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Abstract
When tissue cells are plated on a flexible substrate, durotaxis, the directed migration of cells
toward mechanically stiff regions, has been observed. Environmental mechanical signals are
not only important in cell migration but also seem to influence all aspects of cell differentiation
and development, including the metastatic process in cancer cells. Based on a theoretical
model suggesting that this mechanosensation has a mechanical basis, we introduce a simple
model of a cell by considering the contraction of F-actin bundles containing myosin motors
(stress fibers) mediated by the movement of adhesions. We show that, when presented with a
linear stiffness gradient, this simple model exhibits durotaxis. Interestingly, since stress fibers
do not form on soft surfaces and since adhesion sliding occurs very slowly on hard surfaces, the
model predicts that the expected cell velocity reaches a maximum at an intermediate stiffness.
This prediction can be experimentally tested. We therefore argue that stiffness-dependent
cellular adaptations (mechanosensation) and durotaxis are intimately related and may share a
mechanical basis. We therefore identify the essential physical ingredients, which combined
with additional biochemical mechanisms can explain durotaxis and mechanosensation in cells.

1. Introduction

Eukaryotic cells explore their environment by extending
actin protrusions and forming integrin adhesions with their
surroundings [1]. The movement and migration of cells
are also powered by a combination of protrusion generation,
adhesion formation and cellular contraction [18]. While
directed migration of cells is often driven by chemical signals,
environmental mechanical signals can also have significant
effects [6, 8, 9, 24, 29]. In particular, it has been shown
that the elasticity of the substrate (characterized by Young’s
modulus, E) in contact with the cell can have an influence
on the direction of cell migration. This process has been
termed durotaxis [2, 23, 27, 28]. The stiffness of the cellular
environment is not only important for cell migration but also
appears to influence the metastatic process of cancer cells in
vivo [20, 22, 26, 39]. Therefore, a mechanistic understanding
of how environmental mechanical signals influence cellular

movement and cell dynamics is an important question in cell
biophysics.

Mechanical properties of the environment not only
influence cell migration but also can influence many aspects
of the cell life cycle. When cells are plated onto a planar
substrate, the morphology and behavior of the cell depends
on the stiffness of this substrate [5]. If the substrate is
soft, aggregates of adhesion molecules remain small and
transitory. In the opposite limit, when the substrate is stiff,
a clear network of contractile stress fibers (bundles of F-
actin) develops, and strong focal adhesions anchoring the
cell to the substrate are seen. Substrate stiffness can also
influence the long-term fate of cellular development. It
has been shown that differentiation of mesenchymal stem
cells to more specialized cells is influenced by the stiffness
of the cellular substrate [12, 15, 38]. The mechanisms
behind this dependence are complex but appear to involve
three basic systems: the actin cytoskeleton, cell-surface
adhesions and motor-based contraction. Indeed, a simplified

1478-3975/11/015011+10$33.00 1 © 2011 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1478-3975/8/1/015011
mailto:ssun@jhu.edu
http://stacks.iop.org/PhysBio/8/015011


Phys. Biol. 8 (2011) 015011 B Harland et al

Contraction Velocity, v

C
o

n
tr

ac
ti

le
 F

o
rc

e,
 F

Constant Force
(Isotonic)

High Stiffness

Low Stiffness

F

Myosin

Integrins

ECM
Molecules

Focal Adhesion

Flexible Substrate

(A) (B)

12

43

Figure 1. Stress fiber dynamics dominate the movement of tissue cells. (A) A cell on a substrate exhibits a heterogeneous cytoplasm
containing a larger number of F-actin bundles (stress fibers) (red bundles), which terminate at integrin focal adhesions (green patches). The
sketch shows the mechanical linkages considered in this paper. The stress fibers contain myosin-II, which generates contractile tension
along the fiber that pulls on the adhesions. The focal adhesion is a complex of integrins and other regulatory molecules that bind to the
extracellular matrix. The ECM molecules are connected to flexible substrates which can deform under mechanical tension (image courtesy
of Wirtz Lab, JHU). (B) When stress fibers undergo contraction, focal adhesions provide a drag force that opposes the contraction. The
force–velocity curve of adhesion sliding can be obtained from solving equation (1). The full solution is nonlinear and shows two velocities
at constant force. At low velocities (points 1,2), higher substrate stiffness results in a lower velocity. At higher velocities (points 3,4), higher
substrate stiffness results in a higher velocity. The lower velocity regime might be appropriate for cellular conditions (see the text).

mechanically-based model showed that when the time scales
of adhesion movement and the cytoskeleton interaction are
considered, cells on stiff substrates will form numerous actin
filament bundles with many filaments, while cells on soft
substrates will have fewer bundles with a smaller number of
filaments [36]. This stiffness-dependent organization of the
cellular cytoplasm could be an important feature in cellular
mechanosensation.

