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Endothelial Cell Electrical Impedance Parameter
Artifacts Produced by a Gold Electrode and Phase

Sensitive Detection
Anthony E. English*, James C. Squire, Senior Member, IEEE, James E. Bodmer, and Alan B. Moy

Abstract—Frequency dependent cellular micro-impedance
estimates obtained from a gold two-electrode configuration using
phase sensitive detection have become increasingly used to evaluate
cellular barrier model parameters. The results of this study show
that cellular barrier function parameter estimates optimized using
measurements obtained from this biosensor are highly susceptible
to both time dependent and systematic instrumental artifacts.
Based on a power spectral analysis of experimentally measured
microelectrode voltages, synchronous, 60 Hz, and white Gaussian
noise were identified as the most significant time dependent in-
strumental artifacts. The reduction of these artifacts using digital
filtering produced a corresponding reduction in the optimized
model parameter fluctuations. Using a series of instrumental cir-
cuit models, this study also shows that electrode impedance voltage
divider effects and circuit capacitances can produce systematic
deviations in cellular barrier function parameter estimates. Al-
though the implementation of an active current source reduced
the voltage divider effects, artifacts produced by coaxial cable and
other circuit capacitive elements at frequencies exceeding 1 kHz
still remained. Reducing time dependent instrumental fluctuations
and systematic errors produced a significant reduction in cellular
model barrier parameter errors and improved the model fit to
experimental data.

Index Terms—Biological cells, biomedical transducers,
impedance, measurement errors, parameter estimation.

I. INTRODUCTION

IMPEDANCE measuements have become increasingly used
to characterize and study biological cells. A novel cel-

lular microimpedance measuring system pioneered by Giaver
and Keese, [1]–[3], referred to as the electric cell substrate
impedance sensor (ECIS), has found widespread application in
toxicology screening, cellular motility, and cellular adhesion
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interaction studies [4]–[17]. Frequency dependent cellular
impedance measurements obtained from this sensor can be
used to estimate cellular barrier function parameters based on
closed form solutions to a cellular impedance model [18]–[20].
Despite the potential importance of this biosensor, however, few
studies have considered the sources of random and systematic
instrumental artifacts in this system and their impact on cellular
barrier function parameter estimates [21].

This biosensor is based on a gold two-electrode configura-
tion where cells are cultivated on a small gold surface and sub-
jected to ac currents on the order of 1 �A. Phase sensitive detec-
tion of the electrode voltage is used to estimate the cell mono-
layer impedance at specific reference frequencies knowing the
applied current. During the phase sensitive detection process,
however, several forms of random and deterministic electrical
noise can corrupt the voltage signal. These artifacts, appearing
at different frequencies and intensities depending on the sam-
pling rate, filter time constant, and filter roll off, contribute to
fluctuations in cellular barrier impedances and parameter es-
timates. The quantification of these random and deterministic
noise sources is, therefore, necessary to distinguish between
impedance and barrier parameter fluctuations that have a true
physiologic meaning from those produced by instrumental arti-
facts.

The introduction of systematic errors produced by the voltage
to impedance conversion in this system must also be carefully
considered. In most studies of this nature, a large resistor is
connected in series with the electrode and an ac voltage gener-
ator to produce a passive current source. Assuming that such a
system produces a constant electrode current, however, ignores
the voltage divider effects produced by the electrode impedance
and capacitances associated with the coaxial cables and other
circuit elements. These artifacts produce systematic shifts in the
impedance and parameter estimates. This study, therefore, care-
fully examines both the time dependent and systematic errors
that corrupt endothelial cell impedances and their propagation
into cellular barrier function parameter estimates.

II. METHODS AND MATERIALS

A. Cell Culture

Endothelial cells were isolated from porcine pulmonary ar-
teries obtained from a local abattoir and cultivated in an in-
cubator at 37 �C and 5% CO2. The cell culture media con-
sisted of M199 (GibcoBRL) and 10% fetal bovine serum (Hy-
clone) supplemented with vitamins (Sigma), glutamine (Gib-
coBRL), penicillin and streptomycin (GibcoBRL), and amino

0018-9294/$25.00 © 2007 IEEE
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Fig. 1. Cellular impedance biosensor circuit configuration based on a 1-�A current source. In the passive current source, a generator produces a 16 0�Vpp voltage
via a 50-
 source resistance, Rs . and a series 1-M
 resistor, Rcc to give an approximately constant 16 0��A current provided the load is much smaller than
Rcc . In the active current configuration, a transconductance amplifier provides at least a twenty-five-fold improvement over the passive current source. The lock-in
amplifier has an input impedance characterized by the resistance Rv = 50 M
 and capacitance Cv = 50 pF the circuit elements, Rps1 = 85 m
, Lps =
1:5 �H, Rps2 > 200 M
, and Cps = 86 pF represent the reference source coaxial lead series resistance, series inductance, parallel resistive, and parallel
capacitive elements, respectively. The circuit elements, Rpv1 = 75 m
 Lpv = 1:5 �H Rpv2 > 200 M
, and Cpv = 86 pF represent the corresponding
amplifier coaxial lead series and parallel elements.

acids (Sigma). Endothelial cells were inoculated onto a series
of gold microelectrodes (Applied Biophysics) coated with fi-
bronectin (BD Biosciences) to facilitate cellular adhesion. Cell
covered electrodes were inspected using a Zeiss Axiovert 35
phase contrast microscope to confirm confluence following six-
teen hours of attachment in an incubator.

