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The ability of cells to move directionally toward areas of stiffer

extracellular matrix (ECM) via a process known as ‘durotaxis’ is

thought to be critical for development and wound healing, but

durotaxis can also drive cancer metastasis. Migration is driven

by integrin-mediated focal adhesions (FAs), protein assemblies

that couple contractile actomyosin bundles to the plasma

membrane, transmit force generated by the cytoskeleton to the

ECM, and convert the mechanical properties of the

microenvironment into biochemical signals. To probe the

stiffness of the ECM, motile fibroblasts modulate FA mechanics

on the nanoscale and exert forces that are reminiscent of

repeated tugging on the ECM. Within a single cell, all FAs tug

autonomously and thus act as local rigidity sensors, allowing

discernment of differences in the extracellular matrix rigidity at

high spatial resolution. In this article, we review current

advances that may shed light on the mechanism of traction

force fluctuations within FAs. We also examine plausible

downstream effectors of tugging forces which may regulate

cytoskeletal and FA dynamics to guide cell migration in

response to ECM stiffness gradients.
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Introduction
Directional cell movement is critical to embryonic de-

velopment, immune system function, angiogenesis, and

wound healing, as well as cancer metastasis. Cell

migration is induced by a variety of signaling mechanisms

that receive and process information from the cell’s

environment and provide specific control of cytoskeletal

and adhesion machineries within the cell [1]. Historically,

attention has been focused on understanding how diffu-

sible or ECM-associated biochemical cues are transduced

into activity of intracellular signaling networks that

regulate cytoskeletal and adhesion dynamics. However,

recent studies have highlighted the importance of

physical cues such as ECM topology or rigidity in guiding
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cell migration. In particular, the propensity of cells to

migrate toward areas of higher ECM rigidity via a process

known as ‘durotaxis’ has garnered interest [2��]. Duro-

taxis is thought to contribute to physiological processes

including stem cell differentiation [3,4], epithelial-to-

mesenchymal transition [5,6], development of the ner-

vous system [7,8], innate immunity [9], as well as promot-

ing breast cancer or glioblastoma metastases [10,11].

The ability of cells to durotax in response to rigidity

gradients requires mechanisms for constant surveillance

of the variability in the stiffness landscape of the ECM in

the cellular microenvironment. Several cellular structures

have been proposed as force or rigidity sensors, including

the plasma membrane [12], actin filaments [13��,14�], the

cortical cytoskeleton [15,16], the nucleus [17], and cad-

herin-based adherens junctions [18]. However, there is

extensive evidence that actomyosin-based contractility

and integrin-based FAs are essential for ECM rigidity

sensing [19,20]. Durotaxis is known to require myosin

contractility [21], and the activity of FA proteins in-

cluding FAK [22], paxillin, and vinculin [23], suggesting

that integrin-based FAs serve as the rigidity sensors that

specifically guide durotaxis. In this review, we focus on

recent observations of the spatial and temporal dynamics

of forces exerted by FAs during ECM rigidity sensing. We

discuss possible molecular mechanisms that could med-

iate force dynamics in FAs and how force dynamics could

be translated into polarized regulation of cytoskeletal and

FA dynamics that drive directed cell migration.

Traction force fluctuations guide durotaxis
We recently used high-resolution traction force micro-

scopy to characterize the nanoscale dynamics of cell-

generated forces on the ECM [23]. Our studies revealed

that mature FAs which appear static by other methods of

microscopy may actually possess internal fluctuations in

mechanics. FAs within a single cell were found to adopt

one of two states: a stable state where traction was

spatially and temporally static, and a dynamic state in

which the pattern of traction fluctuations was reminiscent

of repeated, centripetal tugging on the ECM. The choice

between tugging and stable FA states could be predic-

tably controlled by modulating ECM rigidity, myosin

contractility, or a FAK/phosphopaxillin/vinculin pathway.

Tugging traction in FAs was found to be dispensable for

FA maturation, chemotaxis and haptotaxis, but critical for

directed cell migration toward stiff ECM, i.e. durotaxis

(Figure 1). Repeated FA tugging on the ECM suggests a

means of regularly testing the local ECM rigidity land-

scape over time. ECM rigidity sensing by individual

tugging FAs could allow tight control of directional
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Figure 1
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Nanoscale fluctuations of traction forces mediate ECM rigidity sensing and guide directed cell migration. Dynamics of traction forces within individual

FAs are essential to direct cells toward stiff ECM. Zoomed insert depicts repetitive movement of force peak along individual FA (shown in green).
migration to guide cells along highly localized or dyna-

mically changing ECM rigidity gradients during devel-

opment or in tumors. FA-mediated sensing of local

stiffness cues may also be utilized in addition to bio-

chemical gradient sensing of diffusible and immobilized

cues to fine-tune cell path-finding during development,

morphogenesis, and pathological processes such as metas-

tasis.

Mechanistic basis of force fluctuations
There are three basic components contributing to force

on the ECM at an FA: (1) myosin II, which produces force

on (2) actin filaments, which act as a conduit of the force to

(3) FA proteins and integrins, which comprise the linkage

between actin and the ECM through the plasma mem-

brane. Dynamic changes in assembly/disassembly,

activity, or protein–protein interactions within any of

these three components could be responsible for mediat-

ing the fluctuations in force transmission seen in FAs

(Figure 2).

Fluctuations in myosin contractility

Temporal variations in myosin II contractility represent

the most obvious mechanism for applying fluctuating

pulling forces to the ECM. At the whole cell level,

oscillating cell contractions driven by cyclical accumu-

lation of myosin II on the actin network have recently

been observed in non-excitable cells [24,25��,26]. How-

ever, global changes in actomyosin contractility are likely

not responsible for fluctuations in traction force in FA,

since force fluctuations in neighboring FAs, which are

mechanically coupled to each other via the actin cytos-

keleton [27], are not temporally correlated [23]. This
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suggests that dynamics of traction force are regulated

locally, within single FA. Myosin II is closely associated

with FAs [28] and interacts with FA components such as

Rac guanine exchange factor b-pix [29]. Yet, myosin II is

generally not considered a bona fide FA protein, because it

tends to localize behind FAs within stress fibers and it is

thought to transmit force from a distance through the

stress fiber to the FA [30].

Mathematical modeling predicts that the activity of local

contractile units could oscillate spontaneously due to the

collective activity of motors acting on an elastic material

[31]. Remarkably, such oscillations may be mechanosen-

sitive, as for any given myosin activity the predicted

oscillation frequency is determined by the elasticity of

the FA and the ECM [32]. A direct demonstration that

myosin accumulation at a FA affects the dynamics of its

traction force is required to validate the notion that local

fluctuations in contractility produce tugging forces at FA.

Fluctuations in actin mechanics

Since actin serves as the mechanical conduit between

force generated by myosin and ECM-bound integrins, it

is possible that cyclic variation in the mechanics of the

actin cytoskeleton underlies traction fluctuations. Thus,

cyclic variations in the assembly/disassembly of actin to

modulate actin mechanics are a plausible mechanism for

the origin of traction fluctuations at FA. There is mount-

ing evidence that lamellipodial actin assembly occurs in

cycles [33–35]. However, force fluctuations observed

recently in fibroblasts occurred in mature FAs that are

not associated with lamellipodial actin, but which are

instead linked to actin stress fibers.
www.sciencedirect.com



Guiding cell migration by tugging Plotnikov and Waterman 621

Figure 2
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Possible molecular mechanisms mediating dynamics of traction forces within FAs. (a) Fluctuations of traction forces due to oscillations in local

actomyosin contractility. The model shows minifilaments of non-muscle myosin II closely associated with FAs. Mathematical modeling predicts that

activity of these local contractile units could oscillate spontaneously in a stiffness-dependent manner. (b) Fluctuations of traction forces due to cyclic

variation in actin assembly at stress fibers. The model shows actin filaments within a stress fiber undergoing cycles of elongation mediated by a

putative actin elongation factor, possibly Ena/VASP or formin family proteins. (c) Fluctuations of traction forces due to temporal variation in

engagement between the actin cytoskeleton and the ECM. The model shows actin filaments being variably engaged to integrins via talin and vinculin.
Actin filaments within stress fibers terminate with their

assembly-competent barbed ends linked to the FA [36].

These filaments could undergo cycles of assembly that

would allow cyclic slack to develop in the stress fiber, and

thus cyclic reduction in myosin-generated force trans-

mitted to the ECM. Members of the Ena/VASP and

formin families have been implicated as the main mol-

ecular players in the assembly of stress fibers at FAs [37–
39] and could mediate cyclic assembly of F-actin at FAs.

Ena/VASP proteins localize to FAs [40], and the related

protein Mena binds directly to integrins [41]. Formins

have been identified in FA proteomic screens [42–44],

and inhibiting the activity of formin proteins disrupts FA

traction and maturation [45��,46]. It was also recently

demonstrated that VASP proteins are implicated in

force-dependent stress fiber remodeling via interactions

with zyxin [38,47��], and that formins allow accelerated

barbed end elongation when under tension [48]. This

suggests the intriguing possibility that fluctuations in

contraction and actin assembly in stress fibers could

cooperate via a positive feedback loop to mediate traction

fluctuations at FAs [49�,50].

Fluctuations in the FA ‘molecular clutch’

If contraction and actin polymerization are constant,

tugging traction at FAs could also result from temporal

variations in the strength or number of linkages between

actin and the ECM via changes in protein–protein inter-

actions within FAs. The putative chain of protein–protein

interactions making up this linkage has been termed the
www.sciencedirect.com 
‘molecular clutch’ based on its role in regulating trans-

mission of force from actomyosin to the ECM, analogous

to the clutch of a car that regulates engagement or

disengagement of forces generated by the engine to

the mechanism that turns the wheels. There is extensive

evidence for transient, regulatable interactions between

actin and the ECM through FA proteins. Studies con-

ducted by using FRAP (fluorescence recovery after

photobleaching) imaging and fluorescent speckle micro-

scopy have demonstrated that FA proteins bind and

dissociate from FAs on a much faster time-scale than

FA turnover and exhibit partial coupling to the actin

cytoskeleton [51–53]. In particular, talin and vinculin

are extensively implicated as load-bearing components

mediating the regulatable, tunable link between actin

and ECM-bound integrins [54–56]. Talin and vinculin

interactions with actin, integrins, and other FA proteins

are highly regulated through phosphorylation, lipid bind-

ing, and small GTPase signaling pathways [57,58]. Thus,

it is possible that collective regulation of the integrin-

binding or actin-binding affinity of talin and/or vinculin

through oscillations in signal transduction could produce

tugging force dynamics in FAs.

An alternative mechanism for generating tugging traction

force from a simple ‘motor — clutch’ system that does not

require positive or negative feedback or signaling pathways

for regulation was recently predicted by a stochastic math-

ematical model [59��]. The model consisted of actin

undergoing retrograde flow, ‘clutch molecules’ whose
Current Opinion in Cell Biology 2013, 25:619–626
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engagement to actin and the ECM was dictated by associ-

ation rate constants and whose disengagement was dictated

by both rate constants and force (i.e. breaking strength), and

ECM stiffness. The model predicted two distinct regimes

of force transmission to the ECM within an individual FA:

static and oscillating. The static force regime was promoted

by stochastic association and disassociation of many

clutches across a FA resulting in even, constant traction

force centered within the FA. This state occurred when

engaged clutch lifetime was short and ECM stiffness was

high. The oscillating regime, which was promoted by long

engagement lifetime and low ECM stiffness, was the result

of cooperative engagement and simultaneous failure of

local clusters of clutches within a FA, generating oscil-

lations in traction magnitude and peak traction force pos-

ition within the FA. Thus, the simple motor-clutch model

generally accounts for stiffness-dependent changes in trac-

tion dynamics that have been observed in neurons and

fibroblasts [23,59��]. However, order-of-magnitude differ-

ences between model predictions and experimental

measurements in the rate of traction force increase call

in to question whether this simple mechanism operates in

vivo. Furthermore, this model does not account for the

polymerization of actin that is known to occur at FAs.

Decoding traction dynamics by downstream
effectors
To migrate directionally along gradients of ECM stiffness,

cells require a mechanism to continuously measure varia-

bility in the stiffness landscape of the ECM and control

cytoskeletal and adhesion dynamics. Cells sample stiffness

by exerting actomyosin-generated pulling forces on the

surrounding ECM through FAs [19,20]. Fluctuations of

traction stress within FA may be a means by which cells

repeatedly tug at the ECM to detect spatial and temporal

changes in rigidity. But why is fluctuating FA traction

required for durotaxis on a spatially and temporally stable
ECM rigidity gradient but not for chemotaxis or haptotaxis

[23]? Tension on FA proteins is thought to drive confor-

mational changes including stretching or unfolding, which

alter protein–protein interactions, induce recruitment of

cytosolic proteins, and activate signaling pathways [60].

This suggests that fluctuating or oscillating signals may be

specifically required for durotaxis. Although we still do not

know which signaling pathways transduce dynamics of

tugging forces into cellular behavior, only those which

are: firstly, mechanically activated; secondly, originate

from integrin FAs; and thirdly, exhibit fluctuating activity

could be regulated by the dynamics of traction forces.

Among known signaling pathways involved in the regula-

tion of cell migration, integrins, their effectors and stretch-

activated ion channels satisfy these criteria and will be

discussed below.

Cyclic activation of integrins

One obvious candidate for an effector of tugging traction

dynamics that may mediate directed cell migration is
Current Opinion in Cell Biology 2013, 25:619–626 
integrins themselves. Indeed, it is well established that

integrin affinity for ECM is enhanced by tension [61–63].

However, a recent elegant study showed that while a

single tug on an a5b1 integrin increased its affinity for

ligand, the cyclic application of force reinforced the

integrin–ligand bond, prolonging bond lifetime by two

orders of magnitude to maintain single bonds for minutes

[64��]. This suggests that repeated application of tension

on integrins by FA tugging could be a mechanism to

prolong adhesion lifetime. Thus, in a cell on an ECM

stiffness gradient, tugging on the FAs coupled to a stiffer

ECM region may overcome some threshold for cyclic

mechanical reinforcement, while this threshold may not

be reached in FAs coupled to the softer matrix area. This

would result in preferential reinforcement of FAs in the

direction of greater stiffness to promote directed

migration.

Several signaling cascades downstream of integrin acti-

vation have been shown or predicted to exhibit oscillating

activity and are known to regulate cytoskeletal and

adhesion dynamics. Thus, in addition to reinforcing

integrin adhesion, repeated tugging on integrins could

induce cyclic activation of integrin signaling. FAK and Src

tyrosine kinase activities are induced by integrin acti-

vation and force [65] and are known to play an important

role in cell mechanosensing, migration, and invasion

[22,66]. Although oscillations of Src/FAK activation have

been predicted by mathematical modeling [67,68], they

have not been observed experimentally. The Rho-family

GTPases RhoA, Rac1, and Cdc42 have been implicated

as master regulators of cell motility by controlling cytos-

keleton and FA dynamics and are known to be activated

by integrins and mechanical stimuli [69]. Live-cell ima-

ging of biosensors has recently revealed coordinated

cyclic activity of these three GTPases at the leading edge

of migrating fibroblasts [70]. Although these oscillations

could be induced by force fluctuations on integrins, the

presence of both positive regulation by GEFs and nega-

tive regulation by GAPs and GDIs suggests that a robust

biological oscillator in GTPase activity could arise in the

absence of external triggers [71,72]. Indeed, RhoA

activity oscillations that are critical to leading edge pro-

trusion have been shown to be dependent on cycles of

PKA-mediated RhoA phosphorylation, which induces a

RhoA-RhoGDI interaction to inhibit Rho activity [73��].
Since PKA activation is integrin-dependent, this suggests

that cyclic force on integrins could be the upstream

activator of these signal oscillations. However, whether

signal oscillations are required for motility and how they

are decoded to produce directional migration in response

to a rigidity gradient is not known.

Cyclic activation of stretch-activated Ca2+ channels

Regulation of calcium signaling by tugging forces is also a

plausible mechanism for how traction dynamics direct

cell migration toward stiff ECM. Ca2+ is a well-known
www.sciencedirect.com
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master regulator of cell migration, and front-to-rear gra-

dients of intracellular Ca2+ underlie polarization and

migration during chemotaxis [74,75]. Cytoplasmic Ca2+

controls actomyosin by activating myosin II [76], as well

as the gelsolin/villin family of F-actin severing proteins

[77]. Ca2+ also promotes FA turnover by activating calpain

family proteases [78], which cleave several FA proteins

including talin [79]. Thus, it is possible that a gradient of

ECM stiffness could give rise to a gradient of local

calcium influx, which in turn could promote local con-

traction as well as actin filament and FA turnover to cause

cells to move toward stiffer ECM.

It is tempting to speculate that intracellular calcium

gradients could be produced by stretch-activated calcium

channels (SACs), whose activity is induced by repeated

tugging on the ECM [80]. SACs are activated by mech-

anical stimulation, which triggers transient opening and

ion flux [81]. Blocking SAC activity suppresses several

mechanically induced cellular responses, including cell

migration, FA maturation and traction force development

[82,83], suggesting that SACs could both cause traction

fluctuations as well as mediate their downstream effects.

Importantly, sustained mechanical stimulus does not

maintain SAC activity due to channel adaptation [81];

thus, maintenance of a localized Ca2+ gradient in cells via

SACs would require repeated local mechanical stimulus.

Recently, striking transient calcium ‘flickers’ mediated

by the TRPM7 SAC were visualized at the front of

migrating fibroblasts [84��]. Indeed, TRPM7 has been

implicated in FA function, as it localizes to FAs and

promotes calpain protease activity and FA turnover when

overexpressed, while TRPM7 silencing increases FA

strength [85]. Thus, fluctuations in traction force at

FAs could promote repeated activation of SACs, possibly

TRPM7, to maintain locally increased Ca2+ at the leading

edge, thereby affecting FA and cytoskeletal dynamics to

direct cell migration.

Open questions and future perspectives
Although transient changes in FA mechanics have a role

in ECM-rigidity sensing and durotaxis, whether this

mechanism contributes to other mechanosensitive pro-

cesses, such as cell differentiation or epithelial-to-

mesenchymal transition, remains to be investigated.

Demonstrating that tugging forces regulate a specific

cellular function, such as durotaxis, without affecting

other mechanosensitive responses would be an important

advance for future development of therapeutics aimed at

modulating ECM-guided cell migration. Another open

question is whether soluble factors can modulate

migratory or invasive properties of cells by regulating

the dynamics of traction forces at FAs. Indeed, although

traction fluctuations are required for durotaxis, they

strongly decrease the velocity of random cell migration

[23]. In addition, growth factors may impact on cell

motility through suppression of tugging traction, either
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by activating actomyosin contractility or by decreasing

the strength of FAs [86,87]. In agreement with this

hypothesis, decreased FA strength correlates with the

onset of cancer cell motility, suggesting a functional link

between cell invasiveness and the dynamics of traction

forces at FAs [87]. It remains to be determined if traction

fluctuations are required for metastasis, in which case

they could become a therapeutic target.
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32. Jülicher F, Prost J: Spontaneous oscillations of collective
molecular motors. Phys Rev Lett 1997, 78:4510-4513.

33. Giannone G, Dubin-Thaler BJ, Döbereiner H-G, Kieffer N,
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