In this paper, we incorporate this mechanically-based
model for mechanosensation into a simple model that describes
a cell migrating in response to a substrate stiffness gradient.
The cell model adopts the view that the cellular cytoplasm
consists of rigid F-actin bundles immersed in a viscous liquid-
like background (figure 1). Recent cell mechanics experiments
on fibroblasts support this view [17, 37]. Within this model,
actin protrusion at the leading edge is a relatively fast process
and is mainly for establishing new adhesions. Formation and
contraction of the actin bundles (or stress fibers) are relatively
slow processes and are responsible for changing the physical
location of the cell. Such a view is probably appropriate
for tissue cells such as fibroblasts and epithelial cells but is
not appropriate for lamellipodium-dominated cells such as
keratocytes. We model the formation of adhesions and stress
fibers as surface stiffness-dependent stochastic events, and
examine the contractile motion of the stress fibers to determine
the physical location of the cell. We show that this model
exhibits durotaxis. Therefore, it seems that mechanosensation
and durotaxis are two aspects of the same cellular processes,
and that the stiffness dependence of these processes may
have a mechanical basis. Predictions of the model can be
experimentally tested.

The organization of the paper is as follows. We describe
our cell model of durotaxis in five sections. (i) We review

the physics behind the movement of a focal adhesion under
force and discuss the force–velocity (F–V) relationship for
this system. (ii) We consider the movement of a single
stress fiber on a substrate with a stiffness gradient. (iii)
We consider an ensemble of stress fibers behaving according
to a few simple rules, thereby forming a minimal cellular
durotaxis model (model 1). (iv) We add a model for stiffness-
dependent formation of stress fibers to the cellular durotaxis
model (model 2). (v) We discuss the simulation scheme used to
evaluate durotaxis in these models. Following the description
of the model, we show the results of these cellular models
moving in a stiffness gradient. We then discuss these results.

2. Model

2.1. Movement of focal adhesions

A crucial element of our model is the adhesion between the
cell and the substrate. Such adhesions have been modeled
in several different contexts, mostly for adhesions on 2D
substrates [6, 7, 24, 25, 30, 36]. A number of results have
emerged: by assuming that the adhesions do not grow and
the molecular bonds between adhesion molecules are rigid, it
is possible to derive the force as a function of velocity for a
patch of moving adhesion molecules (figure 1(B)) [31]. This
result is semi-analytic and can show the explicit dependence
of the F–V curve on the substrate stiffness. The F-V curve
shows two different steady states at a given force (figure 1).
This model can also exhibit ‘stick-slip’ motion (i.e. an
oscillatory steady state). Another entirely different view of
adhesion movement postulates that the adhesion patch moves
by differential incorporation of new integrin molecules at
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different edges of the patch (i.e., treadmilling) [25]. These
models of adhesion dynamics await experimental dissection.
In this paper, we use the adhesion model of [36], neglecting
stick-slip motion, to predict the movement of adhesions on
substrates of varying stiffness.

A focal adhesion sliding over a substrate can be modeled
by two surfaces that slide relative to one another while cross-
linking proteins form transient chemical bonds between them
(figure 1). Here, the cross-linkers are integrin molecules
that bind to the substrate surface. The cross-linkers have
mechanical rigidity, which can be approximated as linear, and
are represented by springs in figure 1. These linkers bind
to elastic molecules on the substrate surface, which itself has
mechanical rigidity. If the top surface, the adhesion, is moving
at velocity v relative to the stationary substrate, and the integrin
adhesion patch is laterally rigid, then the probability density
of the cross-linking protein being bound with molecular strain
x at time t (n(x,t)) is the solution of the following equation:

∂n

∂t
+ v

∂n

∂x
= pa(x)(1 − N) − kd(x)n (1)

where kd(x) is the detachment rate as a function of strain,
pa(x) is the attachment rate probability density and the total
proportion of attached cross-linkers N = ∫ ∞

−∞ n(x, t)dx [21].
The derivation of this equation assumes that cross-linking
molecules are mechanically and chemically independent of
each other. The attachment and detachment rate functions
(pa(x) and kd(x), respectively) can be derived with a minimum
number of free parameters (e.g. [10, 11, 13, 35]) that can be
experimentally measured. In some cases, these functions can
be simplified to provide analytic solutions to equation (1) [31].

We can compute the total force applied on the ECM from
the cross-linkers in the focal adhesion from the probability
density n through the relation

F(t) = Nac

∫ ∞

−∞
κxn(x, t) dx, (2)

where κ is the linear stiffness of a single cross-linker and Nac is
the total number of integrin cross-linking proteins associated
with an adhesion patch. Note that κ is a composite stiffness
that includes the stiffness of the integrin cross-linker and ECM,
and the substrate elastic modulus [36]. Using a simple linear
elastic model, one can show that the composite stiffness is
given by

κ = CEκ̄

CE + 3κ̄
(3)

where κ̄ is the composite spring constant of the integrin–
ECM connection. C is the circumference of the assumed
circular region over which the integrin molecule exerts force,
C = 2πR, with R being the radius of the circular region. Note
that the series stiffness, κ̄ , may involve several molecules
connected in series. In the focal adhesion, these molecules
include integrins which bind to ECM collagen molecules,
and molecules such as vinculin which bind integrins to actin
filaments. The value of κ̄ is dominated by the softest of these
molecules.

The full solution of equation (1) can be found for arbitrary
sliding velocities if we assume that n is in steady state. From

this steady state solution, the force needed to sustain the sliding
velocity can be computed. The resulting F–V curve is shown
in figure 1(c). In particular, we show two curves, one for a
soft substrate and one for a stiff substrate. At low sliding
velocities, the F–V curve is roughly linear, F ∼ bv, where b
is a friction coefficient. Note that b is an increasing function
of E, Young’s modulus of the substrate, so that stiffer surfaces
will result in a larger friction constant if the force and Nac are
equivalent. On the other hand, when the sliding velocity is
large, the F–V curve is no longer linear. The dependence of
sliding velocity on the substrate stiffness is also reversed. On
stiffer substrates, the adhesions slide faster for the equivalent
force.

Using realistic molecular parameters and substrate moduli
of 1–100 kPa, however, it appears that the high velocity regime
does not represent adhesion movement in cells. Typical cell
adhesion velocities are around 1–10 nm s−1, and combined
with integrin kinetics of ∼1 s−1 [33] the adhesion velocity is
slow when compared with molecular dimensions and binding
kinetics.

By assuming steady state, we neglect periodic solutions
to equation (1). However, under some conditions, oscillatory
solutions have been observed [31]. These oscillatory solutions
seem to be related to ‘stick-slip’ motion seen in some friction
experiments. It has been suggested that stick-slip may be
important in cell-surface adhesion sliding (e.g. [7]). The
exact details of these oscillations are strongly dependent on
the details of the adhesion, such as the number of molecules,
the elasticity of the membrane surrounding the adhesion
and the inertial and/or viscous properties of the adhesion.
Under some choices of these parameters, it has been shown
that the relationship between average sliding rate and force
can be inverted, whereby adhesions slide faster on stiffer
substrates [7]. The stick-slip motion, coupled with the
inverted dependence of the slip velocity on substrate elasticity,
complicates the movement of adhesions and cells on flexible
surfaces. In general, however, in simulations of these stick-
slip motions, we find that the steady-state sliding rate is a
good approximation to the average sliding rate (simulations
not shown). In our models, we neglect this stick-slip adhesion
sliding; in section 4, we discuss how stick-slip motion might
influence our results.

2.2. Movement of a single stress fiber

Consider a stress fiber of length � connecting two adhesion
complexes on a two-dimensional substrate whose Young’s
modulus is given by E(x, y) = αx + β. The stress fiber
will exert a force F on each adhesion. The adhesions will then
move against the frictional force of the substrate. As discussed
in the previous section, if the adhesions move slowly, the F–V
relationship for a single adhesion is

F = b(E)v, (4)

where b(E) is the friction coefficient for the adhesion
substrate, neglecting ‘stick-slip” motion.

