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a b s t r a c t

Cell migration is a phenomenon that is involved in several physiological processes. In the absence of

external guiding factors it shares analogies with Brownian motion. The presence of biochemical or

biophysical cues, on the other hand, can influence cell migration transforming it in a biased random

movement. Recent studies have shown that different cell types are able to recognise the mechanical

properties of the substratum over which they move and that these properties direct the motion through

a process called durotaxis. In this work a 2D mathematical model for the description of this

phenomenon is presented. The model is based on the Langevin equation that has been modified to

take into account the local mechanical properties of the substratum perceived by the cells. Numerical

simulations of the model provide individual cell tracks, whose characteristics can be compared with

experimental observations directly. The present model is solved for two important cases: an isotropic

substratum, to check that random motility is recovered as a subcase, and a biphasic substratum, to

investigate durotaxis. The degree of agreement is satisfactory in both cases. The model can be a useful

tool for quantifying relevant parameters of cell migration as a function of the substratum mechanical

properties.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Cell migration is a relevant phenomenon in many different
biological processes such as morphogenesis, inflammatory
response, wound healing and tumour metastasis (Lauffenburger
and Linderman, 1993; Chicurel, 2002; Ridley et al., 2003).

Cell crawling is the most common mechanism employed by
cells (Ananthakrishnan and Ehrlicher, 2007) and even if it is not
the only one known (see for example motility in confined
geometry, studied by Hawkins et al. (2009)), in the present article
we will only refer to crawling. From the microscopic point of
view, it is started by specific interactions between the cellular
receptors and the ligands present in the extracellular environ-
ment, which in turn trigger the activation of the cytoskeleton
machinery, eventually leading to cell translocation.

In the absence of external signalling, cell migration occurs
through a series of steps taken randomly and the process is called
‘‘random motility’’. As a consequence, a single cell will follow a
quasi-straight path over short time intervals, while over longer time
intervals such a motion exhibits the characteristics of a persistent
ll rights reserved.
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random walk, i.e. it has a behaviour similar to Brownian motion
(Lauffenburger and Linderman, 1993; Walmod et al., 2001). How-
ever, it is known that cells are able to feel a certain number of
external signals capable of influencing their movement. These are,
for example, the presence of a soluble chemical or of a gradient
thereof (chemotaxis; Zigmond, 1977; Harris, 1954), a particular
distribution of adhesion molecules on the substratum (haptotaxis,
Carter, 1967), the presence of an electrical field (galvanotaxis,
Robinson, 1985) or a fluid shear stress (mechanotaxis, Li et al.,
2002). Among these, chemotaxis is probably the most studied
mechanism (Stokes and Lauffenburger, 1991; Stokes et al., 1991),
even though by no means it has to be considered the leading one for
orchestrating cell movement.

Additional guidance cues provided by physical and structural
properties of the extracellular matrix (ECM), or of the synthetic
substratum, are known to affect cell migration (Friedl and
Brocker, 2000; Friedl and Wolf, 2003; Ghosh and Ingber, 2007).
The stiffness of the substratum itself, for example, is one of these
signals: cells are able to recognise the local mechanical properties,
and these are able to influence cell motility in that the moving cell
seems to be preferentially directed towards the stiffer regions.
This phenomenon is called ‘‘durotaxis’’ and was observed for the
first time by Lo et al. (2000). The physical mechanism underlying
this phenomenon is not completely understood, but according
to Lo et al. (2000), guidance comes through the local protrusions
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of cells that adhere and probe the mechanical properties of the
environment: when the adhesion site occurs on a soft region it is
weak and unstable, while if it lands on a stiff region it is strong
and stable and becomes the leading edge of the cell. This
generates a sort of competition between adhesion sites that leads
to the bias that gives rise to durotaxis, as during embryonic
development and wound healing. Durotaxis has also been sug-
gested to play a role in other processes such as proliferation,
apoptosis and cell differentiation (Engler et al., 2006; Nemir and
West, 2010).

For better comprehending the general aspects of cell migra-
tion, several mathematical models have been developed. These
can be grouped in two principal types, namely continuous
approaches and discrete approaches. In a continuous approach
cell migration is represented by changes in time and space of the
local cell concentration. Many of these models are related to
models of diffusion (Patlak, 1953; Keller and Segel, 1971;
Chauvi�ere et al. 2007; Painter, 2009; Chauvi�ere et al., 2010), but
there are also models describing the evolution of the cell density,
which could be of different nature (Filbet et al., 2005). However,
continuous approaches do not yield individual cell trajectories
which, on the other hand, can be obtained using a discrete
approach; for a review on this subject the reader is referred to
Ionides et al. (2004). Discrete approaches can be either based on
the mechanical equilibrium of a single cell considered as a point
mass subjected to external forces (Zaman et al., 2005), or on the
direct prescription of the cell velocity vector as a weighted
balance of vectorial quantities that are thought of influencing cell
motion (Dallon et al., 1999). Since the path of each simulated cell
can be obtained directly, the discrete approach is useful for a
direct comparison with experiments in which individual cell
paths are collected, and for checking the validity of specific
hypotheses.

Moreover, it is worth mentioning that discrete models can be
upscaled to recover continuous models (Turner et al., 2004;
Chauvi�ere and Preziosi, 2010).

Different kinds of cell migration have been modelled using the
discrete approach: random motility (Zaman et al., 2005; Dickinson
and Tranquillo, 1993), haptotaxis (Smith et al., 2004; Dickinson and
Tranquillo, 1993), chemotaxis (Tranquillo and Lauffenburger, 1987;
Stokes and Lauffenburger, 1991; Jabbarzadeh and Abrams, 2005)
and galvanotaxis (Schienbein and Gruler, 1993). Concerning dur-
otaxis modelling, to our knowledge, it has been studied only using
the continuous approach by Moreo et al. (2008). In the present work
we develop a simple 2D discrete model for durotaxis, through which
it is possible to obtain simulated cell paths that are influenced by
the substratum mechanical properties. In particular, the substratum
stiffness is taken into account by using a procedure that is
reminiscent of the probing mechanism that cells use during motion.
2. Model formulation

2.1. Cell migration modelling and the Langevin equation

In the absence of external guidance cues, cell motility is a
stochastic process similar to Brownian motion of particles: although
the fundamental mechanisms by which cells move are radically
different from the thermally originated movement of particles
suspended in a fluid, the observation of the trajectories of individual
cells migrating on a substratum reveals a striking similarity,
suggesting that a related mathematical description might be appro-
priate (Dunn and Brown, 1987; Stokes et al., 1991; Schienbein and
Gruler, 1993; Ionides et al., 2004; Selmeczi et al., 2005).

In fact, the Langevin equation, which was introduced by
Langevin (1908) to study Brownian motion, is also a very common
model that is employed for describing cell migration (Dunn and
Brown, 1987; Stokes and Lauffenburger, 1991). The Langevin
equation is one of the easiest dynamical stochastic differential
equations, its solution is an Ornstein–Uhlenbeck process, that is
the simplest type of continuous autocorrelated stochastic process.
Letting x(t) be the position of a cell on the substratum and
denoting time with t and the cell mass with m, the Langevin
equation reads:

m
d2x

dt2
¼�z

dx

dt
þFðtÞ ð1Þ

This equation might be seen as Newton’s second law of motion
under the assumption that the cell experiences only two forces:
F(t), a stochastic force which is due to all the probabilistic
processes affecting cell motility, and �zðdx=dtÞ, a drag force that
represents all the actions that tend to slow cell movement down,
with z being the drag coefficient. On a macroscopic scale, F(t) can
be viewed as a normal white noise with zero mean and constant
power spectrum. Following the work of Doob (1942), in order to
avoid requiring too much regularity on x(t) this equation can be
rewritten in incremental form as follows:

dvðtÞ ¼�bvðtÞdtþdBðtÞ ð2Þ

where b¼z/m and v(t) is the cell velocity, i.e. the time derivative
of x(t). The term dB(t) is then assumed to be a Gaussian
distributed stochastic process with average zero and variance
equal to adt, where a is a constant and dt is the time increment.
Assuming that dB(t) is independent of the position x(t) and using
the equipartition theorem of energy, the Langevin equation can be
solved for the average value of x(t) (Coffey et al., 1996). Indicating
with E the expected-value operator we can thus obtain the
function D2ðtÞ ¼ Ef½xðtÞ�xð0Þ�2g, which is the mean square
displacement (MSD).

Numerical solutions for the Langevin equation are also possi-
ble using a random number generator and a stochastic numerical
method. Using the stochastic Euler method (Wright, 1974) the
equation must be discretised regularly in time with time incre-
ments Dt which are sufficiently small but finite:

vðtþDtÞ�vðtÞ ¼�bvðtÞDtþBðtþDtÞ�BðtÞ ð3Þ

and the solution in terms of velocity is then stepwise constructed
for every time instant if the initial velocity is known. The cell
position as a function of time, x(t), can then be obtained by
integration with respect to time t, knowing the position x0 of the
particle at t¼0:

xðtÞ ¼ x0þ

Z t

0
vðt0Þdt0 ð4Þ

from which the cell trajectory can be easily constructed.
The Langevin equation contains the basic elements of random-

ness as well as persistence or inertia and thus provides useful
information concerning cell motion in the case of random motility
(Lauffenburger and Linderman, 1993). Moreover, it can be used to
model chemotaxis by adding to the right hand side of Eq. (1) a
deterministic vectorial drift term that depends on the position
and strength of the chemoattractant, as it was done by Stokes and
Lauffenburger (1991). The case of durotaxis, though, is more
complex and can hardly be modelled by simply using a vectorial
drift term. In fact, as it is well known, the stiffness of a material is
not described by a vector but rather by a tensorial quantity (in
general it is a fourth order tensor). Therefore, a correction of the
Langevin equation with a deterministic vector should not yield
meaningful results in the case of durotaxis, except perhaps for
very particular substrata.
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2.2. The cell probing mechanism

In order to model durotaxis successfully, we believe it could be
helpful to consider the effective cell behaviour during crawling.
Cell motion occurs in a discontinuous manner, i.e. as a sequence
of steps separated by a quiescence time (Ananthakrishnan and
Ehrlicher, 2007). Before each step is taken, the cell sends mem-
brane protrusions around its body in a few directions and exerts
contractile forces on the substratum through them (see Fig. 1).
Seemingly, this procedure aims at probing the local stiffness of
the substratum: cell-ECM linkages given by focal adhesions are
more stable on stiffer regions; in contrast, focal adhesions that
land on softer regions are less firmly obtained and less
stable (Pelham and Wang, 1997; Choquet et al., 1997). Since this
mechanism takes place at every cell step, it inevitably generates a
bias that drives the cell away from compliant regions and towards
stiff regions. An important point of this phenomenon, then, is that
it is based on a deterministic measurement of the substratum
mechanical properties that occurs locally, i.e. at the position
currently occupied by the cell in motion. However, cell migration
would still remain a fundamentally stochastic event: for instance,
the cell does not probe each and every direction and moreover
random fluctuations can occur in the dynamics of focal complexes
that regulate adhesion or in the intracellular signal trafficking
that governs the motile sensing and response mechanism
(Friedrichs et al., 2007).

The model for durotaxis that we are seeking should take these
aspects into account, i.e. a local measurement of the substratum
stiffness to choose the direction, yet preserving some elements of
randomness. Let us consider the standard Langevin equation in
two dimensions and in particular let us look at the stochastic
force term (Eq. (2)). In a Cartesian coordinate system both scalar
components of dB(t) can be supposed to be independent and have
a normal distribution with zero mean and equal variance. If we
switch to polar coordinates, the radial and angular components
are again independent and follow a Rayleigh distribution and a
uniform distribution in the interval (–p, p), respectively (Papoulis,
1991). The uniform distribution for the angular component in the
Fig. 1. A cell probing the substratum in its neighbourhood (dermal bovine

fibroblast grown on a PEG hydrogel substratum. Optical micrograph. Bar¼50 mm).
case of an isotropic and homogeneous substratum is very reason-
able: basically it states that the contribution to motion due to the
stochastic force in Eq. (2) is equiprobable in every direction. In
durotaxis conditions we hypothesise that the stochastic force
term should be changed in such a way that its direction have a
higher probability of being parallel to the directions of higher
local stiffness. The basic idea, then, is to model durotaxis by
replacing the probability distribution of the angular component of
the stochastic force.

2.3. Implementing the probing mechanism

A way for constructing the new probability distribution that
takes the local substratum stiffness into account can be inspired
by the probing mechanism that was described previously. This
can be schematized as a mechanical problem: the cell applies a
radial distribution of forces on a linear elastic substratum around
its perimeter in order to check the local deformation of the
substratum. Here, for simplicity, we will assume that the cell is
a circle of diameter d and that the forces are uniform and oriented
towards the cell centre (denoted with p in Fig. 2). As a result, for a
given distribution of forces, local stiffer directions will yield
smaller local displacements at the cell perimeter. Denoting these
local displacements along the cell border with U(y), as they will
depend only on the direction y (see Fig. 2), a suitable measure of
the local stiffness as a function of y can then be chosen as

kxðyÞ ¼
1

UðyÞ
with UðyÞ ¼max uðyÞUqðyÞ,Umin

� �
and yA 0,2p½ �

ð5Þ

where q(y) is the radial unit vector that is oriented from the point
on the cell border towards the cell centre, and the constant
Umin¼10�5d is assumed to be the minimum displacement that
the cell is able to sense: from a physical point of view, it appears
reasonable that displacements that are smaller than the 0.001%
Fig. 2. The cell schematized as a circle of diameter d. The probing mechanism is

approximated through a uniform forces distribution p acting in the radial

direction. The position of a generic point P on the cell perimeter is completely

determined by the angle y, which is the one that is used to define the direction of

the local stiffness kx(y).



Fig. 3. The definition of the angles gi and di that were used to describe cell

migration. In particular, gi is the turning angle, i.e. the angle between two

consecutive segments in a path; di is the angle between a path segment and a

fixed direction (here the x direction).
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of the cell diameter are neglected; from the mathematical point of
view, the introduction of the constant Umin avoids division by zero
errors in the numerical scheme.

Basically, Eq. (5) states that a suitable measure for the local
stiffness as a function of direction is the reciprocal of the radial
displacement component. Notice that the subscript �x has been
used on k to mean that it represents a local measure of stiffness,
as in general it will depend not only on the mechanical properties
and the geometry (i.e. shape, constraints) of the substratum but
also on the actual position of the cell. Once kx is known, a suitable
probability density function Pk can be constructed as follows:

PkðyÞ ¼
kxðyÞR 2p

0 kxðxÞdx
yA 0,2p½ � ð6Þ

in which the denominator is introduced to normalise the prob-
ability density. This distribution indeed has the property of
having higher values along the directions where the local stiffness
is higher. This is the new probability distribution for the angular
component of the stochastic force term that will be used in Eq. (2)
for modelling durotaxis.

Concerning the radial component, we will simply keep the
Rayleigh probability distribution, i.e. the distribution it would
have if cell migration occurred as in the standard Langevin
equation, thus we are supposing that this quantity is not influ-
enced by durotaxis. The model finally takes the form

dvðtÞ ¼�bvðtÞdtþd ~Bðt,kxðyÞÞ ð7Þ

where the new stochastic force d ~B, which depends on the local
stiffness through the angular probability distribution given by
Eq. (6), has been employed.

The determination of kx must be performed at every cell step at
the position x(t) occupied by the cell at current time. This is akin to a
standard problem in linear solid mechanics: despite its solution
might be in general too difficult to obtain analytically, except in very
simple cases, its numerical solution is straightforward and therefore
it can be conveniently implemented through the Finite Element
Method (FEM) once the cell position, the geometry of the substra-
tum and its mechanical properties are known. The details of this
implementation are given in Appendix A.

The model we just presented has been solved for two parti-
cular cases, namely migration over a homogeneous and isotropic
substratum and migration over a biphasic substratum, i.e. a
substratum composed of two adjacent isotropic regions posses-
sing different mechanical properties. The first case is useful in
order to check that the model includes the standard Langevin
equation as a subcase. The second case represents an experi-
mental set up that is typically employed to study durotaxis (Lo
et al., 2000).
3. Results

In order to compare the predictions of the model with the
experimental results we need to introduce a certain number of
quantities. One of the most widely used is the already mentioned
MSD, that provides information about the average distance
travelled by a cell during migration as a function of time. Clearly,
the MSD does not contain any information regarding direction-
ality in the cell movement, therefore, in order to complete the
characterisation of cell migration, we will introduce two addi-
tional quantities similar to those used by Beltman et al. (2009),
namely the turning angle gi, i.e. the angle between consecutive
segments of the cell paths, and the angle of every path segment
with respect to a fixed direction (e.g. one of the coordinate axis,
we will use the x-axis), denoted with di. Indicating with ri the ith
cell step, gi and di have the following expressions:

gi ¼ arccos
riUriþ1

:riUriþ1:

 !

di ¼ arccos
riUex

:riUex:

 !
ð8Þ

For the sake of clarity these two quantities are pictured in
Fig. 3 for a generic cell path: gi is related to the tendency of the
cell of moving in a rectilinear fashion, while di represents the
direction chosen by the cell at every step. It immediately follows
from Eq. (8) that both gi and di belong to the interval [0, p]. An
additional quantity that can be used to describe cell movement
quantitatively is the bias speed, Sbias, also employed by Kipper
et al. (2007) for characterizing anisotropic cell motility. If cells are
subjected to an attractive field which is oriented, say, in the x

direction, it is expected that the average x position of the
population of cells increases more or less linearly with time t,
i.e. E{x(t)}ESbiast. Therefore Sbias is estimated by fitting the
average x position as a function of time t to a line. As a result,
Sbias corresponds to the drift velocity in the x direction: in the case
of completely random movement one expects Sbias¼0, if cell
motion is indeed biased the bias speed will be significantly
different from 0.

Let us consider first the case of cell migration over a homo-
geneous and isotropic substratum. It is worthwhile to study this
case to make sure that random motility is recovered and that the
numerical scheme procedure works properly: in this case the
MSD provided by the model will be compared with the one of
the standard Langevin equation whose analytic expression was
obtained by Doob (1942):

D2ðDtÞ ¼ 2
a
b3
ðbDt�1þe�bDtÞ ð9Þ

In keeping with the experimental work presented by Stokes
et al. (1991) for endothelial cells, the migration parameters will
be assumed to be a¼23.2 mm2/h3 and b¼0.15 h�1. Concerning
the model prediction, the paths of 50 cells followed for 24 h were
sequentially simulated over an 800 mm�800 mm square region,
with the centre of the square region being assumed as the starting
point for all the cells. For simplicity, the substratum is assumed to
be linearly elastic and isotropic with a Young’s modulus of
100 kPa and a Poisson’s ratio of 0.2 (Table 1). The cell paths are
depicted in Fig. 4, while the comparison between the MSD of the
simulated cells and the one from Eq. (9) is shown in Fig. 5. Using
these paths, the angles gi and di have been evaluated and are
reported in the histograms of Fig. 6.

Concerning these results, from Fig. 4 it is clear that the cells
move in every direction, as expected. Moreover, comparing the
curve obtained from the numerical evaluation of the MSD with
Eq. (9), we can see that the agreement is very good (Fig. 5).
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From Fig. 6(a) we note that most of the angles between con-
secutive segments (i.e. the gi angles) are very small, say, less than
101: this means that we are dealing with a persistent random
walk. From Fig. 6(b), showing the histogram of the di angles, it is
clear that the path segments follow a quasi-uniform distribution,
as in the case of Brownian motion. We can then conclude that
when cell migration occurs over a homogeneous and isotropic
substratum, the model recovers the standard Langevin equation
as a particular case.
Fig. 4. Graphical windrose representation of 50 cell trajectories starting from

the centre of the isotropic square domain of 800 mm�800 mm for 24 h. The

trajectories are random and there is not a preferred direction of migration.

Fig. 5. Comparison between the analytic expression of D2(Dt) obtained by Doob, and th

motility (50 cells, 24 h over a region of 800 mm�800 mm, time step 9 min and a¼23.2

Table 1
Parameters used in the case of random motility.

Random motility parameters

Young’s modulus E (kPa) 100

Poisson’s ratio n 0.2

Distributed force p (N/m) 10�5

Number of cells 50

Simulation time length (h) 24
The second case of interest, the biphasic domain, is typically
used to study durotaxis. Here it has been schematized using a
square domain (500 mm�500 mm), composed of two linearly
elastic regions having different Young’s moduli (Table 2). In
particular, we have chosen that the left half of the domain, i.e.
for 0 mmoxo250 mm, is the stiff part, while the right half,
250 mmoxo500 mm, is the compliant part. The domain size for
this case has been reduced with respect to the previous case
because the algorithm is more complex and keeping the original
size would have required too much time. Before showing the
simulations, it can be interesting to check the effect of the
biphasic substratum on the probability distribution given by
Eq. (6). As we can see from Fig. 7, the angular component of the
stochastic force of Cell #2 (in red) has a probability distribution
that is basically uniform: its position is relatively far from the
interface between the two materials, therefore the expected
behaviour is similar to random motility. Cell #1 (in blue), on
the other hand, is positioned right on the interface and in fact the
angular probability distribution of its stochastic force is much
higher at 1801 than in other directions.

Considering this domain, we can see clearly from Fig. 8 that all
the cells that were simulated starting from the centre of the
domain migrate towards the stiffer region, in qualitative agree-
ment with the experimental findings of Lo et al. (2000). Also in
this case the cells follow a persistent walk, since the distribution
of the angles between consecutive path segments has a peak near
zero, as depicted in Fig. 9(a). From Fig. 9(b) we can see that the di

angles are distributed predominantly in the 901–1801 interval and
this confirms that the cells do move towards the stiffer region.

In order to provide a direct comparison between the biphasic
domain and the case of random motility, the drift speeds in the x

direction and the y direction are shown for both cases in Fig. 10.
Here we can see that the bias speed, corresponding to the drift
speed in the x direction in the case of the biphasic domain, is
much less than 0, it being around �16 mm/h, while the remaining
drift speeds are around 0. The minus sign in the bias speed means
that cells are biased towards the left half of the plane, i.e. towards
the negative x direction (see Fig. 8).

For the biphasic domain case two different simulations have
been performed. The first one considered 50 cells starting
sequentially from the centre of the substratum and yielded the
trajectories that are depicted in Fig. 8, the histograms of gi and di

that are reported in Fig. 9 and the results of Fig. 10. The second
simulation has been performed in order to make a direct compar-
ison with the experimental observation reported in the work of
e numerical evaluation of the same quantity from the model in the case of random

mm2/h3, b¼0.15 h�1). The error bars stand for the standard deviation.



Fig. 6. (a) Graphical representation of the number of steps as a function of gi angles for 50 cells on the isotropic substratum (i.e. in the case of random motility). Most of

these angles are close to 01, meaning that the walk is persistent. (b) Graphical representation of the distribution of the di angles evaluated for 50 cells on an isotropic

substratum (i.e. in the case of random motility). There are no preferred directions, the distribution is essentially uniform.

Table 2
Parameters for the solution of the biphasic domain configuration.

Biphasic domain parameters

Young’s modulus E1 (kPa) 100

Young’s modulus E2 (kPa) 1000

Poisson’s ratio n 0.2

Distributed force p (N/m) 10�5

Number of cells 50

Simulation time length (h) 12
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Lo et al. (2000): the trajectories of four cells have been generated,
two starting from the stiffer region and two starting from the
more compliant region, and these are shown in Fig. 11.
Fig. 7. The probability distribution of the angular component of the stochastic

force depends on cell position. The blue cell (#1) is placed at the interface between

the softer material (yellow) and the stiffer material (green), therefore its

distribution shows higher probability around 1801, i.e. towards the stiff material.

The red cell (#2) is far from the interface or the boundaries, therefore its stochastic

force has an angular component with uniform probability distribution. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
4. Discussions

In the present work, we have introduced a 2D numerical
model which is able to predict cell migration in the case of
durotaxis. The Langevin equation, that has been extensively used
in the literature for modelling various types of cell migration,
forms the basis of the model presented in this paper. Although
some forms of biased cell migration, such as chemotaxis, can be
easily captured by adding a deterministic drift term to the
Langevin equation, durotaxis is more complex and must be
treated differently. Moreover, even though the directions of
maximum local stiffness can be determined in a deterministic
way once the cell position is known, the model had to retain some
elements of randomness that anyway do characterize the process
of cell migration.

For these reasons we found it convenient to implement the
measurement of the local stiffness as a modified distribution
probability that the angular component of the stochastic force
term in the Langevin equation must obey. This distribution, in
general, is far from a simple normal or uniform distribution, and
moreover it can vary from point to point. As a result, it is basically
impossible to perform an analytical study of the statistics of the
relevant processes, such as cell position and velocity, therefore
these quantities must be obtained through a numerical proce-
dure. This is what has been done for two benchmark cases,
namely the simulation of random motility over an isotropic and
homogeneous substratum and migration over a biphasic
substratum.

After observing that the model gives results that are at least in
qualitative agreement with the experimental data known from
the literature, we can make some considerations about the
hypotheses that were formulated. Despite the model does not
require using a linearly elastic constitutive law for the substra-
tum, we assumed such a law for both the substrata simulated in
the present paper. A more general viscoelastic, perhaps even
nonlinear, law would have been more appropriate, but it must be
considered that during the probing phase the cell applies forces
on the substratum within a characteristic time scale that is in the
range of 100 ms up to 1 s (Kress et al., 2007). If such characteristic
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times are much smaller than the average relaxation times of the
substratum, then the hypothesis of an elastic substratum is
acceptable. Moreover, it is also assumed that due to the very
small forces applied by the cells (Kress et al., 2007; Oliver et al.,
1994), the deformations of the substratum are also very small and
this leads to the hypothesis of linearity in the elastic response.
Needless to say, these assumptions permit to simplify the FEM
setting of the problem, and thus to reduce the computing time
requested for the numerical solution.

The material constants of the substratum determined through
bulk measurements might not be those actually perceived by the
migrating cells. This would be true if ligands adhered rigidly to
the material without any mediating molecules. However, ligands
could be either weakly bound or connected with a flexible tether
to the material surface. In this case the stiffness of this ligand–
substratum complex should be considered in evaluating what the
cells perceive and thus included in the substratum mechanical
properties.
Fig. 8. Trajectories of 50 cells spreading from the centre of a biphasic square

domain of 500 mm�500 mm for 12 h. All cells move leftwards, i.e. towards the

stiffer region of the domain, as expected from the experimental studies of Lo et al.

(2000).

Fig. 9. (a) Graphical representation of the number of steps as a function of gi angles

(b) Graphical representation of the distribution of the di angles evaluated for 50 cells on

the left part of the substratum, most of the angles are between 901 and 1801.
The major limitation of the present model is that it is valid
only for low cell densities, i.e. when cells are not too close. In fact,
if many cells were considered, the stiffness perceived by a single
cell would be altered by the contractile forces exerted by the
other ones in its close neighbourhood (Lo et al., 2000). Despite
this situation can be handled by the present model without too
much effort, it is possible to speculate that cell–cell contacts may
occur and these are known to influence the migratory behaviour
(Platek et al., 2008). Since the multiple and simultaneous events
that take place during cell–cell contact are highly complex, it is
very difficult to quantify and model such interactions, in fact this
limitation is common to all the discrete models published so far
(Flaherty et al., 2007). This notwithstanding, a large body of
experimental data on cell migration are indeed based on low cell
density assays and this model is able to reproduce this situation.

Considering the positive aspects, the model is simple and
versatile, so it can be easily implemented for any substratum. In
this paper it has been specialised to two relatively simple cases,
but it can be adapted also to cases with more complex geometries
and materials. Even though it does not describe all the mechan-
isms that take part at the cell cytoskeleton (DiMilla et al., 1991),
it is able to relate the mechanical properties of the sub-
stratum to the path followed by a cell migrating over it, yielding
the influence of the substratum stiffness on cell migration.
for 50 cells on the biphasic substratum. Also in this case the walk is persistent.

a biphasic substratum. As cells migrate preferentially on the stiffer region, i.e. on

Fig. 10. Drift speeds in the x and y direction for the isotropic domain (case of

random motility) and for the biphasic domain. Due to durotaxis, the drift speed in

the x direction for the case of biphasic domain is around �16 mm/h, a value which

is significantly different from 0. The error bars represent the standard error of

the mean.



Fig. 11. Simulated result for the experimental evidence of Lo et al. (2000). Cells

starting from the stiffer region (on the left) do not move to the more compliant

one; cells starting from the more compliant region (on the right) move towards

the stiffer one (the ending point is shown and the moving direction is indicated by

the arrows). Notice that the simulation path lengths are different for each

trajectory because the corresponding simulation times differ.
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The coupling with experimental data will be easy to obtain,
because the model gives the same type of output of a cell tracking
experiment.

The model as presented is not completely predictive, but can
still be a useful tool to perform a robust migration analysis of cells
moving in condition of durotaxis, on anisotropic and/or inhomo-
geneous substrata. In order to make it fully predictive, all the
model parameters should be measured independently. In fact,
only the material constants and possibly the uniform radial force
distribution p applied by the cell and the displacement threshold
Umin can be evaluated by means of a local mechanical character-
isation (e.g. AFM, optical tweezers), but the direct measurement
of a and b cannot be obtained experimentally. An interesting
possibility would be their evaluation using an intracellular
mechanosensoring model, which takes into account the forces
exerted by the cytoskeleton machinery and its kinetics of assem-
bling/disassembling. More and more of such models are appear-
ing in the current literature and the coupling of one of these
models with the one described in the present paper is underway
and has to be considered as a future working direction.

In addition, the model can be used to study tissue regeneration
and reorganisation due to cell migration in tissue engineering
applications: it is known that fibroblasts migration along straight
lines leads to the deposition of aligned collagen fibres (Wang
et al., 2003) and thus the model can be seen as a starting point for
designing a scaffold that guides cell migration through its
mechanical properties, leading to the production of an engineered
tissue with a predetermined collagen alignment.
Appendix A

For the numerical algorithm it is useful to non-dimensionalise
Eqs. (2) and (4) using the following non-dimensional variables:

V¼
vffiffiffiffiffiffiffiffiffi
a=b

p ðA1Þ
X¼
xffiffiffiffiffiffiffiffiffiffiffi
a=b3

q ðA2Þ

t¼ tb ðA3Þ

Substituting these definitions into Eqs. (2) and (4) we have

dVðtÞ ¼�VðtÞdtþdB̂ðt,kxðyÞÞ ðA4Þ

and

XðtÞ ¼X0þ

Z t

0
Vðt0Þdt0 ðA5Þ

in which dB̂ is the dimensionless stochastic force. More specifi-
cally, it is a stochastic process whose radial component has the
following Rayleigh probability density:

xexp �
x2

2

� �
HðxÞ ðA6Þ

where we denoted with H(x) the Heaviside step function.
A random variable possessing the probability density given by
Eq. (A6) can be constructed by creating two normally distributed
random variables, each one having zero mean and variance unity,
and taking the square root of the sum of their squares. The
angular component of dB̂, on the other hand, has the probability
density given by Eq. (6) that depends on local stiffness through
kx(y).

In order to simulate the cell paths, Eqs. (A4) and (A5) have
been solved numerically using the stochastic Euler method
combined with the random number generator of MATLAB (The
MathWorks, Natick, MA). In particular, velocity and position at
the ith time step, Vi and Xi, are given by

Vi ¼ Vi�1ð1�DtÞþDB̂i�1 ðA7Þ

and

Xi ¼Xi�1þViDt ðA8Þ

Notice that in our scheme the cell velocity is calculated using
an explicit method while position is calculated with an implicit
method: we found that such a procedure yielded better results in
the case of random motility, i.e. in the case where the standard
Langevin equation case had to be recovered.

In order to obtain the angular probability distribution for the
stochastic force DB̂i, the stiffness kx must be evaluated at every
cell step. This can be done by solving a linear elasticity problem
numerically using the FEM and has also been realized within
MATLAB: the domain has been discretised using four node square
elements with two degrees of freedom per node; for the case of
random motility 10,000 elements have been used while for the
biphasic domain case a total of 6400 elements have been used
(the computational algorithm for the biphasic domain is more
complex, thus we needed to use less elements). Once the position
of the cell is known, a uniform radial force distribution is applied
along the circumference representing the cell perimeter. A cell
diameter equals to 25 mm has been assumed (see Fig. 2), while the
uniform force distribution has been assumed to be of the order
p¼10�5 N/m: this value roughly corresponds to about 102 point
forces applied along the cell perimeter, each force being of the
order of 10 pN, in agreement with Kress et al. (2007).

Once the displacements are known at the cell perimeter, the
stiffness kx can be evaluated using Eq. (5) and finally the local
probability distribution can be obtained through Eq. (6). This
procedure must be repeated for every moving cell and at every
cell step.
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Appendix B. Supplementary Materials

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2011.04.001.
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