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a  b  s  t  r  a  c  t

Adipose-derived  stem  cells  (ASCs)  are  the  mesenchymal  stem  cell  (MSC)  population  found  in the  stromal-
vascular  fraction  (SVF)  of  fat  tissue.  White  adipose  tissue  (WAT),  with  well-established  roles  in  lipid
storage  and adipokine  secretion,  is advantageous  over bone  marrow  as the  source  of  MSCs  due  to  relative
abundance  and  ease  of isolation  of  the tissue.  ASCs  reside  perivascularly  within  WAT  and  physiologically
undergo  adipogenesis  to  support  WAT  expansion  in  response  to  increased  energy  intake.  Apart  from
eywords:
dipose-derived stromal cells
readipocyte/adipocytic progenitor
at development and origin
PS cells/iPSCs
egenerative therapies

adipogenesis,  ASCs  can  be  induced  in  vitro to differentiate  into  osteoblasts,  chondroblasts,  myocytes,
neurons  and other  cell  types.  ASCs  can  also be reprogrammed  to  induced  pluripotent  stem  (iPS)  cells
more  efficiently  than  other  cell  types.  ASCs  are  immunoprivileged  cells  and secrete  immunomodula-
tory,  angiogenic,  anti-apoptotic  and haematopoietic  factors  that  facilitate  tissue  repair.  The  multi-lineage
differentiation  capacity,  unique  immunobiological  properties  and  secretome  of  ASCs  offer  tremendous
therapeutic  potentials  in  regenerative  medicine.
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Cell facts

• As much  as 1% of adipose cells from WAT are ASCs with
MSC  properties.

• Like MSCs from other sources, ASCs are immunoprivileged
and known to migrate to sites of injury upon systemic admin-
istration.

• The paracrine secretion of cytokines by ASCs promotes
tissue regeneration and is of therapeutic importance in
regenerative medicine.

. Introduction

Adipose-derived stem cell (ASC) is the standard nomenclature
roposed by the International Fat Applied Technology Society for
he plastic-adherent, proliferative, multipotent cell population iso-
ated from adipose tissue (Gimble et al., 2007). Other names and
bbreviations used prior to the consensus include adipose-derived
dult stem (ADAS) cells, adipose-derived stromal cells (ADSCs), adi-
Please cite this article in press as: Ong WK,  Sugii S. Adipose-derived stem
http://dx.doi.org/10.1016/j.biocel.2013.02.013

ose mesenchymal stem cells (AdMSCs), lipoblast and processed
ipoaspirate cells (PLAs) (Gimble et al., 2007, Cawthorn et al.,
012a).  A typical protocol of ASC isolation involves collagenase
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digestion of isolated WAT, followed by centrifugation to separate 

floating adipocytes and ASC-containing SVF in the pellet fraction
(Rodbell, 1964; Halvorsen et al., 2000; Zuk et al., 2001). 

ASCs are fibroblastic in morphology and possess the properties
of MSCs traditionally isolated from the bone marrow (Halvorsen 

et al., 2000; Zuk et al., 2001). According to the International Society
for Cellular Therapy, MSCs are defined as being (i) plastic-adherent 

in the standard cell culture condition, (ii) multipotent, i.e.,  able to 

differentiate into osteoblasts, adipocytes and chondrocytes in vitro 

and (iii) positive for CD73, CD90 and CD105, and negative for CD11b 

or CD14, CD19 or CD79�, CD34, CD45 and HLA-DR in their cell 

surface immunophenotype (Dominici et al., 2006). 

Currently, there are no definitive markers for ASCs. Despite the 

similarity between ASCs and bone marrow-derived MSCs (BMSCs), 

there have been reports that showed differential expression of cell 

surface markers between ASCs and BMSCs. For example in humans, 

BMSCs lack expression of CD49d that is present in ASCs, while ASCs 

lack expression of CD49f, CD104, CD106 that are present in BMSCs 

(Lindroos et al., 2011; Pachón-Peña et al., 2011; Cawthorn et al., 

2012a).  However, these are not always consistent across reports 

and may  be in part affected by donor heterogeneity, methods and 

quality of ASC isolation, antibody sources, sensitivity of detection 

methods and cell culture conditions that include differences in 

media composition, oxygen supply, cell confluency and passage 

number (Lindroos et al., 2011; Baer and Geiger, 2012). 
 cells: Fatty potentials for therapy. Int J Biochem Cell Biol (2013),