The friction coefficient varies with the modulus of the
substrate. In [31] an explicit expression for B has been derived:

b(E) = Nacκ̄
CE

CE + 3κ̄

ka

k0
d

(
1

ka + k0
d

)
. (5)
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From this expression, we can compute the motion of a
contracting stress fiber on a graded substrate. Consider a
stress fiber oriented along the x-axis with its center located at
the origin. It applies a force of magnitude F to adhesions on
each end, and thus the motion of each end (we denote the left
adhesion ‘−’ and the one to the right ‘+’) is described by

dx±
dt

= v± = ∓ F

b(E(x±, y±))
. (6)

Note that, for simplicity, we neglect the F–V and force–length
relations of the molecular motors generating the force. From
this expression, we can compute the center of mass motion
(assuming a fiber of uniform density), which is

dxcm
dt

= 1

2

(
dx−
dt

+
dx+

dt

)

= �(F)
α�

β2

(
1

1 − ( 1
2α�/β)2

)
(7)

where we have defined

�(F) = F

2

ka + k0
d

Nac

k0
d

ka

3κ̄

C
. (8)

Thus, we see that on a graded substrate, the center of mass
motion of the stress fiber is not zero, instead moving in the
direction of higher substrate stiffness. The simple friction
model of equation (4) is able to predict the stress fiber velocity
as a function of integrin binding/unbinding rates (ka and k0

d ,
respectively), the size of the adhesions (Nac), the surface
Young’s modulus at the stress fiber’s center of mass (β) and
the gradient of Young’s modulus (α).

For an ensemble of stress fibers centered at the origin in
1D, if the length of the stress fiber is distributed as p(�), then
the expected center of mass velocity is〈

dxcm
dt

〉
�

= �(F)
α

β2

∫ ∞

0
d�p(�)

[
�

1 − ( 1
2α�/β)2

]
. (9)

For an ensemble of stress fibers in 2D starting with their centers
of mass at x = 0, we can also compute the center of mass
motion as the fibers contract. We must consider an additional
coordinate: the orientation of the stress fiber with respect to
the x-axis. A fiber of length � applying force F that makes an
angle θ with the x-axis has a motion in the x-direction which
is the same as that of a fiber of length � cos θ applying force
F cos θ . Therefore, we have〈

dxcm
dt

〉
θ

= 1

π

∫ π

0
dθ�

α� cos2 θ

β2

[
1

1 − ( 1
2α� cos θ/β)2

]
.

(10)

Combined with the previous result with variable �, in the limit
where (α�/2β)2 � 1, the expected velocity approaches〈

dxcm
dt

〉
θ,�

≈ �
α〈�〉
2β2

(11)

which is half the expected velocity of a fiber oriented along
the x-axis.

These results, specifically equations (7) and (11), show
that if only contraction of stress fibers is taken into account
(neglecting surface stiffness-dependent stress fiber formation),

then the center of mass motion of a collection of stress
fibers will exhibit a net movement toward higher stiffness.
This model predicts that both the gradient of the stiffness
α = ∇E(x, y) and the nominal stiffness β contribute to the
expected migration velocity. The expected velocity increases
in proportion to the stiffness gradient but decreases with
nominal stiffness squared. These simple predictions can be
easily tested in experiments.

Note that here (and in the following sections) we refer to
the expectation value of the stress fiber’s (or cell’s) velocity.
This value is distinct from the expectation value of the stress
fiber’s (or cell’s) speed. For example, a stress fiber undergoing
uniform Brownian motion has an expected velocity of zero,
yet its expected speed is non-zero.

2.3. Model 1: a friction model for a migrating cell

We consider a migrating cell as a liquid-like cytoplasmic pool
containing rigid F-actin contractile bundles (stress fibers). The
bundles are randomly oriented, and continuously assemble
and disassemble from the cytoplasm. The center of mass of
the bundles coincides with the physical location of the cell.
One could argue that the cell is located at the position of the
nucleus. We assume that the nucleus location is approximately
at the center of mass of the bundles because the majority of
the stress fibers are perinuclear and connected to the nucleus
during contraction [19]. The tension, F, in the stress fiber is
assumed to be length and velocity independent and is a free
parameter. The stress fibers contract according to the equation
of motion

F = b+v+ = −b−v−, (12)

where the subscripts + and − refer to adhesions on opposite
ends of the fiber.

New actin protrusions at the cellular periphery are mainly
used to establish new adhesion sites. These sites mature and
develop into actin stress fiber bundles containing myosin. The
contraction of these fibers is relatively slow when compared
to protrusion formation.

In this model, which we call model 1, we assume an
approximate overall conservation of actin bundle mass. Thus,
if a stress fiber contracts to a minimum length: �min = 200 nm,
then the stress fiber is assumed to disappear, and a new fiber
with length � is formed at random orientation and position
within radius Rc around the current center of mass of the cell.

2.4. Model 2: including a kinetic description of stress fiber
formation

Rather than assuming that actin bundle mass is conserved, we
can consider the formation of new stress fibers as stochastic
events characterized by one or more rate constants. These rate
constants can depend on the local stiffness of the substrate,
for example, we might expect that on stiff surfaces the
probability of forming bundles is higher than on soft substrates.
Therefore, we modify our previous model (model 1) to include
the stiffness dependence of stress fiber formation, generating
model 2. In this model, we introduce a phenomenological rate
density for stress fiber formation, psf(E), which determines

4



Phys. Biol. 8 (2011) 015011 B Harland et al

the single stiffness-dependent rate constant of stress fiber
formation ksf(E(x, y)) in some small area dA = dx dy around
point x, y through the relation ksf(E) = psf(E) dx dy. The
dependence of psf on E is shown in figure 3.

The rate constant of stress fiber formation, ksf , is
determined by the mechanism of stress fiber formation which
has been investigated experimentally and theoretically [34,
40, 41]. Experimentally, it is clear that stress fibers are
formed preferentially on stiff surfaces. Thus, we have
selected a monotonically increasing function that becomes
saturated on very stiff surfaces to be qualitatively consistent
with this observation. A recent theoretical study argues that
cross-linking and bundling between actin filaments and the
movement of adhesions are coupled together to generate these
actin bundles [36]. The shape of ksf(E) was selected to be
consistent with this theoretical mechanism. Having a single
rate constant means that we assume that the fiber formation
process is dominated by a single rate-limiting process.

We selected parameters such that the transition between
stress fiber-forming and stress fiber-free cells occurs
approximately at E0 ≈ 6 kPa, and so that a cell on a 6 kPa
substrate will have ≈ 30 fibers at equilibrium. This function
of course can be adjusted to allow for more or less stress fibers
or a different transition stiffness E0. Note that ksf(E) is taken
to be twice the rate of formation of stable adhesion complexes,
kac,

ksf(E(x, y)) = 1

2
kac(E(x, y)) (13)

kac(E) =
(

pmin +
pmax − pmin

1 + exp[−γ (E − E0)]

)
dx dy. (14)

It is assumed that pairs of successive adhesions will be joined
with a stress fiber. γ is chosen to be 1000 Pa−1, while pmin and
pmax are, respectively, 5 × 10−5 and 5 × 10−4 s−1μm−2.

Given these assumptions, we investigate the overall
expectation value of the velocity of an ensemble of cells for
these two simple models. In model 1, the fiber dynamics are
only governed by differential drag of the focal adhesions, and
the number of stress fibers is held fixed, regardless of substrate
stiffness. In model 2, the fiber movement is treated as in model
1, but the rate of appearance of fibers is determined by ksf .
Therefore, the steady-state number of fibers in the cell is also
a function of the substrate stiffness. The parameters used in
the models are estimated from typical molecular values, and
are summarized in table 1.

2.5. Simulation scheme

The goal of the simulations is to determine the dependence
of the expected cell migration velocity on two substrate
parameters: (i) cell stiffness, characterized by Young’s
modulus, E = β, and (ii) the stiffness gradient, ∇E = α.
Therefore, for a circular cell of radius Rc on a 2D substrate,
the value of E(x,y) at any point within the cellular boundary
(
√

x2 + y2 < Rc) is given by E(x, y) = αx + β, assuming
that the origin is at the cell center. The general setup for the
simulations is as follows.

Table 1. Parameters used and their values in the models. These
parameters are estimated from typical molecular properties. Our
results only depend weakly on the exact values of the parameters.

Parameter Description Value Units

κ̄ Composite stiffness of
adhesion-ECM molecule

25 pN nm−1

R Radius of a single ECM
molecule

1 nm

k0
a Unstrained binding rate of

AC-ECM
1 s−1

k0
d Unstrained off rate of

AC-ECM
1 s−1

Nac Number of adhesion
molecules per complex

103 –

Rc Cell radius 20 μm
Nsf Number of stress fibers 30 –
E Young’s modulus of substrate 102–104 Pa
F Tensile force of SF 500 pN

(i) A starting configuration is generated in which a desired
number of stress fibers are arranged within a circle of
radius Rc centered at the origin (the cell membrane)
such that the endpoints of each stress fiber are positioned
according to a uniform distribution.

(ii) An equilibration period (200 s) simulation is carried out
by integrating the equation of motion (equation (12)) in
order to obtain a starting number and arrangement of
stress fibers. As the individual fibers move, so does their
collective center of mass. The center of the cell membrane
(the circle of radius Rc into which new fibers are added)
moves with the stress fiber center of mass (figure 2(a)).

(iii) The cell and the collection of stress fibers are repositioned
so that they are again centered at the origin, and the cell
is allowed to move over a short period (50 seconds) and
its position is measured (figure 2(B)).

(iv) Steps 1–3 are performed until the averaged cellular
velocities have converged to the expected cell velocity
(figure 2(B)).

In the case of model 2, the Gillespie algorithm [16, 32]
is used. The times at which mature stress fibers appear in our
model cell are sampled from the distribution

p(t) = e−Kt , (15)

where K is the escape rate for a cell with any particular number
of stress fibers, Nsf ,

K =
∫

cell
dx dypsf(E(x, y)). (16)

During a simulation, when these stochastic timepoints are
encountered, a new fiber is introduced with the adhesions
placed at a position (x, y) within Rcell of the cell center
according to the probability

pac(x, y) = 1

K
pac(E(x, y)). (17)

In the absence of a stiffness gradient, the rate of fiber addition
is determined by the constant K which is independent of cell
position. Therefore, although individual cells perform random
walks, net cell movement will not occur and Nsf ∼ K(E) will
have a well-defined steady-state value (see figure 3).
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Figure 2. Simple model of the migrating cell considered in this paper. (A) The cell is a collection of stress fibers undergoing contraction
and birth/death process. The creation of stress fibers is stochastic and centered at the center of mass of the cell. The rate of fiber creation
can depend on the local substrate stiffness. The contraction of the fiber is governed by equation (12). (B) This simple model shows
durotaxis if there is a substrate stiffness gradient in the x-direction. The average cell position moves toward higher stiffness (upper plot).
The expected velocities in the x- and y-directions are obtained by averaging over many simulations (lower plot).
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Figure 3. Results for cell model 2 based on both stress fiber
addition kinetics and stiffness-dependent drag coefficients. This plot
shows that (to zeroth order) the number of stress fibers in our cell
model depends on the addition rate for adhesion complexes. The
rate constant, ksf , is an addition rate density per cell area. Below 3
kPa, stress fibers disappear more rapidly than they form, and during
equilibration, all the stress fibers are lost and durotaxis is not
possible.

3. Simulation results

For both models, individual trajectories obtained from the
simulations of the model cell in the absence of a stiffness
gradient exhibit motility in the form of a cellular random
walk with zero expected velocity (〈v〉 = 0 but non-zero speed
〈v2〉 > 0). When a stiffness gradient is introduced in the

x-direction, there is a positive expected velocity, 〈vx〉, while
the y-component, 〈vy〉, remains zero.

The dependence of the simulated cell migration expected
velocity on the substrate parameters E and ∇E is shown in
figure 4 for model 1. As predicted by equation (7), this
expected velocity is proportional to the stiffness gradient and
inversely proportional to the square of Young’s modulus. The
proportionality constant in the case of the single stress fiber
(figure 4, bottom) is 0.68 kPa μm2 s−1, in agreement with
equation (10) when equation (10) is integrated numerically
using the expected value for the stress fiber length, 〈�〉.

When model 2 is studied, more complex and interesting
behavior emerges. Again, when there is no gradient, there is
no net migration. The average number of stress fibers in the
cell, however, now depends on the stiffness of the substrate.
This is in accord with experimental observations of cells on
varying substrates: on soft surfaces, the cytoplasm is generally
diffuse and devoid of stress fibers, and on stiff surfaces, a larger
number of fibers and bundles are seen.

When a stiffness gradient is introduced in model 2, net
migration occurs. Figure 5, bottom, shows the relationship
between the expected migration velocity and E. First, cells on
a substrate below certain threshold, E ≈ 2.5 kPa, have zero
stress fibers at steady state and therefore are not observed to
undergo durotaxis. Above this threshold, the shapes of the 〈v〉
curves are observed to be a combination of four features:

(i) As observed in model 1 based on differential drag,
〈v〉 ∝ ∇E.

(ii) Also as before, at large E’s, expected velocities fall off as
1/E2.

(iii) At intermediate stiffness, E ∼ 6 kPa, the expected
velocities are roughly proportional to the gradient of the
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moves slower as the background stiffness is increased.
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Figure 5. Results for cell model 2 based on both stress fiber
addition kinetics and stiffness-dependent drag coefficients. The
migration velocity of the cell depends upon three factors. 1.
Migration is enhanced in regions where E coincides with a large
gradient in ksf(E) (top panel) and not supported when E is below
some threshold value. 2. Larger migration velocities are observed
for large E gradients. This relationship is linear as observed in the
previous model.

rate constant, dkac/dE. It is this quantity which biases
the position of the newly formed stress fibers. Because
we have defined the center of the cell as the center of
mass position of the existing stress fibers, the addition of
new fibers provides an additional contribution to the net

direction of cell migration. In fact, when simulations are
carried out in which the drag coefficient, B, is independent
of E, the 〈v〉–E curves bear the same shape as dkac/dE.

(iv) For most stiffness gradients, there is an optimal stiffness
where the expected migration velocity is the highest. This
result can be explained by the fact that at low stiffnesses,
the cell does not have significant number of stress fibers
and therefore does not move. At high stiffnesses, the net
drag on the adhesions is too high, and the cell also does
not move quickly. Thus, it is at intermediate stiffnesses,
where stress fibers form yet adhesion drag is not too high,
that maximum durotaxis speed occurs.

Therefore, we conclude that the dependence of 〈v〉 on
∇E contains (additive) contributions from both the differential
slippage of section 2.2 and the gradient of the rate constant
(which is also a consequence of ∇E).

When these results are taken together, we see that model 2
seems to be broadly consistent with experimental observations:
cells on soft substrates do not form a significant number of
stress fibers; cells on very stiff surfaces have a larger number
of fibers. Further, the model makes predictions that can be
experimentally tested, for example, that only at intermediate
stiffnesses do cells move toward regions of high stiffness. Our
model also makes specific predictions on the dependence of
the expected migration velocity on the absolute value of the
substrate modulus as well as the gradient of the modulus.
Experimental tests of these predictions would help shed light
on the details of both mechanosensation and durotaxis.

4. Conclusions and discussion

A detailed understanding of the mechanisms of cell
mechanosensation and durotaxis is an important and pressing
problem in cell biophysics, as mechanosensation and
durotaxis have been implicated in such medically-relevant
processes as stem cell lineage determination and cancer
metastasis, respectively. Recent theoretical work suggests
that mechanosensation may have a mechanical basis. In
particular, the stiffness-dependent sliding of focal adhesions
can lead to stiffness-dependent forces on the cytoskeleton that
then result in different steady-state numbers of stress fibers,
replicating the experimental observation that stress fibers form
preferentially on stiff surfaces [36].

Here, we introduce a cellular model of durotaxis based on
formation and contraction of actin stress fiber bundles. This
cellular model relates the dynamics of subcellular structures
to the expected migration velocity of the cell. Using the
adhesion model that predicts faster sliding on soft surfaces,
differential substrate stiffness at the two ends of a stress fiber
results in a net movement of the fiber toward a stiffer substrate.
We are therefore able to show that differential drag alone is
sufficient to result in durotaxis in a cell (model 1). In order
to replicate the stiffness-dependent formation of stress fibers,
we introduce a kinetic model of stress fiber formation and
couple this model to the contraction dynamics (model 2).
This model shows a range of behaviors that are reasonable.
Therefore, it seems that mechanosensation and durotaxis are
simply two manifestations of the same stiffness-dependent
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cellular adaptations, and that these adaptations may have a
mechanical basis.

Absent from this model is a coupling between the direction
of cell migration and stress fiber alignment, or cell shape
(e.g. [41]). Including a mechanism for stress fibers to align
with the direction of cell movement will increase the rate of
durotaxis. Equation (10) provides a relationship for stress fiber
orientation and expected velocity. Such orientation effects
would have a small influence on our qualitative results but
might tend to bias the maximum durotaxis rate toward stiffer
surfaces (i.e. provide a rightward shift of the peaks in figure 5).
Allowing cell shape to change as a function of time or stress
fiber position would also affect the model, whereby if the cell’s
dimensions were increased along the stiffness gradient, the cell
would move faster. Again, if cells tend to extend along the
stiffness gradient in a stiffness-dependent fashion, we would
see a rightward shift of the peaks in figure 5.

The model makes specific predictions on the dependence
of the expected migration velocity as a function of substrate
stiffness gradient, ∇E, and the absolute value of the substrate
stiffness. Perhaps the simplest prediction of the model is
that durotaxis does not occur either on very stiff or very soft
surfaces, where in the former case, an insufficient number of
stress fibers form to power movement, and in the latter case
adhesion sliding ceases to be stiffness dependent (i.e. equation
(5) becomes constant at large E).

