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Cells usually have a polarized shape in directional cell migration. This cell polarity may
result from external cues, such as a gradient of chemo-attractants (chemotaxis), or a
gradient of mechanical properties of substrate (durotaxis), and it can also arise from
internal cues so that the cells self-polarize spontaneously and maintain the polar motile
state for a long time. However, the mechanisms that control cell polarization have not been
fully understood, and particularly, the relationship between the polarized shape and cell
migration behaviors is not yet clear. In this study, we propose an energy model to study
the cell polarization energy by considering the effect of matrix rigidity, cell shape, and
organization of the cytoskeleton. We then propose a parameter called “motility factor” for
depicting the relationship between the cell shape and the driving force of cell migration.
We demonstrate that the fibroblast-like cell shape and keratocyte-like shape both have an
optimal polarization angle corresponding to the most stable cell shape. Fibroblast-like cell
shape also has an optimal tail length of the polarization. Furthermore, we find that the cell
free energy biphasically depends on the matrix rigidity, i.e. that there is an optimum matrix
rigidity for the most stable shape. And the motility factor also biphasically depends on the
matrix rigidity, but the trends of the dependence are opposite to that of cell’s free energy,
which implies an optimum matrix rigidity for the highest speed. The optimum matrix
rigidity for the most stable cell shape and that for the highest cell speed are consistent,
suggesting that the most stable cell shape is favorable to the fastest cell migration. This
study provides important insights into the relationship between cell polarization shape
and cell migration behaviors.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Adhesive cells often have specific polarization shapes during their directional migration. The diverse migratory behaviors
of various cell types are manifested by a spectrum of their different shapes [1]. Fibroblast and keratocyte are two typical
adhesive cells that were intensively studied in the past decades. In the non-polarized state, the two cells are both approx-
imately disk-like [2–4]. But in the polarized state, fibroblasts have a spindle-like shape with a long “tail” and keratocytes
have a “crescent”-like shape with two flank-like rears [1,5,6]. The transformation from the non-polarized state to the polar-
ized one is accompanied by changes of the cell’s shape and structure, such as re-organization of cytoskeleton and variation
of protrusion and adhesive regions [3,7–11]. During cell polarization, the mechanical factors should play important roles in
this symmetry-breaking event.
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Existing studies suggest that the cell may adopt a specific polarization shape for a minimum free energy. Mogilner
and coworkers [12] proposed a thermodynamic model for analyzing the polarization energy of keratocytes by considering
thermodynamic works by various intracellular forces. Vianay et al. [13] studied cell spreading on a protein lattice based
on the principle of minimum energy, suggesting that the cell shapes were in thermodynamic metastable states. Ujihara
et al. [14] simulated the change of cell shape and the cytoskeleton deformation under tensile stretching by modeling the
cell as a spring network based on the minimum-energy concept. Du et al. [15] studied the effect of polymerization and
depolymerization of actin filaments on cell shape and cell migration by considering the interaction between molecular
motors and actin filaments as well as free energy of cell membrane. In prior studies, surface energy and volume work are
the main energy components that had been considered in the modeling of different cell types [16,17].

Cell migration behaviors intensively depend on the matrix rigidity. Experiments showed a biphasic relationship between
the velocity of cell migration and the rigidity of matrix [18,19]—cells migrate with low velocity on either soft or hard matrix
while with a peak speed on the matrix of intermediate rigidity. The polarization shape of cells also depends on the matrix
rigidity—the higher the matrix rigidity, the larger the aspect ratio of fibroblasts [3,20]. The aspect ratio of cell is defined by
the ratio Lx/L y , where Lx and L y are the effective length and width of cell, respectively, and x is along the direction of cell
migration, thus the shape of the fibroblasts is getting more spindly with increasing matrix rigidity.

To understand the cell migration behaviors, many mechanical models have been developed. Mogilner and coworkers [21]
did pioneering works in modeling actin dynamics in cell migration, and also gave a comprehensive review of existing
models [22]. Dokukina and Gracheva [23] developed a FEM-based model for studying the relationship between cell speed
and matrix rigidity. Sarvestani [24] predicted a biphasic dependence of cell speed on matrix rigidity by considering the
gradient of the density of adhesion molecules and stall force from the cell front to the cell rear. Lee et al. [25] developed
a so-called “graded radial extension” (GRE) model for keratocyte by considering a graded distribution of extension and
retraction rates along cell edge. Keren et al. [26] studied the role of treadmill of the actin network on the cell shape and
migration based on the GRE model, and Barnhart et al. [27] further consider the effect of adhesion strength on cell shape
and migration speed.