The discovery of ASCs has resulted in increasing appreciation of 55

WAT  as a valuable source of adult stem cells with MSC  potency for 56

use in regenerative medicine due to several advantages. ASCs are 57

abundantly present in WAT  where they constitute as much as 1% of 58
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Fig. 1. Cell types in adipose tissue. A subpopulation of adipose cells is ASCs
that possesses the properties of MSCs and can commit to become pre-adipocytes
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nd subsequently differentiate into mature adipocytes. Other cell types include
aematopoietic cells (e.g., erythrocytes, monocytes and macrophages), endothelial
ells and smooth muscle cells.

uman adipose cells when compared to only 0.001–0.002% BMSCs
n bone marrow (Fraser et al., 2006). ASCs can also be harvested by

 minimally invasive procedure involving liposuction from subcu-
aneous depots.

. Cell origin and adipogenesis

Several lines of evidence suggest a perivascular location and ori-
in of ASCs within WAT  (Lin et al., 2010; Zimmerlin et al., 2010;
awthorn et al., 2012a).  The perivascular niche (local environ-
ent) is important in determining ASC fate, function, maintenance

nd phenotype (Baer and Geiger, 2012). WAT  stores excess energy
n the form of lipids in its major cell type, adipocytes, that also
ecrete metabolic hormones collectively known as adipokines.
he two main depots of WAT  in humans are (1) subcutaneous
epots in the buttocks, thighs and abdomen and (2) visceral/intra-
bdominal depots around the omentum, intestines and perirenal
reas (Gimble et al., 2007). The subcutaneous fat depot physiologi-
ally stores excess lipids and thus prevents their deposition into
ther organs, whereas excess visceral fat accumulation leads to
athological metabolic profiles due to its lipolytic nature (Després
nd Lemieux, 2006). Apart from adipocytes and multipotent ASCs,
ther cell types present in WAT  include the committed adipocyte
recursor cell (pre-adipocyte), haematopoietic cell types (e.g.,
rythrocyte, monocyte and macrophage), endothelial cell and
mooth muscle cell (Fig. 1).

ASCs undergo adipogenesis, i.e.,  differentiation into mature
dipocytes, to maintain adipocyte cell numbers by replacing dead
ells under a normal metabolic state and to increase adipocyte
umber enabling hyperplastic WAT  expansion when there is

ncreased energy intake (Cawthorn et al., 2012a).  The adipogenic
apability of ASCs depends on their WAT  depot origin and donor
haracteristics such as age, sex and metabolic status (Katz and
ericli, 2011; Cawthorn et al., 2012b). For example, ASCs from

ubcutaneous fat differentiate better into mature adipocytes than
hose from visceral fat by the standard in vitro adipogenesis pro-
ocol (Macotela et al., 2012). Adipogenesis occurs in two  stages,
amely (1) commitment of ASCs to unipotent pre-adipocytes
nd (2) terminal differentiation of pre-adipocytes into mature
dipocytes (Fig. 2).
Please cite this article in press as: Ong WK, Sugii S. Adipose-derived stem
http://dx.doi.org/10.1016/j.biocel.2013.02.013

The mechanism underlying commitment of multipotent ASCs
o the adipocyte lineage and identity of the pre-adipocyte are
till unclear. Bone morphogenic proteins (BMPs), Wnt, transfor-
ing growth factor � (TGF�), insulin-like growth factor 1 (IGF1),
 PRESS
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interleukin 17 (IL-17), fibroblast growth factor 1 (FGF1), FGF2 and 

activin are among the signaling molecules that have been reported 

to promote pre-adipocyte commitment (Lowe et al., 2011, Tang 

and Lane, 2012). It was  recently demonstrated that pre-treatment 

with BMP2 and BMP4 enhanced the adipogenic capability of mouse 

Lin− (CD31− CD45− Ter119−) Sca1+ CD34+ cells sorted from vis- 

ceral SVF to the level comparable to those from the subcutaneous 

counterparts (Macotela et al., 2012). 

No consensus has been reached regarding molecular mark- 

ers of the pre-adipocyte. One of the first few markers suggested 

for pre-adipocytes is CD34. Several studies demonstrated that 

CD31− CD34+ SVF cells from humans and mice differentiate bet- 

ter than CD31− CD34− cells in vitro, suggesting the correlation of 

CD34 expression with pre-adipocyte commitment (Cawthorn et al., 

2012a). Friedman’s group demonstrated that Lin− CD24+ CD29+

CD34+ Sca-1+ CD105− CD117− SVF subpopulation are capable of 

in vivo WAT  reconstitution in lipodystrophic mice, indicating that
these additional surface markers define pre-adipocytes (Rodeheffer
et al., 2008). Another group showed that, like ASCs, pre-adipocytes 

reside in the adipose vasculature in mice and express pericyte
markers and proteins such as CD140� (PDGFR�), chondroitin sul- 

fate proteoglycan (NG2) and alpha-smooth muscle actin (�-SMA) 

(Tang et al., 2008). Zinc-finger protein-423 (Zfp423) has been pro- 

posed to be a functional determinant of pre-adipocyte commitment 

as Zfp423 was found highly expressed among most adipogenic 

mouse cell lines like 3T3-L1 by comprehensive transcription factor 

profiling (Gupta et al., 2010). Ectopic Zfp423 expression potenti- 

ates non-adipogenic cell lines to undergo adipogenesis, while its 

deficiency markedly diminishes adipogenic capability in vitro and 

in vivo. 

The subsequent events that mediate terminal differentiation 

into adipocytes are relatively well studied with availability of 

3T3-L1 as the pre-adipocyte cell model. Essentially, the process 

involves a cascade of transcriptional events mediated by per- 

oxisome proliferator-activated receptor � (PPAR�),  members of 

CCAAT/enhancer binding proteins (C/EBPs) and other transcrip- 

tion factors (Lowe et al., 2011; Tontonoz and Spiegelman, 2008). 

PPAR� is the master regulator in this regard as all pathways that 

promote adipogenesis converge to activate PPAR�, which in turn 

upregulates adipogenic genes such as adipocyte fatty acid binding 

protein (aP2), leptin, adiponectin, CD36 and glucose transporter 

type 4 (GLUT4) (Tontonoz and Spiegelman, 2008). 

3. Functions and therapeutic potentials 

ASCs can also undergo osteogenesis, chondrogenesis and dif- 

ferentiation into other cells with a mesodermal origin, such as 

myocytes (cardiomyocytes, smooth muscle and skeletal muscle 

cells) and tendocytes, upon in vitro induction. In addition, ASCs 

are also known to differentiate into pancreatic endocrine cells, 

neurons, epithelia and endothelia in vitro (Lindroos et al., 2011; 

Baer and Geiger, 2012). The capacity for multi-lineage differen- 

tiation allows conversion of ASCs to specialized cells of interest 

(e.g. insulin-secreting cells and hepatocytes), which would be 

useful for tissue and cell replacement therapy (Lindroos et al., 

2011). 

Alternatively, undifferentiated ASCs can be administered either 

via the systemic circulation or directly to the site of intended tissue 

regeneration for subsequent in vivo differentiation into appropri- 

ate cell types. Systemically administered ASCs by default tend to 

be retrieved in organs such as liver, lungs, heart, and brain (Katz
 cells: Fatty potentials for therapy. Int J Biochem Cell Biol (2013),

and Mericli, 2011). ASCs express some of the chemokine receptors 160

and ligands and may  be directed to sites of injury and inflamma- 161

tion in a mechanism similar to the transendothelial migration and 162

diapedesis of leukocytes (Katz and Mericli, 2011). 163
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Fig. 2. Adipogenesis of ASC. Expression of representative cell surface markers 

Apart from the obvious application of ASCs as precursors of dif-
erentiated cells for cell replacement, the unique immunobiology
nd secretome of ASCs are increasingly appreciated for their ther-
peutic potential (Fig. 3). Like MSCs from other sources, ASCs are
mmunoprivileged due to lack of expression of class II major his-
ocompatibilty complex (MHC-II) and co-stimulatory molecules on
he cell surface (Lindroos et al., 2011). This potentially allows allo-
eneic transplantation of ASCs into immunocompetent recipients
ith minimal immune reactions in the host, as exemplified by an

n vivo study using a rat spinal fusion model (McIntosh et al., 2009).
n addition, ASCs are also immunomodulatory and can promote tis-
ue repair through immunosuppressive effects exerted via direct
ell-to-cell interaction or secreted factors such as prostaglandin E2
PGE2), leukemia inhibitory factor (LIF) and kynurenine (Salgado
t al., 2010; Cawthorn et al., 2012b). The immunosuppressive prop-
rty can be exploited to prevent and treat acute graft-versus-host
isease (GVHD) in allogeneic stem cell transplantation, autoim-
une diseases and inflammatory diseases such as Crohn’s disease,

epsis and rheumatoid arthritis (Lindroos et al., 2011; Cawthorn
t al., 2012b).

Besides immunosuppressive molecules, ASCs also secrete an
rray of soluble factors that promote tissue regeneration at the
Please cite this article in press as: Ong WK,  Sugii S. Adipose-derived stem
http://dx.doi.org/10.1016/j.biocel.2013.02.013

njury site via a paracrine mechanism. The secretome includes
ngiogenic factors [e.g., vascular endothelial growth factor (VEGF)],
nti-apoptotic factors [e.g., insulin-like growth factor-1 (IGF-
)], hematopoietic factors [e.g., colony stimulating factors and

ig. 3. Biological properties and therapeutic potentials of ASC. The right half summarize
apacity and immunobiology of the ASC.
nd genes (bottom) in the ASC, pre-adipocyte and mature adipocyte is shown.

interleukins] and hepatocyte growth factor (HGF) that is 

hematopoietic, angiogenic and promotes mammary epithelial duct 

formation (Kilroy et al., 2007; Salgado et al., 2010; Baer and Geiger, 

2012). It is gaining appreciation that the therapeutic effects of 

ASC therapy in vivo are largely attributed to the paracrine and 

immunomodulatory effects of ASCs rather than the cell replace- 

ment per se (Katz and Mericli, 2011). 

ASCs are also ideal for reprogramming into induced pluripotent 

stem (iPS) cells. The reprogramming efficiencies of ASCs are sub- 

stantially higher than those reported for fibroblasts from humans 

(up to 100-fold) and mice (∼5-fold) (Sugii et al., 2010). Remarkably, 

the process can be performed without the requirement for feeder 

cells (Sugii et al., 2010, 2011). This is possible because ASCs intrinsi- 

cally secrete a high level of self-renewal supporting factors such as 

FGF2, LIF, fibronectin and vitronectin, and thus can serve as feeders 

for both autologous and heterologous pluripotent stem cells (Sugii 

et al., 2010). 

4. Associated pathologies 

Gene mutations in PPAR�, AGPAT2, seipin/BCSL2, and lamin A 
 cells: Fatty potentials for therapy. Int J Biochem Cell Biol (2013),

result in inherited lipodystrophy, a condition characterized by sub- 209

stantial reduction in fat development (Virtue and Vidal-Puig, 2010; 210

Garg, 2011). It is plausible that the disease arises from defects in adi- 211

pogenesis, but it is not certain which, if any, properties of ASCs are 212

s secretome of the ASC, and the left half summarizes multi-lineage differentiation

dx.doi.org/10.1016/j.biocel.2013.02.013
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ffected in lipodystrophic patients. On the other extreme, adipo-
enesis capacity is over-saturated and hypertrophy of adipocytes
ccurs in obesity (Slawik and Vidal-Puig, 2007). The inability to
roperly store excess lipids in both lipodystrophy and obesity leads
o lipid spillover into non-adipose tissues, causing lipotoxicity and
ubsequent metabolic complications such as insulin resistance,
ype 2 diabetes, steatotic liver disease and heart failure (Slawik and
idal-Puig, 2007). Involvement of ASCs in the impaired adipose tis-
ue expandability is only beginning to be explored. It was reported
hat the number of mature adipocytes is set during childhood and
tays constant throughout adulthood regardless of fat mass changes
n human (Spalding et al., 2008), but it is yet not clear how ASCs and
rogenitor cells contribute to this process.

Dysregulation of ASC adipogenesis can lead to ectopic adipose
issue formation as in the case of lipoma. This benign adipose neo-
lasm may  be a result of positive balance in adipocyte turnover
ue to accelerated adipogenesis without enhanced apoptosis (Suga
t al., 2009). Infantile hemangioma, the most common benign
umor of infancy, is characterized by an initial phase of endothelial
ell and MSC  proliferation, and gradual replacement by fat-like tis-
ue during the next involuting phase (Boscolo and Bischoff, 2009).
t would be of interest to determine if hemangioma-derived MSCs
how characteristics and origin similar to ASCs. On the other hand,
ormation of ectopic bone in the subcutaneous adipose depots
s observed in progressive osseous heteroplasia. Osteoblasts and
hondrocytes are present in addition to adipocytes in this rare
ongenital disease associated with mutations in GNAS1 gene that
ncodes the � subunit of the G protein Gs (Gimble et al., 2007). The
henotype of this genetic disorder thus points to the multipotent
ifferentiation capacities of ASCs in vivo. Collectively, further stud-

es on etiology of these human diseases should help understand the
dentity and nature of ASCs.
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