Another experiment could determine the relative
contribution of adhesion sliding to stiffness-dependent stress
fiber formation, and could provide insight into the effect
of substrate stiffness on adhesion dynamics. In particular,
our model predicts that in the absence of stiffness-dependent
adhesion sliding, the maximum expected durotaxis rate occurs
when the slope of the stress fiber formation rate versus
stiffness plot is maximized. When stiffness-dependent sliding
is included in the model, the maximum durotaxis rate shifts to
softer surfaces, as adhesion sliding is fastest on these surfaces.
Thus, simultaneous measurement of the probability of stress
fiber formation and durotaxis as a function of surface stiffness
could determine the relative contribution of these two effects.
If, as suggested by some models, adhesions slide more slowly
on soft surfaces, then the maximum durotaxis rate should shift
to stiffer surfaces. Different models of adhesion sliding are
discussed in more detail in the next section.

If these experiments support the predictions of our model,
additional experiments could further probe details of the
model. For example, the model shows that an important
factor that can influence the net migration of the cell on a
graded substrate is the rate of formation of F-actin stress
fibers. In an earlier work, two of us showed that the rate
of fiber formation depends on the cross-linking dynamics of
actin filaments and the rate of actin filament turnover in the
cytoplasm [36]. By manipulating these factors, it is possible to
influence the fiber formation process, which would ultimately
influence cell migration speed. For example, by increasing the
number of stress fibers, perhaps by over-expressing a cross-
linker, it might be possible to induce durotaxis on surfaces that
are too soft to support durotaxis in wild-type cells.

4.1. Stick-slip and treadmilling

The model we used to describe the adhesion movement is
relatively simple, neglecting oscillatory steady states that have
been identified with stick-slip motion. It has been argued
that stick-slip-like motion is important in adhesion sliding
[3, 7]. Interestingly, these models can show an inversion
of the stiffness-dependent adhesion sliding used here, where
stick-slip can cause adhesions to slide fastest on soft surfaces
[7]. In this case, our model that neglects stiffness-dependent
adhesion formation (model 1) predicts that cells should migrate
toward softer surfaces—reverse durotaxis. In order to observe
durotaxis, stiffness-dependent stress fiber formation would
have to more than compensate for this effect. Intriguingly,
this antagonistic effect between adhesion sliding and stress
fiber formation could result in a situation where cells migrate
toward a particular stiffness—that is, on stiff surfaces cells
would exhibit reverse durotaxis, while on soft surfaces they
would exhibit durotaxis.

Besides these models of friction-like sliding of
adhesions, some experimentalists and theorists have argued
for treadmilling of adhesions, where adhesion motion is
accomplished by adding new molecules preferentially to the
side in the direction of force and removing them from the
opposite side [24]. While the surface stiffness dependence of
this process is somewhat unclear, our model suggests that as
long as sliding rate decreases with increasing surface stiffness,
this mechanism could result in cell durotaxis. If the opposite
is true, and sliding rate increases with surface stiffness,
then stiffness-dependent adhesion formation would need to
compensate for the reverse durotaxis effect of adhesion sliding.
Detailed experiments on adhesions have yet to determine
which, if any, of these adhesion models is correct; however,
a recent experiment seems to support frictional sliding rather
than treadmilling [3].

4.2. Durotaxis in 3D

The present model is best applied to cells on 2D substrates,
such as epithelial cells. For other tissue cells in vivo, a number
of features are significantly different [4, 14]. For example,
large focal adhesions do not seem to form in cells in a 3D matrix
[14], although adhesions to collagen fibers must be present
for cells to adhere in 3D. The actin cytoskeleton also seems
to be organized differently in 3D. Nevertheless, contractile
forces in the cytoskeleton and adhesion movement must also
play roles in 3D durotaxis and cell motility. Some of the
modeling concepts in the present paper can be extended to the
3D environment. Further studies on cell movement in 3D may
reveal the role of matrix stiffness directing cell migration.

4.3. Conclusions

Using two observations derived from a mechanically-based
model for mechanosensation, i.e. that adhesions slide more
slowly and that stress fibers form most readily on stiff
surfaces, we have shown that cells that exhibit these properties
also exhibit durotaxis, directed migration toward surfaces
of higher stiffness. Thus, we are able to demonstrate that
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mechanosensation and durotaxis may be explained by the same
basic processes, which may have a mechanical, as opposed to a
biochemical, basis. Our durotaxis model connects subcellular
and molecular properties to properties at the whole cell level,
while still retaining sufficient simplicity to allow analytic
calculations to predict its behavior in some limiting cases.
The model also makes a variety of predictions that can be
experimentally tested, for example, that durotaxis should
be observed only at intermediate stiffnesses. By carrying
out these experiments, various details of the model may be
revised, leading to a deeper understanding of both durotaxis
and mechanosensation.
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