Although many efforts have been paid to either studies of cell polarization or those of cell migration, the knowledge of
the relationships between the polarization shape and the migration behaviors is still lacking. The effect of matrix rigidity
on cell polarization was not fully understood either. It is necessary to study the matrix-rigidity-dependent cell polarization
shape and the shape-dependent cell migration behaviors for a comprehensive understanding of the relationship between
cell polarization and cell migration. In this study, we first propose a thermodynamic model for cell polarization based on
Mogilner’s concept [12] and consider the effect of matrix rigidity on cell shape. Here we study two kinds of cells—fibroblast
and keratocyte—by focusing on the fibroblast cell and by comparison of the two kinds of cells. Then we propose a parameter
called “motility factor” to quantitatively describe the driving force of cell migration. At last, the relationship between cell
polarization shape and cell migration behavior is discussed.

2. Models of cell polarization

2.1. The non-polarized state

For the non-polarized state, both fibroblast and keratocyte have disk-like cell shape [2,3,8,12] (Fig. 1). The actin filament
and myosin are assumed to be distributed homogeneously in the cell based on experimental observations [2]. Most of actin
filament networks near the cell membrane make isotropic polymerization, producing an isotropic protrusion force. The total
protrusion force is assumed to be constant [12]. Generally, cytoplasmic pressure σmem applied on the cell membrane is
isotropic in the cell membrane plane. The actin filament bundle distributed at the cell’s periphery may form by cytoplasmic
retraction or centripetal cytoplasmic flow [28,29]. The initial radius of the cell before polarization is R0. The cells without
polarization have a free energy E0 that is called the initial free energy.

2.2. The polarized state

The transformation of a cell from the non-polarized state to the polarized one is produced by the intracellular forces.
Before polarization, the actin filament network near the cell membrane provokes an isotropic polymerization, producing an
isotropic protrusion force. In the polarization process, while polymerization is kept at the cell front, that at the cell rear
stops, replaced by depolymerization [8]. Thus, the equilibrium of the cell membrane breaks, and a concave cell shape forms
at the cell rear with the cytoplasmic retraction or centripetal cytoplasmic flow [29].

For a clear description in the model, we use superscript “f” for the variables and parameters of fibroblast and “k” for
those of keratocyte, and those without superscript are applied to both cells.

For fibroblast, the cell shows an arc-like convex front edge and a characteristic long tail at the cell rear [1]. This typical
shape can be described by the polarization angle ϕf , radius of cell front Rf and length of cell tail Lf (see Fig. 1 & 2). In our
model, the protrusion force at the cell front is considered as constant for the expansion of the cell leading edge, while the
protrusion force at the cell rear concentrates at the endpoint and helps the formation of the cell tail. At the cell periphery,
the surface tension λf

B is generated by the contractile myosin of the actin filament bundle, keeping the concave shape at
the cell rear under pressure σmem [16,28]. The actin filaments are re-orientated to align along the migrating direction of
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Fig. 1. Schematic illustration of the polarization of a fibroblast and of a keratocyte. A) Evolution of the fibroblast cell from a disc-like shape to a spindly
shape with distinct re-organization of the cytoskeleton under the intracellular forces—the protrusion force generated by actin filament polymerization
(shown as red arrow) and the pressure on the cell membrane (shown as a green arrow), tension force of the actin filament bundle (shown as a blue
arrow). B) The evolution of the keratocyte cell from a disc-like shape to a crescent-like one under intracellular forces. (For interpretation of references to
color in this figure, the reader is referred to the web version of this article.)

the cell. During the polarization of the fibroblast, it is observed in experiments that actin filaments depolymerize at the cell
rear, except the endpoint of the tail [8] which instead exhibits protrusion [30].

For the keratocyte, Mogilner [12] showed a crescent shape with the polarization angle ϕk and radius of cell front Rk.
It is hypothesized that for a symmetry-breaking polymerization under mechanical disturbance, the isotropic actin network
is collapsed into the rear edge. At the opposite side, referred to as the front edge, actin filaments keep polymerizing and,
hence, pushing on the membrane. The surface tension in actin filament bundle at the cell rear, resulting from the additive
action of the condensed myosin molecules, is equal to the contractile stress in the actin-myosin ring multiplied by the width
of the ring λk

B = γ k
net

R0
2 .

2.3. Free energy of the polarized cell

2.3.1. Fibroblast
The protrusion force generated by the polymerization of the actin filament network will cause the extension of the cell

edge in the normal direction. At the cell front, the protrusion force is F f
f = F f · 2π−ϕf

2π . At the cell rear, the protrusion force
converges on the endpoint of the cell tail (point C in Fig. 1), causing a relative backward movement. Thus, the effective

protrusion force is F f
r = ´ ϕ f

2

− ϕ f

2

F f

2π cosϕ′ dϕ′ .

The protrusion force induces the decrease of potential energy by:

E f
1 = −

(ˆ
F f

f dRf +
ˆ

F f
r dLf

)
(1)

where Rf is the radius of the cell front.
The actin filament cytoskeleton will reorganize into elongated actin filament bundles (stress fibers) parallel to the po-

larization direction. Generally, the pre-strain of a stress fiber is approximately 0.1 according to experimental observations,
i.e. εf

s = 0.1 [31–33]. Thus, the tension force is F f
s = E f

s Af
sε

f
s ≈ 4.5 nN, where E f

s and Af
s are Young’s modulus and the cross-

section area of the stress fiber, respectively [34,35]. The total number of stress fibers N f
s is assumed to be constant. In this

study, we chose N f
s = 10, a value that is consistent with the experimental measurements [36]. Therefore, the strain energy

of the parallel actin filament bundles is:

E f
2 =

ˆ
1

2
N f

s F f
sε

f
s dLf

s0 (2)

where Lf
s0 is the length of the stress fibers.

The surface energy (in the 2D model) induced by the surface tension at the cell’s periphery is:

E f
3 =

ˆ
λf

B dLf
B (3)

where Lf
B is the total length of the actin filament bundles along the cell edge.

The intrinsic volume (area in 2D model) energy affected by the pressure is

E f
4 =

ˆ
σ f

mem dAf (4)

Both the surface energy and the intrinsic volume energy are usually considered in the modeling of adhesive and spreading
cells [16,17,37].



Y. Zhong et al. / C. R. Mecanique 342 (2014) 334–346 337
Fig. 2. Illustration of the cell polarization shape and corresponding shape parameters of the fibroblast (rigidity and elastic matrix). A) Rigid matrix; B) elastic
matrix—the blue line stands for the cell shape on the elastic matrix case, while the black line stands for the cell shape on the rigid matrix one for
comparison. The notations of parameters are also written in corresponding colors. (For interpretation of references to color in this figure, the reader is
referred to the web version of this article.)

Here we also consider the interaction energy between the cell and the matrix at the focal adhesion complexes (FACs) in
which the matrix stiffnesses play important roles. For instance, the aspect ratio of the fibroblast on the stiffer matrix is much
larger than that on the softer one [3,20]. Here the rigidity of the matrix is considered by the effective spring constant km,
which can be estimated by km = 2aEm

1−ν2
m

[38,39], where a is the size of FAC, and Em and νm are Young’s modulus and

Poisson’s ratio of the matrix, respectively. The cell adhesion in the region of lamellipodia at the cell front [3] (AB arc in

Fig. 2) is considered as continuous small adhesion, with force density �fad. The adhesions at the flanks of the cell (points A
and B in Fig. 2) and the endpoint of cell tail (point C in Fig. 2) are considered as discrete large adhesions. The cell–matrix
interaction energy is then written as:

E f
5 = −

(¨
fad dl dRf +

∑
i

ˆ
F f

FA,i dRf +
ˆ

F f
FA,3 dLf

)
(5)

where i = 1 and i = 2 indicate points A and B in Fig. 2, respectively; the subscript ‘3’ of F f
FA,3 indicates point C. The

expression of continuous adhesion energy is consistent with that in [17]. F f
FA,1 = F f

FA,2 = km	R (	R = AA∗ = BB∗) are the

traction forces of focal adhesions at the two flanks of the cell rear, and F f
FA,3 = kmCC∗ = km	L at the cell rear (see Fig. 2B).

The total change of the free energy of the cell is:

E f
tot = E f

1 + E f
2 + E f

3 + E f
4 + E f

5 − E0 (6)

where E0 is the initial energy of the cell before cell polarization. The first four terms do not depend on the rigidity of the
matrix, but the fifth term does.

Before calculating the free energy, we first analyze the cell geometry on a rigid matrix. The cell shape of the fibroblast
on a rigid matrix is shown in Fig. 2A. We assume that the area of the cell is constant during polarization according to
experimental observations [3,40], thus E f

4 = 0. Considering the constant cell area and the geometrical relationship, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(R0)
2 = 2π − ϕf

2

(
Rf)2 + Lf · Rf sin

(
ϕf

2

)
− (

ρf)2(
Ψ f − sinΨ f)

Ψ f = 2 arcsin

(
df

2ρf

)

df =
√[

Lf − Rf cos
ϕf

2

]2

+ (
Rf

)2
sin2 ϕf

2

(7)

where ρf is the radius of arc AC and BC at the cell rear (see Fig. 2). According to the Laplace equation [16,17,37] (see Fig. 2),
we have:

ρf = λf
B

σmem
(8)

Given the values of R0 and ϕf , we can calculate df , Ψ f and Rf . This nonlinear system of equations can be solved by using
the Newton–Raphson method. Then we can calculate the free energy of the cell on the rigid substrate.

To calculate the cell geometry on the elastic matrix, we should first consider the equilibrium of adhesion forces at the
cell front as:
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Fig. 3. (Color online.) Illustration of the equilibrium of cell adhesions at the cell front and at the end point C∗ of the cell rear of a fibroblast.

�fad +
(

λf
B

Rf∗ + σmem

)
�n + d�F f

f

dLf∗
front

= �0 (9)

which is shown in Fig. 3, where fad is the adhesion force at the cell front, Rf∗ is the new radius of the cell front because
of the deformation of the elastic deformation under the traction force. Lf∗

front is the length of the cell front, given by Lf∗
front =

(2π − ϕf∗ )Rf∗ . The first three terms are consistent with those in Bischofs’ model [17]. The fourth term is the protrusion
force, consistent with that in Mogilner’s model [12]. The pressure is assumed to be constant in our model as σmem =
0.1 nN/μm [36,41].

Also considering the equilibrium of point C∗ at the cell tail (see Fig. 3), we have:

�F f
λ + �F f

r + �F f
FA,3 = �0 (10)

where

F f
λ = 2λf

B cos θ (11)

and θ = Φf∗
2 − Ψ f∗

2 is the angle between the direction of surface tension and line OC∗ , Φf∗ is the angle of line A∗C∗ and

B∗C∗ , Φf∗ = 2 arcsin( Rf∗
df∗ sin ϕf∗

2 ), and Ψ f∗ is the central angle of arc A∗C∗ or B∗C∗ , as shown in Fig. 2B.

F f
r is the effective protrusion force. The relationship between the adhesion force and the effective stiffness of the matrix

is:

F f
FA,3 = km

(
Lf − Lf∗) (12)

where Lf and Lf∗ are the lengths of the tail on the rigid and elastic matrices, respectively; km is the effective stiffness of the
elastic matrix.

Considering the geometrical relationship and the constant cell area condition, we get the following system of equations
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(R0)
2 = 2π − ϕf

2

(
Rf∗)2 + Lf∗ Rf∗ sin

(
ϕf

2

)
− (

ρf∗)2(
Ψ f∗ − sinΨ f∗)

Ψ f∗ = 2 arcsin

(
df∗

2ρf∗

)

df∗ =
√(

Lf∗ − Rf∗ cos
ϕf

2

)2

+ (
Rf∗)2

sin2 ϕf

2

(13a)

Φ f∗ = 2 arcsin

(
Rf∗

df∗ sin
ϕf

2

)
(13b)

km
(
Lf − Lf∗) = 2λf

B cos

(
Φ f∗

2
− Ψ f∗

2

)
− F f

r (13c)

where ρf∗ = ρf = λf
B/σmem. Compared with Eq. (7), there are two addition equations in Eq. (13), i.e. (13b) for the angle Φ f∗ ,

and (13c) is for the equilibrium of FAC at point C∗ . Again, the nonlinear system of equations can be solved by using the
Newton–Raphson iteration method. Thus, we can calculate the free energy of the cell at the elastic substrate. (The values of
main parameters are given in Table 1.)
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Table 1
Main parameters.

Parameters Symbol Value References

Total protrusion force of a fibroblast F f 100 nN [62]
Total protrusion force of a keratocyte F k 6 nN [12]
Surface tension of a fibroblast λf

B 20 nN [36]

Surface tension of a keratocyte λk
B 1.5 nN [12]

Pressure σmem 0.1 nN/μm [36,41]
Young’s modulus of a stress fiber E f

s 1.45 μN/μm2 [34,35]

Cross section area of a stress fiber Af
s 3.14 × 10−2 μm2 [34,35]

Pre-strain of a stress fiber εf
s 0.1 [31]

Homeostatic stress of FA σ 5.0 kPa [46–48]
Young’s modulus of the matrix Em 1–100 kPa [63,64]
Fitting parameter in Eq. (27) Amax

FA 6 μm2 [57]
Fitting parameter in Eq. (27) β 0.2 [57]

Fig. 4. Illustration of the cell polarization shape and corresponding shape parameters of keratocyte (rigidity and elastic matrix). A) Rigid matrix; B) elastic
matrix—the blue line stands for the cell shape on the elastic matrix case, while the black one stands for the cell shape in the rigid matrix one for
comparison. (For interpretation of references to color in this figure, the reader is referred to the web version of this article.)

2.3.2. Keratocyte
Different from the fibroblast, here all the protrusion forces are applied to the cell front, the decrease of potential energy

by protrusion is [12]:

Ek
1 = −

ˆ
F k dR (14)

The energy change caused by the contraction of actin–myosin network is:

Ek
2 =

ˆ
γ k

net dAk
net (15)

where Ak
net = 3

8 (2π − ϕk)(R0)
2 is the area of actin–myosin network region.

The surface energy (in the 2D model) induced by the surface tension of the peripheral actin filament bundle at cell rear
is:

Ek
3 =

ˆ
λk

B dLk
B (16)

where Lk
B is the arc length of the concave actin filament bundle AB at the cell rear (Fig. 4), which is different from the

fibroblast.
Similar to the fibroblast, the change of the intrinsic volume (area in 2D model) energy by the pressure is:

Ek
4 =

ˆ
σmem dAk (17)

Finally, we consider the interaction energy between the cell and the matrix. Similar to the fibroblast, the cell adhesion at
the cell front (arc AFB in Fig. 4) is considered as a continuous adhesion with force density fad. The cell adhesions at the
two “pincher”-like flanks of the cell rear (points A and B in Fig. 4) are considered as discrete adhesions with forces F k

FA,1

and F k
FA,2. Similar to the energy terms of the fibroblast, the free energy change because of the matrix rigidity is:

Ek
5 = −

(¨
fad dl dRk +

∑ˆ
F k

FA,i dςk
i

)
(18)
i
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where F k
FA,1 = kmςk

1 and F k
FA,2 = kmςk

2 are the traction forces at the discrete focal adhesions at the two cell rears, and

ςk
1 = AA∗ and ςk

2 = BB∗ are the displacement of substrate of points A and B, respectively (Fig. 4B).
The total change of free energy is:

Ek
tot = Ek

1 + Ek
2 + Ek

3 + Ek
4 + Ek

5 − E0 (19)

Consistent with the fibroblast’s case, only the fifth term depends on matrix stiffness.
On a rigid matrix, the parameters of the shape of keratocyte are given by [12]:

Ψ k = 2 arcsin

(
F k

λk
B

sin(ϕk/2)

2π − ϕk

)
(20)

Rk = R0√
1 − 1

2π (ϕk − sinϕk) − 1
2π (

λk
B

F k )2(2π − ϕk)2(Ψ k − sinΨ k)

(21)

in which the relation

ρk = λk
B

σmem
= λk

B

F k
· (2π − ϕk) · Rk (22)

has been applied, where ρk is the radius of arc AB at the cell rear, as shown in Fig. 4. The nonlinear system of equations
(Eqs. (20) and (21)) for a rigid matrix can be solved by using the Newton–Raphson iteration method.

On an elastic matrix, we consider the effect of matrix stiffness on the cell polarization shape and the corresponding free
energy. Before calculating the deformation energy at focal adhesion (Eq. (18)), we first consider the force equilibrium at
focal adhesion. Because a keratocyte cell front is similar to that of a fibroblast, Eq. (9) is also applied to the keratocyte at
the cell front. For a keratocyte, the surface tension at the cell front λk

f is primarily generated by the cell membrane due to
the lack of actin filament bundle [4,11], and the bending modulus of the cell membrane is as low as 10−19 J [42]; therefore
the influence of surface tension λk

f is negligible. In addition, because the cell adhesion at the cell front of a keratocyte is
highly dynamic and unstable [43], the influence of cell adhesion is also negligible, i.e. fad ≈ 0. Thus, at the cell front, we

have σmem = dF k

dLk
f

.

For the equilibrium at the large focal adhesion at the cell rear A and B, the traction force at the focal adhesion is equal
to the tension of the bundle λk

B, i.e. λk
B = kmAA∗ = kmBB∗; therefore we have:

λk
B

km
=

√(
xk∗

0 − Rk∗ cos
ϕk∗

2
+ Rk cos

ϕk

2

)2

+
(

Rk∗ sin
ϕk∗

2
− Rk sin

ϕk

2

)2

(23a)

where xk∗
0 − Rk∗

cos ϕk∗
2 + Rk cos ϕk

2 and Rk∗
sin ϕk∗

2 − Rk sin ϕk

2 are x and y components of AA∗ (or BB∗), respectively, and

xk∗
0 = OO∗ .

Similar to the case of rigid matrix, the geometrical relationship and constraint of the constant cell area are given as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ k∗ = 2 arcsin

(
F k

λk
B

· sin(ϕk∗
/2)

2π − ϕk∗

)

Rk∗ = R0√
1 − ϕk∗−sin ϕk∗

2π − 1
2π (

λk
B

F k )2(2π − ϕk∗
)2(Ψ k∗ − sinΨ k∗

)

ρk∗ = λk
B

F k
· (2π − ϕk∗) · Rk∗ = λk

B

σmem

(23b)

They correspond to Eqs. (20)–(22) for the case of a rigid matrix. If we consider the geometry relation AC∗2 = AA∗2 +A∗C∗2 =
AG2 + GC∗2, we further have:

(
λk

B

km

)2

+ (
ρk∗)2 =

(
ρk∗

cos
Ψ k∗

2
−

(
xk∗

0 − Rk∗
cos

ϕk∗

2
+ Rk cos

ϕk

2

))2

+
(

Rk sin
ϕk

2

)2

(23c)

The nonlinear system of equations (Eqs. (23a)–(23c)) can be solved by using the Newton–Raphson iteration method. Thus,
we can calculate the total change of free energy of the cell polarization of a keratocyte using Eq. (19).
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Fig. 5. Illustration of the stable region of cell adhesion defined by R01 and R02 in Eq. (29). The area with hatched lines shows the stable region of cell
adhesion. The areas with a red hatched line and that with a blue line correspond to the stable region of the cell front and cell rear, respectively. (For
interpretation of references to color in this figure, the reader is referred to the web version of this article.)

3. The motility factor

The adhesions at the cell front generate a propulsive traction force while those at the cell rear generate a resistance
force against cell migration [6,44]. Before the detachment of the cell rear, the total adhesion forces (traction force) are in
equilibrium. Increasing evidences show that the cell might use its shape to control the dynamics of adhesion at the cell front
and the cell rear, e.g., by breaking the balance of adhesion between the cell front and the cell rear, and thus to produce the
driving force for cell migration [45]. Here we propose a parameter that quantitatively depicts the magnitude of the driving
force.

The traction force on a single focal adhesion complex (FAC) can be written as:

F = σ AFA (24)

where σ and AFA are the mean traction stress and the area of focal adhesion, respectively. The mean traction stress of
focal adhesion is assumed to be constant [46–48]. Experimental and theoretical studies [49] showed that there is an ap-
proximately linear relationship between local traction forces and the distance from the cell centroid, thus there is AFA = ξ lc,
where ξ is the gradient of focal adhesion area, lc is the distance from the cell centroid lc = √

(x − x̄)2 + (y − ȳ)2, and (x̄, ȳ)
are the coordinate of the cell centroid [50]. Experiments demonstrated that there is a linear relationship between the area
of focal adhesion and the distance from the cell centroid [51,52]. Thus, the traction force is [53]:

Fx = σξ(x − x̄)

F y = σξ(y − ȳ) (25)

To gain a quantitative understanding of how cell shape influences cell migration behaviors, we defined a parameter called
“motility factor” as [50]:

Γ =
´

Acell front
σξ(x − x̄)dA´

Acell rear
σξ(x − x̄)dA

∣∣∣∣
c

(26)

Here we set that the cell migrates along the x axis, which is also the axis of symmetry of the cell, as shown in Fig. 5. We
see that the motility factor is the ratio of the propulsive traction force at the cell front to the resistant traction force at the
cell rear at the critical condition of detaching the cell rear. In Eq. (26), the “cell front” indicates the region where x > x̄,
while the “cell rear” indicates the one where x < x̄. The larger the value of the “motility factor”, the higher the driving force
for cell migration.

To determine the critical condition of detachment of the cell rear, we first calculate the stability of FACs. The state of
the FACs is closely associated with the applied force [54,55], which has a stabilizing to disruptive transition with increasing
cell traction, i.e. from nascent FACs to mature FACs and then to disassembled adhesions. The typical size of nascent FACs
is on the order of 1 μm2 [48], and the stress on it is about 1 kPa [56,57]. If we adopt a minimum area of FACs of 1 μm2,
we obtain the lower limiting value of the traction force F01 as 1 nN. The upper limiting value F02 can be calculated as
F02 = σ A∗

FA, where A∗
FA is the maximum area of FACs. According to experiments, we assume the maximum area of FACs

depends on the rigidity of matrix, which can be formulated by fitting experimental data [57] as:

A∗
FA = Amax

FA

(
1 − eβEm

)
(27)

Once the values of F01 and F02 are determined, the stable region of cell adhesions is given by the inequality as
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Fig. 6. (Color online.) Relationship between the free energy and the polariza-
tion angle of a fibroblast. There is a biphasic relationship between the free
energy and the polarization angle. The longer the cell tail, the larger the op-
timal polarization angle.

Fig. 7. (Color online.) Relationship between the free energy and the tail
length of the fibroblast. There is a biphasic relationship between the free
energy and the tail length.

F01 � F � F02 (28)

which defines a ring-shape area R01 � lc � R02 as shown in Fig. 5, where the two radii R01 and R02 are given by:⎧⎪⎨
⎪⎩

R01 = F01

σξ

R02 = F02

σξ

(29)

Note that F02 is a function of the rigidity of matrix; thus the area with stable adhesion at the cell front and rear is
determined by the matrix rigidity and the cell shape.

4. Results

4.1. Effect of the polarization angle on cell free energy

The effect of the polarization angle on cell free energy of the fibroblast is shown in Fig. 6. For different tail lengths L f , there is a
minimum free energy value corresponding to an optimal polarization angle for a stable migration state. When the tail length is equal to
the initial radius R0 = 20 μm, the corresponding polarization angle is zero, reproducing the non-polarized state of the cell and suggesting
that it is also a metastable state. We see that the optimal angle increases with the tail length. Mogilner et al. [12] showed that there is
also an optimal polarization angle for a keratocyte, corresponding to its stable migration state.

We note that for both fibroblast and keratocyte, there is a biphasic relationship between cell free energy and polarization angle, and
the minimum of free energy corresponds to a stable state of the polarized cells. The difference between fibroblast and keratocyte is that
the free energy of the fibroblast is not only dependent on the polarization angle, but also on the tail length.

4.2. Effect of the tail length of the fibroblast

Fig. 7 shows the influence of the tail length on the cell’s free energy. There is also a biphasic relationship between the tail length and
the cell’s free energy with various polarization angles, suggesting an optimal tail length for a stable polarization state of the fibroblast. This
relationship implies that the growth of the cell tail is limited by the geometric evolution of the cell toward a minimum cell free-energy
value, i.e. the cell tends to change its shape for an optimal tail length with minimum energy. The cell energy is also related to the cell
adhesion at the cell tail, e.g., experiments showed that the cell tail retracts during cell migration [6], which is expected to be related to
de-adhesion of the cell rear. The biphasic relationship between tail length and cell energy implies that the characteristic shape of the
fibroblast changes during its migration.

4.3. Effect of matrix rigidity on cell energy and motility factor

Fig. 8 shows the effect of matrix rigidity on the cell free energy and on the cell motility factor of the fibroblast for different tail
lengths. We found that both cell free energy and motility factor are biphasically dependent on the rigidity of matrix, but the trends of
their dependence are opposite. On the soft matrix, the cell has high free energy and low motility factor. With increasing matrix rigidity,
the cell energy decreases while the motility factor increases, approaching a minimum energy and a maximum motility factor at an optimal
matrix rigidity, respectively. When the matrix rigidity becomes larger than the optimal rigidity, the cell has high energy and low motility
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Fig. 8. (Color online.) Dependence of the free energy and the motility factor of a fibroblast upon matrix rigidity for different tail lengths. A) Lm = 80 μm;
B) Lm = 70 μm; C) Lm = 60 μm. There is a biphasic relationship between free energy and matrix rigidity; the trend is opposite to that of the relationship
between motility factor and matrix rigidity. The value of the optimal matrix rigidity for the minimum cell energy is close to that for the maximum motility
factor.

factor again. It is interesting to note that the value of optimal matrix rigidity for the minimum cell energy is roughly equal to that for the
maximum motility factor. This result suggests that the cell geometry with minimum free energy is also optimized for the production of a
maximum driving force for cell migration.

The biphasic relationship between the motility factor and the rigidity of the matrix is consistent with the biphasic relationship be-
tween the cell migration speed and the rigidity of matrix found in experiments [18–20]. The biphasic relationship between cell energy
and matrix rigidity implies that the cell polarization regulated by the matrix rigidity adopts the principle of energy minimization [3,20].

A keratocyte exhibits similar biphasic behaviors regarding the relationship between cell energy and matrix rigidity and that between
motility factor and matrix rigidity, as shown in Fig. 9. Similarly, the value of the optimal matrix rigidity for a minimum cell energy is
close to that for a maximum motility factor.

4.4. Effect of cell shape on the motility factor

Fig. 10 shows the comparison of motility factors between fibroblast and keratocyte with different matrix rigidities. The tail length of
the fibroblast is set as Lf

m = 80 μm. Both motility factors show a biphasic dependence on matrix rigidity for the two cell shapes. The
motility factor of the keratocyte is larger than that of the fibroblast for different matrix rigidities. For the optimal rigidity, the motility
factor of the keratocyte is two times larger than that of the fibroblast. Because the motility factor represents the driving force and the
efficiency of cell migration, our result is consistent with the experimental results evidencing that the cell speed of the keratocytes is
much higher than that of fibroblasts [5,58]. The mechanism is that the “pincers”-like cell rears of the keratocyte can produce a larger
detachment area than those of the fibroblast for producing the driving force.

5. Discussion

In this study, we analyzed the free energy of cell polarization and its dependence on matrix rigidity and cell types.
We showed that the cell free energy depends on the active protrusion of cell periphery, the active contractility of the
cytoskeleton, the structure and organization of the cytoskeleton, and the mechanics of cell–matrix interaction mediated by
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Fig. 9. (Color online.) Dependence of the free energy and the motility factor
of a keratocyte upon matrix rigidity. Similar to the fibroblast, the value of
the optimal matrix rigidity for the minimum cell energy is close to that for
the maximum motility factor.

Fig. 10. (Color online.) Comparison of motility factor values between
fibroblast-like and keratocyte-like cells. The motility factor of a keratocyte-
like cell is larger than that of a fibroblast-like cell for different matrix rigidi-
ties.

cell adhesion. Our results suggest that the cell polarization shape complies with the principle of energy minimization. The
influence of matrix rigidity has been considered in our energy model. In addition, a parameter called motility factor was
suggested to depict the influence of matrix rigidity and cell polarization shape on the driving force of cell migration.

Our results show that there are two metastable cell shapes: disk-like non-polarized shape and spindle-like polarized
shape of fibroblasts or crescent-like polarized shape of keratocytes. The polarized shape is regulated by several parameters,
including polarization angle, tension of actin filament bundle at cell periphery, the length of cell tail, and the matrix rigidity.
The total effect of these parameters leads to an energy-determined cell shape. Thus, our energy model describes the energy
barrier of cell transformation from a non-polarized state to a polarized state [2,3].

We showed that the matrix rigidity plays a crucial role in regulating cell migration. On the one hand, matrix rigidity
affects the cell polarization shape complying with the minimization of free energy. On the other hand, matrix rigidity affects
the formation and de-adhesion of FACs, regulating the driving force of cell migration [50]. The biphasic dependence of both
cell free energy and motility factor on matrix rigidity implies that the cell is in high-free-energy and low-motility states
on a very soft or a very stiff matrix, while it is in low-free-energy and high-motility state for a matrix with intermediate
rigidity. This result suggests that cells may regulate their migration behaviors by responding to the matrix rigidity.

To further understand the relationship between cell polarization and cell migration behaviors, we suggested a parameter
called motility factor. This factor depicts the degree of coordination between the stability of cell adhesion at the cell front
and the instability of cell adhesion at the cell rear. It has been shown that a relatively low force allows the growth and mat-
uration of FACs that stabilizes the cell adhesion, while an excessively large force causes the disruption of cell adhesion [55,
59,60]. It was also shown that the traction force increases with the distance from cell centroid [49]. And it was observed
that the cell spreading area and focal adhesion area increase with increasing matrix rigidity. Thus, we can see that the
motility factor can be co-influenced by matrix rigidity and cell shape. We obtained a biphasic relationship between motility
factor and matrix rigidity, suggesting a biphasic feature of the driving force of cell migration. Furthermore, we showed that
the motility factor of the keratocyte-like shape is much larger than that of the fibroblast-like one, implying a higher speed
of the keratocyte than that of the fibroblast. Thus, the motility factor should be an appropriate parameter for a quantitative
description of the driving force of cell migration.

Our predictions are broadly consistent with the experimental results. This study suggests that the cell polarization shape
adopts the principle of energy minimization [2,44]. We showed that the larger the rigidity of the matrix, the higher the
degree of cell polarization, which is consistent with experiments [3,20]. Our prediction of the biphasic dependence of motil-
ity factor on the rigidity of the matrix is consistent with experimental measurements of the dependence of cell migration
speed on matrix rigidity [18,19]. Our results of the shape dependence of motility factor are consistent with the experiments
showing that the velocity of a fibroblast (several tenth of micrometer per minute) is much lower than that of a keratocyte
(a few tens of micrometer per minute) [58,61], and that the velocity is decreasing when a keratocyte occasionally possesses
an abnormal shape with an elongated tail, as a fibroblast [5].

6. Conclusions

The cell polarization shape was studied by using an energy description, considering the influence of polarization angle,
length of the cell tail, and matrix rigidity. The cell migration behavior is represented by a parameter called motility factor.
We showed that the biphasic relationship between polarization angle and cell energy and that between tail length and cell



Y. Zhong et al. / C. R. Mecanique 342 (2014) 334–346 345
energy suggest that the cell shape adopts the principle of energy minimization for cell migration. Furthermore, the biphasic
relationship between cell energy and matrix rigidity and that between motility factor and matrix rigidity imply that matrix
rigidity plays a crucial role in cell shape and cell migration. The trends followed by cell free energy and motility factor with
increasing matrix rigidity are opposite, and the value of the optimal matrix rigidity for a minimum cell energy is close to
the one for a maximum motility factor. In addition, the fact that the motility factor of the keratocyte-like shape is higher
than that of the fibroblast-like one suggests that the keratocyte-like shape is more favorable to fast cell migration, which
is consistent with experiment. This study provides important insights into the relationship among cell polarization shape,
matrix rigidity, and cell migration behavior.
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