B. Endothelial Cell Voltage Measurements

A lock-in amplifier (Stanford Research SR830) provided a
1 6 0�Vpp ac reference signal with frequencies, fL, ranging from
10 Hz and 100 kHz to the electrode via either a 1–M
 resistor or
a transconductance amplifier as shown in Fig. 1. In the first con-
figuration, a 1–M
 resistor,Rcc, was used in series with a refer-
ence 1Vpp ac source. The Norton equivalent is a 1-�App current
source in parallel with a 1–M
 resistance that delivers approx-
imately 1 �App if the absolute value of the input impedance of
the rest of the circuit is much less than 1 M
. In the second
configuration, the voltage controlled current source provided an
actively regulated 1-�A current.

The voltage-dependent current source was constructed using
a modified Howland current pump with a precision field effect
transistor (FET) input high common mode rejection ratio op-
erational amplifier to produce a transimpedance amplifier with

an extremely high output impedance [22]. If the resistors are
perfectly matched, the output impedance using an AD845 oper-
ational amplifier is over 500 M
. This degrades at worst to 25
M
 when using 0.1% resistors but still provides a twenty-five-
fold improvement over the passive current source.

The 1-Vpp ac reference generator had a 50-
 source re-
sistance Rs. The phase sensitive detector input capacitance,
Cv , and resistance, Rv , were 10 M
 and 50 pF, respectively.
The coaxial cable connecting the source to the electrode was
modeled as a series resistor, Rps1, and inductor, Lps, and
a parallel resistor, Rps2, and capacitor, Cps, combination.
The lock-in amplifier coaxial cable components Rpv1, Lpv ,
Rpv2, and Cpv were similarly defined. A BK Precision 889A
Bench LCR/ESR meter provided direct measurements of the
series and parallel coaxial cable impedances. Sensing electrode
arrays were purchased from Applied Biophysics. Each array
consisted of 5 small 10�4 cm2 gold contacts microfabricated
on the bottom of 5 separate wells connected to a single larger
1-cm2 counter electrode.

The internally generated lock-in reference signal

VL = jVLj sin(!Lt� �L) (1)
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where jVLj is the voltage amplitude, !L the frequency, t the
time, and �L phase, stimulated the electrode circuit and pro-
vided a reference waveform during phase sensitive detection.
The measured signal was of the form

VS = jVS j sin(!St� �S) (2)

where jVS j is the measured signal amplitude, !S the measured
signal angular frequency, and �S the phase. The lock-in ampli-
fier multiplied the signal and then multiplied it by the lock-in
reference using a phase-sensitive detector or multiplier. The
output of the phase sensitive detector was the product of two
sine waves,

VPSD = jVS j sin(!St� �S)� jVLj sin(!Lt� �L): (3)

This is equivalent to

VPSD =
1

2
jVS jjVLj cos [(!S � !L)t� (�S � �L)]

�1

2
jVS jjVLj cos [(!S + !L)t� (�S + �L)] : (4)

The SR830 sampled the electrode voltages using a 16-bit
analog-to-digital (A/D) at a rate of 256 kHz and provided a 128
kHz anti-aliasing filter to prevent higher frequency inputs from
aliasing below 102 kHz. Digital sampling of this signal was pro-
vided at a maximum rate of 512 Hz.

C. Voltage to Impedance Conversion

To find a set of optimal parameters quantifying the cellular
barrier function, it is necessary to convert the measured volt-
ages to equivalent impedances based on an instrumental cir-
cuit model. Using a series of approximations with increasingly
more restrictive assumptions, that are not necessarily justifiable,
systematic error propagation into the parameters can be quanti-
fied. The following considers both the passive and active current
sources shown in Fig. 1.

For the passive current source shown in Fig. 1, the passive
reference (PsRef) model can be derived using standard circuit
theory [23]

Zc=
VcZps1Zps2

Zps2Vs�Vc
h

Zps1Zps2(Zpv2+Zv)
(Zpv1Zpv2+Zpv1Zv+Zpv2Zv)

+Zps1+Zps2

i

(5)
where Vc is the measured voltage, Zps1 = Rs +Rcc +Rps1 +
j!Lps,Zps2 = Rps2=(1+j!Rps2Cps),Zpv1 = Rpv1+j!Lpv ,
Zpv2 = Rpv2=(1 + j!Rpv2Cpv), Zv = