
Bulletin of Mathematical Biology (2010) 72: 400–431
DOI 10.1007/s11538-009-9452-4

O R I G I NA L A RT I C L E

On the Modelling of Biological Patterns
with Mechanochemical Models: Insights from Analysis
and Computation

P. Moreoa,c,∗, E.A. Gaffneyd,e, J.M. García-Aznara,b, M. Doblaréa,b

aGroup of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering
Research, University of Zaragoza, Zaragoza, Spain

bCIBER-BBN Centro de Investigación Biomédica en Red En Bioingeniería, Biomateriales
y Nanomedicina, Aragón Institute of Health Sciences, Zaragoza, Spain

cEBERS Medical Technology S.L., Zaragoza, Spain
dCentre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
eOxford Centre for Collaborative Applied Mathematics, Mathematical Institute, University
of Oxford, Oxford, UK

Received: 24 February 2009 / Accepted: 14 August 2009 / Published online: 14 November 2009
© Society for Mathematical Biology 2009

Abstract The diversity of biological form is generated by a relatively small number of
underlying mechanisms. Consequently, mathematical and computational modelling can,
and does, provide insight into how cellular level interactions ultimately give rise to higher
level structure. Given cells respond to mechanical stimuli, it is therefore important to
consider the effects of these responses within biological self-organisation models. Here,
we consider the self-organisation properties of a mechanochemical model previously de-
veloped by three of the authors in Acta Biomater. 4, 613–621 (2008), which is capable
of reproducing the behaviour of a population of cells cultured on an elastic substrate in
response to a variety of stimuli. In particular, we examine the conditions under which
stable spatial patterns can emerge with this model, focusing on the influence of mechan-
ical stimuli and the interplay of non-local phenomena. To this end, we have performed
a linear stability analysis and numerical simulations based on a mixed finite element
formulation, which have allowed us to study the dynamical behaviour of the system in
terms of the qualitative shape of the dispersion relation. We show that the considera-
tion of mechanotaxis, namely changes in migration speeds and directions in response
to mechanical stimuli alters the conditions for pattern formation in a singular manner.
Furthermore without non-local effects, responses to mechanical stimuli are observed to
result in dispersion relations with positive growth rates at arbitrarily large wavenumbers,
in turn yielding heterogeneity at the cellular level in model predictions. This highlights
the sensitivity and necessity of non-local effects in mechanically influenced biological
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pattern formation models and the ultimate failure of the continuum approximation in their
absence.

Keywords Pattern formation · Finite element simulation

1. Introduction

The appearance of spatiotemporal patterns in dynamical systems driven away from equi-
librium is due to the emergence of symmetry-breaking bifurcations (Cross and Ho-
henberg, 1993). These can be classified on the basis of a linear stability analysis of
a homogeneous steady state, revealing three types of instabilities: (1) oscillations uni-
form in space and periodic in time that emerge due to a Hopf bifurcation; (2) pat-
terns stationary in time and oscillatory in space, after a Turing bifurcation; and (3) pat-
terns oscillatory in both time and space, resulting from a wave bifurcation (Yang et al.,
2002). There are numerous situations of great interest where spatiotemporal patterns
arise and play an important role; these include fluid dynamics (Cross and Hohenberg,
1993), chemical reactions (Field and Burger, 1985), solidification (Flesselles et al., 1991),
non-linear optics (Moloney and Newell, 1990), and biological systems (Turing, 1952;
Murray, 1989).

In particular, two broad classes of spatial patterns are pre-eminent in biological phe-
nomena: time-dependent patterns, involving propagating waves, and stationary patterns,
typical of morphogenesis. Examples of the former include pulse propagation in nerves
(Hodgkin and Huxley, 1952; FitzHugh, 1961; Nagumo et al., 1962) and cardiac electro-
physiology (Glass and Hunter, 1990; Hunter et al., 2003). As reviewed by Murray (1989),
stationary pattern formation has been investigated extensively as the driving mechanism
for numerous morphogenetic self-organisation systems including: the regeneration and
transplantation in hydra (Gierer and Meinhardt, 1972), mammalian coat markings (Mur-
ray, 1981a, 1981b), pigment patterns on mollusc shells (Meinhardt et al., 2003), periodic
patterns of feather germs, and cartilage condensations in limb morphogenesis (Murray
and Oster, 1984; Miura et al., 2006).

Two fundamental theoretical paradigms have been proposed as frameworks for under-
standing the underlying mechanisms involved in morphogenesis. The first is Wolpert’s
phenomenological French flag concept of positional information, which hypothesises that
a spatial pattern of chemicals called morphogens initially develops and subsequently
drives a heterogeneous cell response (Wolpert, 1969). In this approach, pattern forma-
tion and morphogenesis take place sequentially. An alternative view on biological pattern
generation, pioneered in Oster et al. (1983), comes from the so-called mechanochemical
approach, as reviewed by Murray et al. (1988). The important additional feature of these
models is the consideration of the effect of mechanical forces exerted by cells on the
deformation of the underlying extracellular matrix. Thus, pattern formation and morpho-
genesis are coupled. While originally proposed for the modelling of mesenchymal mor-
phogenesis, this framework has also been applied to the formation of vascular networks
(Manoussaki, 2003; Namy et al., 2004), the epithelium (Mittenthal and Mazo, 1983), and
tumour angiogenesis (Holmes and Sleeman, 2000). A core feature and theoretical ad-
vantage of this approach is the interaction between mechanics and geometry, i.e. form,
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allowing potential self correcting mechanisms, crucial for embryonic development (Mur-
ray et al., 1988). However, the ensuing models are considerably more complex than those
involving pure reaction and diffusion. In particular, in pattern formation studies, they gen-
erally exhibit complicated linear dispersion relations with diverging growth rates at large
wavenumbers that can only be avoided by the addition of long range effects (Murray,
1989).

We must emphasise that mechanochemical models that couple, on the one hand,
the mechanical behaviour of an underlying extracellular matrix (ECM) or substrate,
by means of the balance of linear momentum and constitutive equations; and, on the
other hand, the evolution of a population of cells living on the ECM, by means of
reaction-diffusion equations, have applications that stretch much further than morpho-
genesis in development biology. Any theoretical effort aimed at modelling the influ-
ence of mechanics or topography on cell migration, proliferation, and differentiation
from a continuum perspective is especially suited to such a framework. Such phenom-
ena are common and diverse (Schwarz and Bischofs, 2005): cells tend to orient along
directions of ECM fibres (contact guidance); they also have a propensity to navigate
in the ECM in response to its mechanical resistance (mechanotaxis) and to migrate in
favour of stiffer (durotaxis) or strained (tensotaxis) substrates; they can also proliferate
at a rate dependent on the stiffness of the substrate (Ghosh et al., 2007) and differen-
tiate in response to the mechanical stimuli they are able to sense (Pavlin et al., 2000;
Cullinane et al., 2003); finally, they can adhere to surfaces in a topography dependent
manner (Park et al., 2001). The number of medical and biological situations where these
mechanical effects play a decisive role is enormous: tissue engineering, bone fracture
healing, endosseous implant osseointegration, and wound healing, among many others.
Such applications are driving a research programme aimed at developing our understand-
ing of, and our ability to simulate, mechanochemical models. This is exemplified by
Moreo et al. (2008), where three of the current authors developed a mechanochemical
model with the aim of investigating the numerous influences of mechanics on cell behav-
iour and proliferation. In particular, this study considered the variation of forces exerted
by cells due to the mechanical state of the ECM, and was able to reproduce the effects of
durotaxis and tensotaxis as well as including the influence of ECM stiffness on the rate of
cell proliferation.

Note that the numerical treatment of fully coupled mechanochemical models has com-
monly been addressed via finite difference techniques, with all the limitations that this
approach involves, especially in resolving domains with complex geometries, typical of
biological problems. A few works have proposed more versatile computational imple-
mentations (see, for example, Garikipati et al., 2004).

Hence, the objective of the current study is to investigate and delimit conditions for
biological self-organisation in the above mentioned mechanochemical model of Moreo
et al. (2008), in particular focussing on the influence of long range effects, such as duro-
taxis/tensotaxis. Thus, a linear stability analysis of the model around the homogeneous
steady state of interest has been implemented in conjunction with a numerical simulation
via a mixed finite element formulation.

The linear stability analysis yields numerous generic insights and conclusions con-
cerning the interplay among long range phenomena, haptotaxis, durotaxis/tensotaxis and
cell forces in self-organisation. The computational simulations additionally validate the
linear analysis sufficiently close to the homogeneous steady state of relevance. They also
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illustrate the robustness of the pattern shape to randomness in the initial conditions and
show that dispersion relations with positive growth rates at arbitrarily large wavenum-
ber give rise to pattern at arbitrarily small wavelength, where the limit of validity of any
continuum model is reached.

2. Description of the model

As previously mentioned, the model proposed in this section is an extension of the
mechanochemical model presented in Moreo et al. (2008), which was designed to exam-
ine the interaction of a cell population with a surrounding tissue. The two main features
of the model are:

• Unlike most existing mechanobiological models, an expression for the cellular flux is
not directly postulated, but motivated from thermodynamic arguments (see Doblaré and
García-Aznar, 2005 for a detailed description of this procedure). Using this approach,
a new term appears in the cellular flux that depends on cell forces applied on the matrix
which reproduces the well-known phenomena of durotaxis and tensotaxis.

• The traction pcell exerted on the ECM per cell is no longer assumed to be constant.
According to recent experimental evidence, it is clear that adherent cells anchor to a
substrate and then exert contractile forces to explore the properties of their environ-
ment, which is integral to the process of mechanosensing (Discher et al., 2005). The
magnitude of the forces exerted by a cell signals the stiffness and strain of the substrate
to which the cell is anchored. Therefore, the forces denoted by pcell are not constant. In
the modelling, as detailed below, an expression for pcell is considered which represents
the active behaviour of the actomyosin contractile machinery and the passive behaviour
of the mechanically relevant constituents of the cell.

In Section 2.1, we introduce the strong form of the model. Next, in Sections 2.2–2.4,
a basic discussion on the biological and mechanical basis of each model equation is given.
The reader is referred to Moreo et al. (2008) for further details concerning the physical
interpretation of the equations. Finally, some model assumptions are further discussed in
Section 2.5.

2.1. Strong form of the model

The main variables of the model are the cellular concentration, n, the displacement of the
ECM, u, and the density of the ECM, ρ, which are functions of time t and the spatial
position x. A continuum approach is followed, and consequently the model is based on
fundamental conservation equations for n and ρ and the balance of linear momentum
for the ECM. Furthermore the hypothesis of small strains and displacements is assumed
throughout the text.

Under these assumptions, let the domain be an open, simply connected region in
space Ω . The boundary of Ω is supposed to be sufficiently smooth, and is denoted
by Γ = ∂Ω , with outward unit normal η. Further, let Γ = Γg ∪ Γm = Γq ∪ Γl , where
Γg ∩ Γm = Γq ∩ Γl = ∅.

In the strong form, we have the following problem:
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Find n,ρ : Ω × [0, T ] −→ R, u : Ω × [0, T ] −→ R
3 such that

∂n

∂t
+ ∇ ·

[
−D1∇n + D2∇

(∇2n
) + h1n∇ρ − h2n∇(∇2ρ

) + n
∂u
∂t

+ M∇ · σ cell

]

= r(θ)n

(
1 − n

N

)
, (1)

∂ρ

∂t
+ ∇ ·

[
ρ

∂u
∂t

]
= 0, (2)

∇ · [σ ecm(u) + σ cell(u)
] + ρfext = 0, (3)

on Ω × (0, T ), where θ
def= ∇ · u and D1,D2, h1, h2,M,N are non-negative parameters.

We further impose the following boundary conditions (Wells et al., 2006):

n = g on Γg × (0, T ), (4)

∇n · η = q on Γq × (0, T ), (5)

∇2n = l on Γl × (0, T ), (6)

Jn · η = m on Γm × (0, T ), (7)

u = 0 on Γ × (0, T ). (8)

Finally, we have the initial conditions:

n(x,0) = n0(x) in Ω, (9)

ρ(x,0) = ρ0(x) in Ω, (10)

where Jn is the total flux of Eq. (1). Note that the boundary condition (8) implies that the
normal flux of ρ on Γ is zero, so no extra boundary condition is needed for ρ.

2.2. Cell concentration n(x, t)

Coefficients D1 and D2 of Eq. (1) characterise short and long range diffusion, respec-
tively, and h1 and h2 stand for short and long range haptotaxis parameters. M is a coeffi-
cient that quantifies the influence of mechanical stimuli on the direction and magnitude of
cell migration velocity. Finally, the source term describes the kinetics of the cellular pop-
ulation by means of a simple logistic growth law with maximum carrying capacity N and

rate of cell proliferation r dependent on the ECM volumetric strain θ
def= ∇ · u. Note that

the flux term that depends on the temporal derivative of the ECM displacement accounts
for passive convection, i.e. since cells are attached to the ECM, they flow passively as a
consequence of its deformation.

Observe that the flux term that depends on the divergence of the cellular stress tensor
σ cell is responsible for a preferential migration of cells towards more strained or stiffer
areas. It is reasonable to assume that under low cell densities σ cell is proportional to the
force applied by a single cell pcell and to the local cell density n. However, at high cell



On the Modelling of Biological Patterns 405

densities σ cell tends to saturate or even decrease. Additionally, the fact that cellular filopo-
dia can extend beyond their immediate neighbourhood prompts us to include a non-local
effect, in the sense that σ cell depends not only on the local cell density n, but also on the
average density of the local neighbourhood, measured by ∇2n (Murray, 1989). Hence, the
following expression is proposed:

σ cell = pcell
n + β∇2n

1 + λn2
I, (11)

where λ characterises the cellular stress saturation, β is a measure of the non-local effect
and I the second order identity tensor. Note that we are assuming that forces exerted by
cells are isotropic, which should be considered as a first approximation in model develop-
ment.

The active pressure pcell transmitted to the ECM by a single cell is a continuous func-
tion of the ECM volumetric strain θ (Moreo et al., 2008):

pcell =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Kpasθ, θ < θ1,

Kactpmax
Kactθ1−pmax

(θ1 − θ) + Kpasθ, θ1 ≤ θ ≤ θ∗,
Kactpmax

Kactθ2−pmax
(θ2 − θ) + Kpasθ, θ∗ < θ ≤ θ2,

Kpasθ θ > θ2,

(12)

where Kact and Kpas stand for the stiffness of the active and passive constituents of the
cell, pmax denotes the maximum contractile force that can be generated by the actomyosin
machinery, θ1 < 0 and θ2 > 0 are the corresponding shortening and lengthening strains of
the contractile machinery at which active stress becomes zero and θ∗ = pmax/Kact > 0.
Equation (12) basically states that when the volumetric strain θ lies in the range θ1 < θ <

θ2 cells are able to develop and transmit active force to the ECM. Outside this range, cells
simply attach to the ECM and become deformed passively together with it, but they are not
able to generate active forces and thus simply experience passive stresses. The latter arise
from the deformation of the membrane and other passive elements of the cytoskeleton
with relevant mechanical function.

Finally, it has been shown that certain types of cells proliferate markedly faster on
substrates where they exert higher tractional forces (see, for example Ghosh et al., 2007
for human fibroblasts). Accordingly, we propose the following expression for r :

r(θ) = rmax
pcell(θ)

pcell(θ) + τ
, (13)

where rmax stands for the maximum rate of cell proliferation and τ is a parameter that
characterises the dependence of r upon pcell.

2.3. ECM density ρ(x, t)

In the case of the ECM density, we consider that the only flux term comes from passive
convection and that the secretion of ECM by cells is not relevant as a first approximation
and thus no source term appears in Eq. (2).
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2.4. ECM displacement u(x, t)

The balance of linear momentum of Eq. (3) states that the passive ECM stresses σ ecm,
which appear as a result of deformation of the ECM, are in equilibrium with the external
applied forces per unit mass fext and the applied stresses exerted by the cellular population
adhered to the ECM, σ cell. Without loss of generality, we will assume a general linear
viscoelastic mechanical behaviour for the ECM, and hence

σ ecm = E

1 + ν

(
ε + ν

1 − 2ν
θI

)
+ μ1

∂ε

∂t
+ μ2

∂θ

∂t
I, (14)

where ε is the ECM strain tensor—under the small strains assumption, ε = 1
2 (∇u+∇u	).

In addition, E and ν are the Young’s modulus and Poisson ratio of the ECM while μ1 and
μ2 denote its shear and bulk viscosity, respectively.

2.5. General comments concerning the model

We firstly remark that throughout the rest of the paper the external forces fext are as-
sumed to be zero. This differs from numerous previous studies, which have incorporated
a restoring body force which depends on the ECM displacement (Murray, 1989) or veloc-
ity (Manoussaki et al., 1996; Manoussaki, 2003). This has been motivated by the premise
that the ECM is attached to an underlying substrate which restrains its movement, with a
resultant displacement dependent force constraining the ECM. However, this restricts the
modelling to specific, and relatively uncommon, “substrate-on-substrate” scenarios which
we do not consider; thus, any such body force is neglected.

Secondly, nonlocal effects for diffusion, haptotaxis and forces have been considered,
based on the generic idea that the area of influence (cell forces) or sensing (cell diffusion
and haptotaxis) does not reduce to a single point for a cell. This is especially motivated by
the current absence of a comparative study of how each nonlocal phenomenon influences
the emergence of pattern.

Moreover, for simplicity, cell-cell interactions have not considered, although it is
known that intracellular communication across gap junctions play a role in cell behaviour.
This feature has been contemplated in other theoretical works (see, for example Ramtani,
2004).

Finally, we note that other authors additionally include nonlocal terms in the mechan-
ical constitutive equation of the ECM, on the grounds that the ECM is usually a fibrous
material and fibres have the ability to transmit stress between distant points (Cruywagen et
al., 1997; Namy et al., 2004; Murray, 1989). However, huge efforts have devoted in recent
years to the modelling of anisotropic fibrous biological tissues (see Alastrué et al., 2007;
Peña et al., 2007 and references therein), showing that simple local models are perfectly
capable of reproducing the required mechanical behaviour. Hence, no long range effects
were considered in expression (14) for the ECM stress.

To simplify the subsequent analysis and to assess the relative importance of the var-
ious effects, we non-dimensionalise and reorganise the equations of the model (see the
Appendix for details). For notational simplicity, we drop the asterisks that indicate the



On the Modelling of Biological Patterns 407

nondimensional parameters and variables for the rest of the article. In doing so, the non-
dimensional version of the system becomes

∂n

∂t
+ ∇ ·

[
−

(
D1 − Mpcell

(1 + λn2)2

(
1 − λn2 − 2λβn∇2n

))∇n

+
(

D2 + Mβpcell

1 + λn2

)
∇(∇2n

) + h1n∇ρ − h2n∇(∇2ρ
)

+ n
∂u
∂t

+ M
n + β∇2n

1 + λn2
∇pcell

]
= rn(1 − n), (15)

∂ρ

∂t
+ ∇ ·

[
ρ

∂u
∂t

]
= 0, (16)

∇ ·
[
ε + ν̄θI + μ1

∂ε

∂t
+ μ2

∂θ

∂t
I + pcell

n + β∇2n

1 + λn2
I
]

= 0, (17)

where ν̄ = ν(1 − 2ν)−1 > 0.

3. Linear stability analysis

The system of Eqs. (15)–(17) has three sets of homogeneous steady state solutions:

n∗ = ρ∗ = 0, u∗ = 0; n∗ = 1, ρ∗ = 0, u∗ = 0;
(18)

n∗ = ρ∗ = 1, u∗ = 0.

Here, the asterisk denotes the homogeneous steady state; it should be clear from con-
text when an asterisk refers to the steady state or, as in the Appendix, is used to explicitly
label a non-dimensional parameter of variable. The first two solutions are not relevant
from a biological perspective, since ρ = 0; thus, we perform a linear stability analysis
(Maini et al., 1991) around the third homogeneous steady state.

For this purpose, we first linearise the system around the steady state of interest to
obtain the following system, where now (n,ρ,u) denote variations from the steady state

∂n

∂t
− (D1 − Mp0τ2)∇2n + (D2 + Mp0βτ1)∇4n + h1∇2ρ − h2∇4ρ

+ ∂θ

∂t
+ Mτ1K

0
eff∇2θ + r0n = 0, (19)

∂ρ

∂t
+ ∂θ

∂t
= 0, (20)

1

2
μ1∇ ·

[
∂

∂t

(∇u + ∇	u
)] + μ2∇

[
∂

∂t
(∇ · u)

]
+ 1

2
∇ · [∇u + ∇	u

]

+ ν̄∇(∇ · u) + p0τ2∇n + K0
effτ1∇(∇ · u) + βp0τ1∇

(∇2n
) = 0, (21)
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where τ1
def= (1 + λ)−1 > 0, τ2

def= (1 − λ)(1 + λ)−2, p0
def= pcell(0), r0

def= r(0) and K0
eff

def=
Kpas −p0/θ1 > 0. Observe that for high values of the cell stress saturation λ > 1, and thus
τ2 < 0. When τ2 > 0, we will additionally require that

p0 < pmax
0 = D1

Mτ2
(22)

so that the effective short range diffusion coefficient in Eq. (19) always takes positive
values and the problem is well posed. Note that this is not a severe restriction, since pmax

0
is high compared to the range of physiological values of p0.

We first investigate if the steady state (n∗, ρ∗,u∗) = (1,1,0) is stable under a homo-
geneous perturbation. We are therefore interested in perturbations of the form (n,ρ,u) =
(N(t),R(t),U(t)). Note that given that the perturbation does not have any spatial de-
pendence, the associated strain will be zero, in particular, θ = 0. Furthermore, we will
assume that any rigid body movement is prevented by means of the imposition of ade-
quate boundary conditions. Under these conditions, the growth of spatially homogeneous
perturbations of the displacement u from the steady state is not permitted. Regarding n

and ρ, substitution in Eqs. (19) and (20) yields

dN

dt
+ r0N = 0,

dR

dt
= 0

(23)

with trivial solutions

N(t) = N |t=0e
−r0t ,

R(t) = const.
(24)

Clearly, homogeneous perturbations around the steady state of interest do not grow in
time and the steady state is (Lyapunov) stable.

Next, in the case of pattern formation, we are interested in the conditions that must
hold for the steady state to be unstable to spatial disturbances. This is why we now look
for solutions of the linearised system in the form

(n,ρ,u) ∝ eσt+ik·r, (25)

where σ is the eigenvalue which determines temporal growth of spatial perturbations
around the steady state of wave number k = (kx, ky, kz) and r = (x, y, z) denotes the
position vector.

If we substitute (25) in (19)–(21) and require the solution to be non-trivial, we obtain
the following equation for σ :

σk2

[
1

2
k2(1 + μ1σ)

]2[
μσ 2 + b

(
k2

)
σ + c

(
k2

)] = 0, (26)

where k = |k|, μ = μ1 + μ2 and b(k2) and c(k2) are polynomials of order two and three
in k2, respectively, with the following expressions:
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b
(
k2

) = [
γ + μr0 − p0

(
τ2 + τ1θ

−1
1

)] + [
μ(D1 − Mp0τ2) + βp0τ1

]
k2

+ μ[D2 + Mp0βτ1]k4. (27)

c
(
k2

) = [
r0γ − p0r0τ1θ

−1
1

] + [
D1γ − p0

(
D1τ1θ

−1
1 + τ2h̃1

)]
k2

+ [
D2γ − p0

(
D2τ1θ

−1
1 + τ2h2 − βτ1h̃1

)]
k4

+ βh2p0τ1k
6, (28)

where γ = 1 + ν̄ + Kpasτ1 and h̃1 = h1 + M(1 + ν̄).
All the solutions of Eq. (26) with σ > 0 for some k2 > 0 are unstable to spatial dis-

turbances and will grow exponentially in time, leading to spatially structured solutions
typical of biological patterns. In practice, these solutions will not grow indefinitely, due to
several non-linear terms that have been necessarily neglected in the linear stability analy-
sis: the quadratic term in the logistic growth for the cell concentration, the saturation of
the cellular stress given by the term λn2 and the disappearance of active stresses outside
the strain range θ1 < θ < θ2.

Trivial solutions of Eq. (26) are σ = 0 and σ = −μ−1
1 , which we do not need to con-

sider as they are non positive. The remaining solutions are the zeros of the quadratic
polynomial in σ within the right-hand brackets of Eq. (26). In particular, we will focus on
the solution with the largest real part, since it is the one that controls pattern growth and
is given by

σ
(
k2

) = −b(k2) + √
b2(k2) − 4μc(k2)

2μ
. (29)

Expression (29) is denoted as the dispersion relation (Murray, 1989) and provides
valuable information since it immediately shows whether pattern can develop and, if so,
the range of wavelengths k and spatial periodicity of emerging patterns (see Fig. 1).

In our model, b(k2) cannot take negative values since all the coefficients are positive.1

Given b(k2) > 0, a necessary and sufficient condition to ensure that Re σ(k2) > 0 for
some k2 > 0 is c(k2) < 0.

Considering c(k2) in detail, note the coefficients of k2 and k4 can be negative, so a
range of wave numbers in which c takes negative values, and hence σ is positive can exist
(Fig. 1b). Note that in this range of instability the imaginary part is always zero, so the
bifurcation is indeed a Turing bifurcation; Hopf and wave bifurcations are not possible
with our model, as required for stable biological pattern.

It is important to remark that, given the positivity of the highest order coefficient
in c(k2), we have c(k2) > 0 for sufficiently large k2, and hence the corresponding modes
are stable. In other words, spatial patterns with arbitrarily high wave number—with wave-
length that tends to zero—cannot grow. Apart from an absence of at least one of the non-
local terms, the dispersion relation will always show that, in the case of pattern, there is
only a finite window of wavelengths that can grow. From our perspective, this is the only

1The term τ2 + τ1θ−1
1 is negative for positive values of λ provided that θ1 lies within the range −1 <

θ1 < 0, that is, the whole range of physical validity, since θ1 is a compressive volumetric strain and must
be larger than −1 to ensure that the volume remains positive locally. With this remark, the demonstration
that b(k2) > 0 is trivial.
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Fig. 1 Qualitative dispersion relations: (a) The whole range of wave numbers is stable, so no spatial
pattern can emerge; (b) Finite range of unstable modes; (c) Unbounded range of unstable modes. Only
situations (a) and (b) are possible with our model, except for degeneracy in the non-local cellular interac-
tions.

legitimate option with a continuum model. It has been claimed elsewhere (Murray, 1989;
Manoussaki et al., 1996) that dispersion relations possessing positive growth rates at large
wave numbers (Fig. 1c) are also valid, with the ultimate spatial structure depending inti-
mately on the initial conditions.

Here, however, we have found by means of numerical simulations (see Section 5) that
rather than a critical dependence on the initial conditions, the outcome of models with
dispersion relations such as in Fig. 1c is a spatial pattern with a pathological dependence
on the mesh size irrespective of the initial conditions; the prevailing pattern always being
the one corresponding to the smallest wavelength that the spatial discretisation is able
to reproduce. The physical interpretation of a dispersion relation with unstable modes at
arbitrarily large wave number is pattern formation with an arbitrarily small wavelength,
eventually approximating the cellular-level scale. On approaching this scale of patterning
any continuum model reaches its limit of validity and must be replaced by a discrete
version to confirm the formation and stability of such fine grained pattern.

In the following, we shall derive analytical bifurcation conditions for the full model
and special cases where one of the three long range effects is neglected. We have taken as
bifurcation parameters the cellular stress p0 and the effective haptotaxis coefficient h̃1.

3.1. Bifurcation conditions for the general case

A necessary and sufficient condition for the appearance of finite wavelength pattern is
that c(q) = a0 + a1q + a2q

2 + a3q
3 takes negative values for a finite range of q , where

q = k2 ≥ 0 and an is the coefficient of k2n in Eq. (28). Note that a0 > 0 and a3 ≥ 0.

3.1.1. Bifurcation conditions when a3 > 0, a2 �= 0
We initially work with a3 > 0, a2 �= 0. Let q± be the turning points of c(q), given by
the roots of a1 + 2a2q± + 3a3q

2± = 0. Assuming their existence, they are given by q± =
(−a2 ±

√
a2

2 − 3a1a3)/3a3. For an instability region, we require:

I q+ exists and is real
II q+ > 0

III c(q+) < 0

We initially consider constraints [I] and [II] above. With a3 > 0, a2 �= 0, it is straightfor-
ward to deduce that these yield

either a2 > 0, a1 < 0 or a2 < 0, 3a3a1/a
2
2 < 1. (30)
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Fig. 2 The Turing space, that is the region of parameter space where a Turing instability is possible,
when a2, a3 �= 0 assuming an appropriate selection of wavenumber and domain size.

By repeatedly using the fact a1 + 2a2q+ + 3a3q
2+ = 0, constraint [III] can be written as

0 >
27a2

3

|a2|3 c(q+) = 27a2
3

|a2|3
{(

a0 − a1a2

9a3

)
− 2

27

a3
2

a2
3

(1 + y)
(−1 + σ

√
1 + y

)}

⇒ 0 > σy

(
1 − 2(1 + y)

1 + σ
√

1 + y
− s

)
, (31)

where y = −3a1a3/a
2
2 , s = 9a0a3/[a1a2] and σ = sign(a2) = −sign(ys). Noting

sign(a1) = −sign(y), the instability Turing space, as given by (30) and (31), is deter-
mined solely in terms of the two parameter groupings, y and s enabling the depiction of
the Turing space in Fig. 2.

While the Turing space for mechanochemical models is often considered to depend
on too many parameter groupings for its algebraic or graphical description to be useful
(Murray, 1989) this is not the case for the current model. The graphical representation
of the Turing space in a low dimensional space presented in Fig. 2, which is universally
valid unless there is a degeneracy in a2 or a3, allows one to readily deduce how parameter
changes affect stability. For example, given a1 < 0, suppose D2 or γ is increased. This
increases a2 and thus reduces y = −3a1a3/a

2
2 > 0 while s = 9a0a3/[a1a2] increases, re-

gardless of the sign of a2. Thus, motion in the (y, s) Turing space depicted in Fig. 2 is
from the lower right to the upper left in the half plane y > 0. Depending on parameter
values one can see therefore that increasing D2 or γ can move one from a region of sta-
bility to instability and vice-versa according to parameter values. In contrast, sufficient
increases in r0 for instance, will always eventually drive the system to stability.

3.1.2. Bifurcation conditions when a3 = 0
This situation is of particular interest since it encompasses the case where βh2 = 0, that
is, when long-range haptotaxis and/or cell forces are identically zero.
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Fig. 3 The Turing space, that is the region of parameter space where a Turing instability is possible, when
a3 = 0 assuming an appropriate selection of wave number and domain size.

Now c(q) = a0 + a1q + a2q
2, with a0 > 0. We have to require that the coefficient of

the largest power of q , i.e. a2, is positive, to ensure that the range of unstable modes is
finite and to prevent the possibility of a dispersion relation with positive growth rates at
arbitrarily large wavenumbers. With this additional constraint in place, one can take limits
of the conditions (31), or consider an explicit calculation, to show that the instability is
given by

a1 < 0, a2 > 0, a2
1 > 4a0a2 (32)

which again can be readily depicted in terms of two parameter groupings, as shown in
Fig. 3. We will return to possibility of positive growth rates at arbitrarily large numbers
below.

3.1.3. Bifurcation conditions when a2 = 0, a3 > 0
For a2 = 0, one requires a perfect parameter fine-tuning which is therefore not highly
relevant biologically; one also requires that a3 > 0 to prevent positive growth rates at
arbitrarily large wavenumbers. For completeness, we record the instability conditions,
which are

a1 < 0,
27

4
a2

0a3 < |a1|3 (33)

which is also consistent with taking limits of Eq. (31) when a1 < 0.

3.2. A detailed study of bifurcation conditions in special cases

Interpreting conditions (30) and (31) in terms of biophysical interactions is typically not
an easy task in the general case. Special cases are also of enormous interest and allow
further insight and will be considered below.
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3.2.1. Bifurcation conditions for the case a2 �= 0, a3 � 1, |y| � 1
The case |y| � 1, a3 � 1 is of considerable interest and will typically occur for weak
non-local effects if either non-local haptotatic effects or the non-local effects of cell den-
sity on the stress σ cell are smaller than the dominant, albeit weak, non-local effect. For
this purpose, we can use a Taylor expansion of the condition (31), distinguishing between
the case a2 > 0 and a2 < 0.

In the case a2 < 0, inequality (31) reduces to 27a2
3a0 < 4|a2|3, which always holds for

sufficiently small values of a3. Hence, if a2 < 0 and |y| � 1, an instability region exists.
However, note that on taking the limit a3 → 0 the larger coefficient of c(q) would then
be negative, indicating that the instability would degenerate in pattern at arbitrarily small
wavelength. Therefore, this combination of parameters, a2 < 0 and |y| � 1, would yield
a fine grained pattern that cannot be modelled in the continuum approximation.

Therefore, we are interested in the case a2 > 0. In this case, a Taylor expansion of (31)
for y shows that, providing |y| � 1 and given a3 ≥ 0, one has the inequalities

a1 < 0, a2 > 0, 1 >
4a0a2

a2
1

(34)

for an instability region, which are much simpler than the conditions in the general case
and permit a more detailed analysis. Again, these conditions are depicted in Fig. 3.

As in the general case, it is possible to reformulate conditions (34) in terms of only
two parameter groupings, noticeably simplifying the analysis. These are h̃1 and x̃, the last
of which is defined as

x̃
def= D1γ

τ2

1

p0
+ D1τ1

|θ1|τ2
.

Conditions (34) are fulfilled if and only if both τ2 > 0 and the following set of restric-
tions is imposed on x̃, h̃1 (see Figs. 4a–c):

(a) x̃ < h̃1

(b) x̃ > φ − ψh̃1

(c) (̃x − h̃1)
2 > αx̃(̃x − φ + ψh̃1)

where α, ψ and φ are nonnegative parameters, which do not depend on x̃ or h̃1, with
expressions

α
def= 4r0D2/D

2
1, ψ

def= βτ1D1/[τ2D2], φ
def= h2D1/D2.

Thus, the Turing space in the (̃x, h̃1) plane, and hence in the (p0, h̃1) plane, is delimited
by three curves. In the (̃x, h̃1) plane, two of these delimiting curves are straight lines. The
third is a hyperbola. One can therefore immediately determine how the overall system’s
stability properties are altered on changing parameters by simply considering the region
within the positive quadrant which is delimited by two straight lines and a hyperbola (see
Fig. 5). It can be proved that the three curves intersect at a single point P with coordinates
(φ(1+ψ)−1, φ(1+ψ)−1), which is additionally the point at which the straight line given
by condition (b) is tangent to the hyperbola.
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Fig. 4 Conditions on x̃, h̃1 for the appearance of spatial pattern in the case a2 �= 0, a3 � 1, y � 1:
(a) x̃ < h̃1, (b) x̃ > φ − ψh̃1, (c) (̃x − h̃1)2 > αx̃(̃x − φ + ψh̃1). Shaded areas are excluded by the
constraint in question or the fact x̃, h̃1 > 0 (which always holds given that τ2 > 0).

Fig. 5 Global representation of the necessary and sufficient conditions for the appearance of pattern in
the case a2 �= 0, a3 � 1, y � 1. Shaded areas are excluded, i.e. correspond to regions of stability where
pattern does not emerge.

3.2.2. Bifurcation conditions when a3 = 0
We revisit this situation, which is also of particular interest since it allows the study of the
case βh2 = 0, which implies the long-range haptotaxis and/or cell forces are identically
zero. In the following, we examine conditions (32) in detail for two different cases: h2 = 0
and β = 0.

3.2.3. No long range haptotaxis: D2, β > 0, h2 = 0
In this situation, φ = 0 and necessary and sufficient conditions for pattern formation are
τ2 > 0 together with the following restrictions on x̃, h̃1 (see Fig. 6):

(a) x̃ < h̃1

(b) h̃1 > −x̃/ψ

(c) (̃x − h̃1)
2 > αx̃(̃x + ψh̃1)
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Fig. 6 Global representation of the necessary and sufficient conditions for the appearance of pattern in the
case D2, β > 0, h2 = 0. Shaded areas are excluded, i.e. correspond to regions of stability where pattern
does not emerge.

This case is degenerate compared to the previous, since the delimiting curve of con-
dition (c) no longer corresponds to a hyperbola, but instead to a pair of straight lines h̃±

1

given by:

h̃±
1 =

(
1 + αψ

2
±

√(
1 + αψ

2

)2

+ (α − 1)

)
x̃ (35)

with slopes ∂h̃+
1 /∂x̃ > 1 and ∂h̃−

1 /∂x̃ < 1.
Thus, all the delimiting curves of conditions (a)–(c) are straight lines in the (̃x, h̃1)

plane going through the origin.
It should be noticed that in this particular case a2 is always positive, irrespective of

the value of any model parameter, so the possibility of having diverging growth rates of
unstable modes at large wavenumbers is ruled out.

3.2.4. No long range cellular forces: D2, h2 > 0, β = 0
In this situation ψ = 0 and, in addition to requiring τ2 > 0, the following set of restrictions
must be imposed on x̃, h̃1 to drive the system to instability (see Fig. 7):

(a) x̃ < h̃1

(b) x̃ > φ

(c) (̃x − h̃1)
2 > αx̃(̃x − φ)

As in the case a3 � 1, |y| � 1, the Turing space in the (̃x, h̃1) plane is delimited by
two straight lines and a hyperbola. These intersect at point P of coordinates (φ,φ), where
the vertical line delimiting condition (b) is tangent to the hyperbola.

It should be noted that the highest order coefficient of c(k2) is a2, which in this specific
case can be negative if the model parameters are suitably chosen, leading to a scenario
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Fig. 7 Global representation of the necessary and sufficient conditions for the appearance of pattern in the
case D2, h2 > 0, β = 0. Shaded areas are excluded, i.e. correspond to regions of stability where pattern
does not emerge.

with an infinite range of unstable wavenumbers. In particular, we have

a2 < 0 ⇔ τ2 > 0, h2 > h∗
2, p0 >

D2γ

τ2(h2 − h∗
2)

(36)

with h∗
2

def= D2τ1/[τ2|θ1|].
Due to the reasons expressed above, if the appearance of pattern at arbitrarily small

wavelength is deemed undesirable, the above combination of model parameters should be
avoided from the outset.

3.3. The influence of model parameters

3.3.1. The influence of model parameters in the general setting
When conditions (30), (31) are satisfied for a2 �= 0, a3 > 0, or conditions (32) are satisfied
for a3 = 0, or conditions (33) are satisfied for a2 = 0, there is a finite range of linearly
unstable wavenumbers k2

1 < k2 < k2
2 in which c(k2) < 0 ⇔ Reσ(k2) > 0. However, note

that in a finite-length domain the possible wavenumbers of allowable patterns are discrete
and depend in part on the boundary conditions. Hence, the appearance of pattern also
requires there is at least one wavenumber of the allowed range which is unstable. Finite
domains put therefore considerable restrictions on the permissible patterns; in particular,
the model is always stable on a sufficiently small domain.

Interestingly, it is possible to analytically show that the system is always stable when
ν̄ is sufficiently large. In this case, a2 � D2ν̄ + βτ1Mp0ν̄ > 0 and a1 � D1ν̄ − τ2Mp0ν̄,
which is also positive provided that (22) holds. Since a0 is positive and a3 is non-negative,
we have that, for sufficient large values of ν̄, c(q) ≥ c(0) = a0 > 0 for all q > 0, so the
system is stable.

Similarly, given τ2 > 0, then sufficiently increasing the coefficient of haptotaxis, h1,
or the effective haptotaxis coefficient h̃1, while keeping other model parameters fixed will
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result in the instability conditions being satisfied. In this sense, we have the modelling
prediction that haptotaxis tends to invoke pattern formation.

Finally, if τ2p0 is negative, or if it is positive and sufficiently small so that a1, a2 > 0
then the system is stable. Noting that p0 > 0 we have thus demonstrated, in a general set-
ting, that one requires both τ2 > 0 and p0 to surpass a critical lower bound for patterning
to take place.

3.3.2. The influence of model parameters: special cases
The expression of the analytical instability conditions in terms of two parameter group-
ings allows the visualisation of the Turing space in the (̃x, h̃1) plane, enabling an easier
interpretation in terms of biophysical mechanisms. In this plane, the limiting curves are
two straight lines and a hyperbola, so the analysis of the instability region is immediate.
Changing other model parameters shifts the curves but, as long as signs are maintained
(D1 > 0, D2 > 0, etc.), this does not change the qualitative details of when the system is
stable or unstable.

Such analyses are illustrated by, but not restricted to, the following:

– A general condition for instability is τ2 > 0, which limits the extent of cell stress sat-
uration. As τ2 → 0 (ψ → ∞), with h̃1 fixed, we have that the Turing space shrinks to
zero as the lower bound on p0 for patterning tends to infinity.

– For the dispersion relation to predict wavenumbers with positive growth, it is sufficient
to require firstly that τ2 > 0, secondly that ψ = βτ1D1/[τ2D2] > 0 and finally that
both the effective haptotaxis coefficient h̃1 and the cell force p0 exceed critical lower
bounds.

– When β = 0 with D2, h2 > 0, there is a singular behaviour in that there is upper bound
on p0 whenever h̃1 > φ, i.e. the effective haptotaxis coefficient is sufficiently large.

– For β, τ2 > 0, the constraint

h̃1 > max

(
h2τ2

βτ1
− x̃

ψ
, x̃

[
1 + αψ

2
+ 1

2

√
α2ψ2 + 4α(1 + ψ)

])
(37)

is sufficient to ensure one is in the instability region.

4. Finite element formulation

In this section, we shall illustrate the derivation of a finite element formulation for the
numerical solution of Eqs. (1)–(10). The non-local terms within the system of equations
are fourth order, which requires special attention. The standard spatial discretisation of
the equations would require C1 continuity, yielding finite element interpolations that are
complicated to build. The use of C1 conforming interpolation schemes for such problems
is being superseded increasingly by formulations that require only C0 continuity (see, for
example Barrett et al., 1999; Feng and Prohl, 2003 for the Cahn–Hilliard equation).

In this work, we use a mixed finite element method, which decomposes the model
partial differential equations, as defined by Eqs. (1)–(3), into a system of five equations
with no fourth-order terms, allowing a C0 spatial interpolation. Thus, we introduce two
auxiliary variables κ = ∇2n and ϕ = ∇2ρ and consider the primary unknowns to be the
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cell concentration n, the ECM density ρ, the ECM displacement u and the new pair of
variables κ and ϕ. Equations (1)–(3) can be replaced by the following system:

∂n

∂t
+ ∇ ·

[
−D1∇n + D2∇κ + h1n∇ρ − h2n∇ϕ + n

∂u
∂t

+ M∇ · σ cell

]

= r(θ)n

(
1 − n

N

)
, (38)

∂ρ

∂t
+ ∇ ·

[
ρ

∂u
∂t

]
= 0, (39)

∇ ·
[

E

1 + ν

(
ε + ν

1 − 2ν
θI

)
+ μ1

∂ε

∂t
+ μ2

∂θ

∂t
I + pcell(θ)

c + βκ

1 + λn2
I
]

= 0, (40)

κ = ∇2n, (41)

ϕ = ∇2ρ. (42)

Then, we consider the function spaces associated with the finite element spatial dis-
cretisation:

Sh = {
nh

∣∣nh ∈ H 1(Ω),nh ∈ P k(Ωe) ∀e,nh = g on Γg

}
,

V h = {
δnh

∣∣δnh ∈ H 1(Ω), δnh ∈ P k(Ωe) ∀e, δnh = 0 on Γg

}
,

P h = {
κh

∣∣κh ∈ H 1(Ω), κh ∈ P k(Ωe) ∀e, κh = l on Γl

}
,

Qh = {
δκh

∣∣δκh ∈ H 1(Ω), δκh ∈ P k(Ωe) ∀e, δκh = 0 on Γl

}
,

Uh = {
uh

∣∣uh
i ∈ H 1(Ω)∀i, uh

i ∈ P k(Ωe) ∀i ∀e,uh = 0 on Γ
}
,

Rh = {
ρh

∣∣ρh ∈ H 1(Ω),ρh ∈ P k(Ωe) ∀e
}
,

F h = {
ϕh

∣∣ϕh ∈ H 1(Ω),ϕh ∈ P k(Ωe) ∀e
}

with H 1 the Sobolev space of degree 1 and P k(Ωe) the space of the standard polynomial
finite element shape functions on element Ωe where k is the polynomial order. It has been
assumed that the boundary conditions g and r can be represented exactly by the finite el-
ement basis. Note that due to the boundary conditions on ρ and u, the space of trial func-
tions is identical to the space of test (weighting) functions for u (Uh), ρ (Rh) and ϕ (F h).

Following the standard procedure of integration by parts, and use of the boundary
conditions, the weak (Galerkin) form of the problem reads:

Find nh ∈ Sh × [0, T ], κh ∈ P h, ρh ∈ Rh × [0, T ], ϕh ∈ Fh and uh ∈ Uh such that
(
δnh,nh

,t

)
Ω

+ (∇δnh,D1∇nh − D2∇κh − h1n
h∇ρh

+ h2n
h∇ϕh − nhuh

,t − M∇ · σ h
cell

)
Ω

= −(
δnh,m

)
Γm

+
(

δnh, r
(
θh

)
nh

(
1 − nh

N

))
Ω

∀δnh ∈ V h, (43)
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(
δκh, κh

)
Ω

+ (∇δκh,∇nh
)
Ω

= (
δκh, q

)
Γq

∀δκh ∈ Qh, (44)

(
δρh,ρh

,t

)
Ω

− (∇δρh,ρhuh
,t

)
Ω

= 0 ∀δρh ∈ Rh, (45)(
δϕh,ϕh

)
Ω

+ (∇δϕh,∇ρh
)
Ω

= (
δϕh,∇ρh · η)

Γ
∀δϕh ∈ Fh, (46)(

σ h
cell + σ h

ecm,
1

2

(∇δuh + ∇	δuh
))

Ω

= 0 ∀δuh ∈ Uh, (47)

(
δnh,n(x,0)

)
Ω

= (
δnh,n0(x)

)
Ω

∀δnh ∈ V h, (48)(
δρh,ρ(x,0)

)
Ω

= (
δρh,ρ0(x)

)
Ω

∀δρh ∈ Rh, (49)

where we have made repeated use of the standard notation for L2-inner products:

(u, v)Ψ =
∫

Ψ

uv dΨ (50)

and, with a slight abuse of notation,

(u,v)Ψ =
∫

Ψ

u : v dΨ (51)

for u and v denoting second order tensors.
Equations (43), (45), and (47) are discretised in time according to the generalised trape-

zoidal method (Hughes, 2000), which depends on a parameter ζ , taken to be in the inter-
val [0,1], such that for ζ = 0,0.5,1.0 the forward Euler, Crank–Nicolson, and backward
Euler integration methods are recovered, respectively.

Next, the semi-discrete system is discretised in space making use of the finite element
method. Within this approach the domain Ω is discretised into nel elements Ωe , with Ω =⋃nel

e=1 Ωe . The primary unknown fields and their derivatives are thus interpolated within
an element in terms of the nodal values through shape functions. Following a Bubnov–
Galerkin approach, these same shape functions are also used for the interpolation of the
test functions. The resultant nonlinear equations are consistently linearised allowing the
use of a Newton–Raphson scheme to solve the system.

5. Numerical simulation

5.1. Description

Finite element simulations have been performed based on the above formulation, imple-
mented in ABAQUS software (Dassault Systèmes Simulia Corp., 2006), with the aim of
verifying the analytical conditions for pattern formation. In particular, we are interested in
studying how the qualitative behaviour of the system depends on the instability interval of
the dispersion relation and how the boundary conditions affect the emergence of pattern.

For definiteness, we consider a planar square domain and we have assumed the plane
stress hypothesis for the mechanical behaviour of the ECM. Note that this example is
relevant for any biological application where a cell population lies on a substrate and
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has the potential to self-organise. One class of applications emerges from research in-
vestigating angiogenesis, which is the process of new blood vessel formation from pre-
existing vessels via endothelial cell sprouting, proliferation, and migration (Conway et
al., 2001). In particular, numerous in vitro models have been reported (Collen et al., 1998;
Vailhé et al., 2001; Stéphanou et al., 2007) which reproduce the earlier phases of vascu-
lar growth, i.e. the formation of vascular cords. In such experimental models, endothelial
cells are seeded on biogels such as collagen, fibrin, or matrigel. On fibrin gel, cells spon-
taneously self-organise by degrading the gel and by exerting traction forces which induce
the formation of lacunae via the development of dilatation zones. Our simulation repro-
duces the conditions under which these experimental angiogenesis tests are performed.
However, endothelial cells are not the only type of cells that generate pattern. For instance,
in embryogenesis mesenchymal cells are thought to drive spatial pattern development, as
exemplified by feather germ formation (Davidson, 1983a, 1983b).

5.1.1. Initial and boundary conditions
As initial conditions, we have considered that the substrate is undeformed, i.e. u(x,0) = 0,
and a uniform ECM density, ρ(x,0) = 1 gr/cm3. The cell density, n, at the start of the
simulation is a small random perturbation (5–15%) of the homogeneous steady state N .

As boundary conditions for u, we have assumed that the displacement is restrained
along the whole contour of the domain, i.e. u = 0 on Γ .

With regard to the boundary conditions for n, several options exist, all of which can
be suitable and biologically realistic, depending on the situation that one wants to model
(see Murray, 1989). For example, an impermeable boundary can be modelled by means of
a zero-flux boundary condition. Another biologically reasonable set of conditions is peri-
odicity, which can be used in a two dimensional setting to simulate closed three dimen-
sional boundaries. If the domain is surrounded by a hostile environment, Robin boundary
conditions are an appropriate option: Jn · η = bn, where the parameter b is a measure of
the hostility. In a completely hostile exterior b → ∞, so the boundary condition can be
approximated by a simpler one of the Dirichlet type: n = 0. Finally, if we suppose that
the environs is an infinite source of cells in which the cell concentration is approximately
constant, an inhomogeneous Dirichlet boundary condition is also a valid choice.

Note that all the previous alternatives for the boundary conditions restrain the value
of the cellular concentration n or the associated total flux Jn. However, expressions (5)
and (6), together with the fact that Γ = Γq ∪ Γl , where Γq ∩ Γl = ∅, imply that, in or-
der to have a well-posed problem, additional conditions must be additionally imposed at
every point of the boundary on one the following derivatives of the cellular concentration:
∇n · η or ∇2n. Unfortunately, the interpretation of these two possible boundary condi-
tions in biological terms is not as straightforward. Clearly, the use of a fourth order model
complicates the choice of appropriate boundary conditions.

To overcome this difficulty, in the numerical simulations we contemplate two different
sets of boundary conditions:

– In Section 6.1, we have assumed that the boundary of the domain is impermeable for
cells, thus setting Jn · η = 0 on Γm = Γ (Γg = ∅). As second boundary condition, we
have tested two different options: ∇n ·η = 0 on Γq = Γ (Γl = ∅) or ∇2n = 0 on Γl = Γ

(Γq = ∅).
– In Section 6.2, we have replaced the zero-flux restriction by a Dirichlet boundary con-

dition, setting n = N on Γg = Γ (Γm = ∅). Analogously to Section 6.1, the same two
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options have been tested as the second boundary condition. As discussed before, this
represents a situation where the environs effectively constitutes an infinite source of
cells.

5.1.2. Model parameters estimation
Model parameters were obtained from the literature for fibroblasts, a type of mesenchymal
cell routinely used in experimental works of cell migration:

– Cell flux (short range): The short range diffusion coefficient D1 was taken to be
1.7 × 10−10 cm2/s from Barocas et al. (1995) and Shreiber et al. (2003). A value of
1.8 × 10−7 cell (Pa s)−1 was prescribed for M , following previous work of the au-
thors (Moreo et al., 2008). Briefly, M was fitted to reproduce the observed depen-
dence of cell locomotion rate on the flexibility of the substrate (Pelham and Wang,
1997). Finally, it is quite difficult to find experimental data to fix the value of the
short range haptotaxis coefficient h1. Other theoretical studies have used values that
vary in the range 10−8–10−4 cm2/s (gr/cm3)−1 (Dickinson and Tranquillo, 1993;
Perumpanani and Byrne, 1999). In this work, a value of 10−4 cm2/s (gr/cm3)−1 was
used.

– Cell kinetics: The mean average doubling time for fibroblasts is 18–20 h (Ghosh et
al., 2007), which yields a proliferation rate of rmax = 1 day−1. The parameter τ was
taken to be 6 × 10−3 dyne/cell, so that observed changes (Ghosh et al., 2007) in the
proliferation rate with substrate stiffness were reproduced. The mean projected area
per fibroblast on a planar substrate is of the order of 103 µm2 (Lo et al., 2000), so the
maximum carrying capacity of the medium can be estimated to be 105 cell/cm2.

– Substrate mechanics: The Young’s modulus E and Poisson’s coefficient ν were
respectively chosen to be 10 kPa and 0.3, which are typical of substrate values
used in cell migration experiments (Engler et al., 2004; Peyton and Putnam, 2005;
Khatiwala et al., 2006). The shear and bulk viscosity, μ1 and μ2, were estimated to be
5 × 106 Pa s, which is in the range of other reported values (Namy et al., 2004).

– Cell mechanics: The maximum cellular active stress pmax was prescribed a value
of 1.5 × 10−2 dyne/cell, in the range of the experimental data of Shreiber et al.
(2003). The parameters θ1 and θ2 were estimated to be −0.25 and 0.5, respectively.
The average stiffness of a fibroblast is the order of 1 kPa (Nagayama et al., 2004;
Schäfer and Radmacher, 2005; Lim et al., 2006), mostly due to the contractile activity
and actin filaments (Schäfer and Radmacher, 2005). Based on this data Kact was taken
as 1 kPa (cell/cm2)−1 and Kpas was considered for simplicity to be zero. Finally, it is
quite difficult to find quantitative experimental data to fit the parameter λ. Here, λ was
given a value of 0.25 × 10−10 cell−2, which leads to a positive value of τ2, which is a
necessary condition for the emergence of pattern.

As for the parameters quantifying the long-range effects, β , h2, and D2, two differ-
ent combinations have been chosen (see Table 1), which, according to the linear stability
analysis, give rise to two different types of dispersion relations: a dispersion relation with
positive growth rates at arbitrarily large wavenumbers (Fig. 1c) is obtained with the para-
meter set A, whereas a finite range of unstable modes (Fig. 1b) is found with parameter
set B.

Finally, simulations were performed on a 5 × 5 mm2 square domain, whose size is of
the same order as other simulation works (Manoussaki, 2003).
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Table 1 Value of the parameters quantifying long-range effects

Set A Set B

β (cm2) 0.0 1.0 × 10−3

h2 (cm4/s(gr/cm3)−1) 1.0 × 10−8 1.0 × 10−8

D2 (cm4/s) 0.0 1.0 × 10−8

6. Numerical results

6.1. Impermeable boundary

Firstly, simulations of the dynamical behaviour of the model have been performed with
the parameter set A, which possesses a dispersion relation with an infinite range of un-
stable modes according to the linear stability analysis. Keeping the size of the domain
constant, simulations were implemented with mesh densities ranging from 20 × 20 to
100 × 100 quadratic elements and numerous spatially varying random perturbations of
the biologically relevant homogeneous steady for the cell density initial conditions.

In all of the cases, a stationary spatial pattern emerged after an initial transitory period.
This pattern is irregular, consisting of large convex lacunae of varying size, where the
cell density is very low and the volumetric strain is positive, together with a filament-
like cellular network, where cells are concentrated and the matrix is under compressive
volumetric strain (Fig. 8). The two most distinctive features of the results are: (i) the
qualitative form of the pattern does not depend on the initial conditions; (ii) the average
diameter of the lacunae, i.e. the wavelength of the pattern is strongly dependent on the
mesh since it decreases as the size of the element is refined. Actually, it is possible to
verify that the numerically obtained wavelength is always the smallest one that the spatial
discretisation is able to reproduce, which we can estimate as approximately 4 times the
size of element, for this type of quadratic spatial approximation. Note that these results
confirm that, at least with our model, dispersion relations of the type of Fig. 1c yield
patterning which degenerates to the mesh-dependent wavelengths, eventually reaching
the cellular-level scale on mesh refinement, where continuum models are no longer valid.

The dynamical behaviour of the system is different when the parameter set B is used in
the simulations. According to the linear stability analysis, only a finite range of wavenum-
bers is unstable in this situation and the numerical simulation results no longer depend on
the mesh size. In addition, the simulations also illustrate the robustness of the pattern
with regard to the different initial conditions, since the qualitative form of the pattern is
independent of the initial profile of cell density. Therefore, pattern formation does not
result from amplification of the initial conditions, but from self-organising properties of
the ECM-cell medium.

Figure 9 shows the spatial distribution of cell density at different points in time. In
less than 6 h, the first signs of lacunae formation can be distinctly observed. After 12 h,
the lacunae are clearly formed, but their size is still increasing. Within approximately
18 h, the steady state has already emerged and the size and shape of the lacunae and the
associated capillary-like cell network do not evolve further. Note the close temporal and
spatial similarity between the results of Fig. 9 and in vitro experiments of angiogenesis
(see Stéphanou et al., 2007 for example).
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Fig. 8 Steady-state patterns obtained for the volumetric strain θ with the set of parameters A and different
mesh sizes. The number of quadratic elements used in each case was: (a) 20×20, (b) 36×36, (c) 50×50,
(d) 100 × 100.

The arrows of Fig. 9 indicate the direction of the displacement of the ECM. As could
be expected, lacunae correspond to regions subjected to tensile strains whereas the thin
network between lacunae can be identified with areas under compression.

Finally, it is to be noted that the results of this section are not significantly altered when
the two different alternatives for the second boundary condition are tested. In other words,
if one considers a domain with an impermeable boundary and thus sets that the total flux
of cells is zero at the boundary, one can freely choose, at least with our model, between
imposing additionally ∇n · η = 0 or ∇2n = 0 at the boundary to obtain a well-posed
problem, since the numerical results do not noticeably depend on this choice.

6.2. Infinite source-like environment

The simulations were repeated with an inhomogeneous Dirichlet boundary condition and
the parameter set B (Fig. 10). Remarkably, the results do not change qualitatively through-
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Fig. 9 Evolution of cell density n (cell/cm2) with the set of parameters B at successive times: (a) 6 h,
(b) 12 h, (c) 18 h, and (d) 24 h. The superimposed arrows indicate the direction and amplitude of the local
displacement vector u, with the arrow length proportional to the vector norm.

out the inner part of the domain, with the shape and size of the lacunae qualitatively sim-
ilar to those of Fig. 9d. Hence, the Dirichlet boundary condition is responsible solely for
an edge effect close to boundary of the domain, where the density of cells is now more
uniform, as could be expected. Again, the particular choice for the second boundary con-
dition does not significantly alter the numerical results.

7. Discussion

7.1. The stability analysis

First of all, we note that interpreting condition (31) in terms of the underlying biophysics
is far from straightforward, emphasising the need for a modelling approach to understand
how cells’ mechanical responses impact on biological self-organisation.
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Fig. 10 Cell density n (cell/cm2) after 24 h obtained with the set of parameters B and an inhomogeneous
Dirichlet boundary condition.

It should be mentioned that the linear stability analysis of the general model predicts
that spatial disturbances of sufficiently small wavelength are always stable. Thus, typically
the model does not degenerate into pattern at the cellular-level scale, where the contin-
uum approach would become invalid. This fine grained degeneration would require the
absence of nonlocal cellular forces, or their effective absence in the case where a3 � 1,
so that a dispersion relation with the form of Fig. 1c emerges. However, we emphasise that
the appearance of such a cellular scale pattern must be confirmed by discrete modelling,
since it is a scenario outside the range of validity of a continuum model. Nonetheless,
our analysis does show when the continuum approximation breaks down, and thus yields
necessary conditions for the formation of fine grained patterning.

Analytical conditions for the formation of pattern have been derived. When the non-
local haptotatic effects or the non-local effects of cell density on the stress σ cell are suf-

ficiently weak, so that y
def= −3a1a3/a

2
2 � 1, we have found that once h̃1 is above a criti-

cal threshold and τ2 > 0 pattern appears if cell forces are sufficiently large. Active forces
therefore play a critical role in pattern generation. Firstly, consider the saturation and even
decrease of cell traction forces at high cell density, quantified by λ and due to contact in-
hibition plus competition for ECM binding sites (Ferrenq et al., 1997; Namy et al., 2004;
Murray, 1989). This must be lower than a threshold value to allow cells to sufficiently de-
form the matrix and create a non-uniform steady state of the matrix density. Specifically,
whenever λ > 1, and thus τ2 < 0, no pattern can emerge. Similar results were obtained
with other mechanochemical models when the same type of saturation law for cell forces
was used (Murray, 1989). Secondly, the magnitude of the active force per cell, quantified
by p0, is also critical; when it is below a certain threshold no pattern can emerge. This
is consistent with the mechanism through which pattern is generated, which relies on the
deformation of the ECM by the application of cell forces. If cells are not able to initially
deform the ECM in a sufficient manner, due to either the low value of the forces they
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Fig. 11 Dependence of ν̄ upon the Poisson coefficient ν. Observe the asymptotic growth of ν̄ as we
approach the incompressible limit, given by ν = 0.5.

are able to exert or the saturation of the active macroscopic cellular stress at high cell
densities, patterning cannot proceed.

Another remarkable issue is the equivalent role that local haptotaxis and duro-
taxis/tensotaxis, quantified respectively by h1 and M , play in the conditions for biologi-
cal pattern formation. In all the expressions, h1 and M appear grouped in the parameter
h̃1 = h1 + M(1 + ν̄), which is designated the effective haptotaxis coefficient. Considering
(28) and (31) shows that the combined effect of haptotaxis and durotaxis/tensotaxis fos-
ters the growth of pattern, in that once the effective haptotaxis is sufficiently large, further
increases always decrease the minimum level of force that cells need to exert to generate
pattern. This can be intuitively explained if one considers that the mechanical taxis simply
consists of a directed movement of cells according to a gradient of cellular stresses and
that such a gradient can instigate or be instigated by a gradient of ECM strains, that in
turn, from Eq. (2), are directly related to the ECM density. Hence, it is reasonable that
haptotaxis, which depends on gradients of ECM density, has a similar effect on pattern
formation as mechanotaxis.

In addition, note that h̃1 depends not only on M but on the product Mν̄ as well. Usu-
ally soft biological tissues are weakly compressible and have large values of the Poisson
coefficient, ν, leading to high values of ν̄ (see Fig. 11). These results stress the role that
active mechanosensing can play, not only in the migration of cells, affecting the speed and
direction of their movement, but also in cell organisation within soft tissues, where the in-
formation gathered by cells by actively probing the mechanical environment can wield
a significant influence on their positioning and orientation (Bischofs and Schwarz, 2003;
Schwarz and Bischofs, 2005).

Next, it should be noted that because y
def= −3a1a3/a

2
2 need not tend to zero as the

non-local effects tend to zero, the instability region has a singular limit. The parameter
space for instability is, in general, very different when small non-local forces are present
compared to when no non-local effects are present. Thus, non-local phenomena can have
a disproportionate effect on the stability properties of the system. When a2 < 0, this effect
is dramatic as the non-local forces prevent arbitrarily large wavenumbers, though it is also
present when a2 > 0.
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Also, detailed study of special cases shows that the instability conditions can differ
significantly from when a3 �= 0 ⇔ βh2 �= 0 (i.e. y > 0 and not necessarily small) to when
βh2 = 0 (i.e. y = 0) showing that the interaction of the non-local effects has an substantial
influence on system stability. The most relevant of these differences is the upper bound
found for p0 from the instability conditions when β = 0.

Similar differences are found when considering scenarios with only one long range ef-
fect. Remarkably, the cases in which only long range diffusion (D2 > 0, h2 = 0, β = 0) or
long range cellular forces (β > 0,D2 = 0, h2 = 0) are active present similar features: ei-
ther no pattern emerges or, when it does, there is only a finite range of unstable wavenum-
bers. However, if we try to determine the bifurcation conditions for the situations of only
long range haptotaxis (h2 > 0,D2 = 0, β = 0) or the case of no long range effects one can
immediately deduce from Eq. (28) that the only possible spatial pattern that can grow has
an unbounded interval of unstable modes.

Therefore, assuming the validity of the mechanochemical mechanism on which this
model is based, cells need some type of nonlocal behaviour to give rise to spatial bio-
logical pattern of finite wavelength and the results indicate that long range diffusion or
the application of long range forces by cells are the two mechanisms that by themselves
can be responsible for this behaviour. Combinations of two of the three long-range effects
contemplated in this work or a potential simultaneous interplay of all three can also drive
the emergence of large-scale pattern.

It is to be noted that simpler models than the one proposed in this work can be valid
for the study of pattern formation in special cases. For example, it was shown in Murray
(2003) that isotropic strain-stimulated cell traction without diffusion is sufficient to form
patterns.

Finally, the previous analysis revealed that temporal or spatiotemporal patterns can-
not develop in our system, so that the spatial Turing instability the only possible source
of symmetry breaking and pattern. In the context of the main application of this mod-
elling framework, i.e. morphogenesis, this is a noteworthy and desirable feature, since
such processes rely on the appearance of robust a stationary pattern, which is stable in
time.

7.2. The numerical analysis

The first aspect to highlight from the results of the numerical simulations is the con-
sistency found between the linear stability analysis and the finite element simulations.
Specifically, self-organisation is either present or absent in the simulations in accordance
with the analysis. In addition, when pattern emerges the spatial oscillations are stable in
time, as derived analytically. Furthermore, the fact that the qualitative shape of pattern
does not depend on the initial conditions indicates that spatial oscillations are not the
result of amplification of the initial conditions.

The most remarkable result is obtained when a dispersion relation of the form of
Fig. 1c is used in the simulations, since a breakdown of the continuum approximation
by fine grain patterning does occur, rather than the sensitivity to initial conditions ad-
vocated in other works (Murray, 1989; Manoussaki et al., 1996). So, at least with the
proposed model, dispersion relations in which arbitrarily large wavenumbers are unstable
always result in spatial pattern with the smallest wavelength that the discretisation is able
to reproduce, independently of the initial conditions.
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Also, from the results, one can intuitively envisage how instabilities are generated: in
regions of the ECM where the concentration of cells is slightly higher than in the sur-
roundings the macroscopic cellular stress σ cell will also be higher, indicating that these
cells will pull the neighbouring ECM with a larger traction force. Hence, the ECM will
deform with its density increasing in high cellular concentration areas. Due to passive
convection, cell concentration will then also increase in such areas, thus initiating an au-
tocatalytic, positive feedback. Only the nonlinear effects of the logistic growth and the
saturation of active forces at high cell densities or ECM strain prevent cell density blow-
up.

Finally, the numerical results show that changing the zero-flux boundary condition for
the cell density to an inhomogeneous Dirichlet boundary condition alters the results close
to the boundary, but the qualitative features of the spatial pattern that emerges inside the
domain are not significantly altered. Another remarkable issue is the fact that the numeri-
cal results are effectively insensitive to the choice of the second boundary condition. This
is particularly important if one considers that from a mathematical standpoint this second
boundary condition is needed to ensure the well posedness of the problem, but from the
point of view of biology, it is difficult to interpret.

7.3. Summary

The objective of this study has been to investigate the self-organisation properties exhib-
ited by the mechanochemical model of Moreo et al. (2008), motivating a detailed linear
stability analysis and finite element simulations. The analytical investigations have re-
vealed that the conditions for pattern emergence are singularly dependent on long-range
effects. They have also highlighted that haptotaxis and durotaxis/tensotaxis have an equiv-
alent influence on pattern emergence, in turn emphasising the role cell mechanosensing
can have in self-organisation. The remarkable pathological dependence on the mesh and
the concomitant fine grained patterning for the simulations of systems characterised by
dispersion relations with growth rates at infinitely large wavenumbers also reveals an
eventual breakdown of the continuum hypothesis.
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Appendix: Non-dimensionalisation

Equations (15)–(16) are obtained from (1), (3), and (2) after appropriate simplifications
and non-dimensionalisation. With this aim, we introduce characteristic values for time, T ,



On the Modelling of Biological Patterns 429

space, L, and ECM density, ρ0, and rescale in the following way:

x∗ = x

L
, t∗ = t

T
, n∗ = n

N
, u∗ = u

L
, ρ∗ = ρ

ρ0
, ε∗ = ε,

θ∗ = θ, D∗
1 = D1T

L2
, D∗

2 = D2T

L4
, h∗

1 = h1Tρ0

L2
, h∗

2 = h2Tρ0

L4
,

M∗ = MET

N(1 + ν)L2
, p∗

cell =
pcellN(1 + ν)

E
, τ ∗ = τN(1 + ν)

E
,

r∗
max = rmaxT , r∗ = rT , μ∗

1 = μ1(1 + ν)

ET
, μ∗

2 = μ2(1 + ν)

ET
,

λ∗ = λN2, β∗ = β

L2
, K∗

act =
KactN(1 + ν)

E
, K∗

pas = KpasN(1 + ν)

E
.

(A.1)
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