor progression as well as
their increased resistance to DNA damage and external environmental insults 99. What
remains unknown is whether the tumor microenvironment also regulates these special
properties of CSCs. CSCs have similar properties as stem cells, such as self-renewal, lineage
differentiation and residence within specific niches. Studies on embryonic and adult stem
cells revealed that self-renewal and differentiation can be regulated by various mechanical
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cues 100, suggesting that CSCs may also be similarly regulated by tissue mechanics. Indeed,
the frequency of cancer stem cells is very sensitive to different microenvironments 101.
CSCs express abundant adhesion molecules including integrins and CD44 102–104 and
require specialized niches composed of soluble factors (e.g. Wnt, Notch, hedgehog, and
TGF- ) 105–107, stromal cells 108,109, and tension-regulated ECM proteins (e.g. tenascin,
fibronectin and laminin) for their self-renewal and differentiation 110,111. Many of these
niche components can modulate and be modulated by cell- and tissue-level tension to
regulate cell growth, survival and migration 112–114. Therefore, the properties of CSCs may
be directly and indirectly regulated by the tumor microenvironment. If so, the drug
resistance of CSCs may be potentially addressed by targeting the mechanical links in the
CSC niches (ECM, stromal cells, and soluble signals). Clearly, elucidating the composition
and structure of tumor microenvironment and their local and global mechanical influence on
tumor phenotype and pathogenesis will be important for the understanding of cancer biology
and for the treatment of multiple cancer types.

Both biochemical and biomechanical factors contribute crucial information to tumor
development and evolution. Integral to this dialogue is the complex interplay between
soluble factors, cell-cell and cell-ECM interactions and the mechanical environment, which
cooperatively drive tumor progression. Indeed, we and others have demonstrated that
genetic and epigenetic changes in cells combine with alterations in matrix architecture and
material properties, propelling tumor evolution. However, many questions linking
biomechanics and tumor progression still require resolution. Traditional cell biology
approaches may need supplementation with techniques from materials science, engineering
and physics. It will be critical to clarify the molecular basis of mechanotransduction in the
development and progression of tumors to identify novel anticancer therapeutic targets.
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GLOSSARY

Tension a load that acts in the direction perpendicular to a surface and tends to
pull an object apart

Compression a load that acts in the direction perpendicular to a surface and tends to
push an object

Tensile
strength

the maximum amount of tensile stress that a material can be subjected
to before failure. (Unit:force per unit area)

Stress describes the internal resistance of a material to distortion by an
external force (average force per unit area). There are three basic
stresses:tensile, compression and shear stress. Tensile and
compression stress are the stresses normal to the cross-sectional area
of a body; Shear stress is the stress tangential to the cross-sectional
area of a body. (Unit:forces per unit area)

Strain the ratio of the change in length to the original length of a material in
the loading direction (Dimensionless)

Stiffness describes the elasticity of a material or the property of restoration to its
original shape after deformation. The unit of stiffness is force per unit
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length, which can be determined by the slope of the load-displacement
curve in the linear region of loading. (Unit:force per unit length).
Compliance is inversely related to stiffness

Elasticity describes the ability of the tissue to return to its original shape after a
load is removed. Mathematically, elasticity is described by the
Modulus of elasticity, which is defined as the ratio of stress to strain.
For example, Young's modulus (E) describes the elasticity of a
material subjected to tensile or compression loading: Shear modulus
(G) describes the shear elasticity of a material subjected to shear
loading. E and G can be related by:E= 2G (1+ ) where is the Poisson’s
ratio (Ratio of lateral strain to axial strain in an axial-loaded material)

Viscoelasticity is the property of materials that exhibit both elastic and viscous
properties when undergoing deformation. Most biological materials are
viscoelastic. The strain of viscous materials is time-dependent, whereas
that of elastic materials is time-independent. A dynamic test of
viscoelastic materials is often performed to determine the frequency-
dependent complex shear modulus, which contains the elastic storage
modulus and the viscous loss modulus

Dynamic tests refers to material tests with periodic deformation or frequency-
dependent loading, such as the shear rheometric test. Static tests refer
to those tests with gradually increasing force at a slow speed, such as
the classic tensile test
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Figure 1. Dynamic and reciprocal conversation between matrix stiffness and cell tension
Non-malignant cells can respond to exogenous mechanical forces and matrix stiffness by
enhancing focal complex maturation, resulting in Rho and ROCK activation, MLC
phosphorylation and actomyosin contraction. Cell-generated forces from increased myosin
contraction feed into focal adhesion maturation to adjust focal adhesion size and contract the
ECM until the exogenous forces are balanced and the elastic modulus of cells are “tuned” to
reflect the ECM stiffness. This mechano-signaling circuit is crucial in the dynamic and
reciprocal conversation between exogenous and cell-generated mechanical factors. (ROCK,
Rho-associated kinase; MLC, myosin light chain.) (Adapted with permission from [20].)
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Figure 2. Examples of mechanical behaviors at different levels of biological systems
A) At the single-molecule level, mechanical stretching of talin rods exposes the cryptic
binding sites for vinculin, which then activates downstream biochemical signaling pathways
important in cell signaling, adhesion, and migration. B) At the multimolecule-level,
increased matrix stiffness enhances integrin clustering, promotes large focal adhesions and
activates downstream signaling cascades. C) At the single-cell level, cells can generate
traction forces via actin polymerization (e.g. stress fibers) and actomyosin contraction
between focal adhesions. D) At the tissue level, myofibroblasts differentiated from
fibroblasts at wound sites exert contractile forces on the surrounding ECM and rearrange the
ECM to close wounds. E) At the organ level, a muscle that contains multiple muscle fibers
surrounded by connective tissues and sheaths can contract synchronously, generating tension
and muscle motion upon the reception of signals from motor neurons.
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Figure 3. Tumor progression is associated with continuous alterations in tissue and cell
mechanics
A) In hyperplastic lesions, cells gradually lose polarity and grow into the luminal space. The
myoepithelial cell layer and the basement membrane (BM) remain intact and the
surrounding ECM is compliant. B) In carcinoma in situ lesions, cell polarity is lost and the
lumen is filled by proliferating cells. This volume expansion and resistance from the BM
and interstitial ECM lead to increased forces between tumor cells and the stromal matrix.
Simultaneously, ECM components are abnormally deposited and remodeled, which results
in increased ECM and tissue stiffness, and in turn, cell-generated tension. C) In invasive
lesions, tumor cells break down the BM and invade into the interstitial ECM. The reciprocal
forces between tumor cells and the ECM continuously increase. Abnormal deposition and
remodeling of ECM collagen further increase ECM and tissue stiffness. Tumor cells
generate greater tension in response to this increased mechanical stimulation. As tumor cells
invade through the BM and ECM, they experience a range of different forces from the dense
ECM network. These external forces together with genetic and epigenetic events can change
the contractility and viscoelasticity of tumor cells. D) During intravasation and
extravasation, tumor cells experience various forces including shear forces exerted by the
ECM, blood flow and neighboring cells, which facilitate their transport and attachment to
the endothelium. E) and F) Cancer cells often metastasize to different organs, which can
have very different microenvironmental and mechanical properties (e.g. E. soft tissue lung,
F. stiff tissue bone). The mechanics of remote tissues and cancer cells may regulate cell
dormancy, proliferation and differentiation in these organs.
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Figure 4. Increased collagen cross-linking and matrix stiffness modify the context of signaling
and promote invasion of oncogene-transformed pre-malignant mammary cells
A) MCF10A cells (non-malignant mammary epithelial cells) expressing either a drug-
activated ErbB2/NGFR (NGFR, neural growth factor receptor) chimera or a tetracycline-
inducible ErbB2 construct form polarized, growth-arrested colonies in soft collagen/rBM
gels (bottom left). Stiffening the collagen gel (by adding ribose to cross-link the collagen) or
activating ErbB2 signaling increases cell proliferation but fails to drive cell invasion (bottom
right and top left). MCF10A colonies start invading into collagen gels only when the
collagen gels are stiffened and ErbB2 signaling is activated. (top right) (Bar 20 m;-catenin,
green; 4 integrin, red; DAPI, blue.) Second harmonic generation images show the collagen
alignment and bundling around the colonies (insert). B) Schematic presentation of the
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cooperation between matrix stiffening and ErbB2 signaling in driving the invasive
phenotype. Increased collagen cross-linking stiffens the ECM, which drives integrin
clustering and promotes focal adhesion assembly, thereby activating PI3K and potentiating
ErbB2/PI3K/Akt signaling. (Adapted with permission from [40].)
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Table 1

Elastic Moduli of Tissues and Cells Involved in Cancer

Normal or rest state Pathological or activated state

Tissue

Breast 20,115,116 0.4 ~ 2 kPa 4~12 kPa

Lung 117 10 kPa 25 ~ 35 kPa

Brain 48 0.26 ~ 0.49 kPa 7 kPa

Bone 116,118,119 2 ~ 14 G Pa > 689 M Pa

Liver 120,121 0.3 ~ 0.6 kPa 1.6 ~20 kPa

Cells

Epithelial Cells 76,122 ~ 2 kPa ~ 0.4 kPa

Fibroblasts 78 ~ 0.4 kPa ~1 kPa

Mesenchymal stem cells 123 0.25 ~ 0.9 kPa N/A

Macrophages 79 1.5 kPa 0.5 kPa

Myeloid 124 N/A 0.17 ~ 1.5 kPa (HL60 cells)

T lymphocyte 124 0.013 ~ 0.083 kPa (Jurkat) N/A

Neutrophils 124 0.07 ~ 0.24 kPa N/A
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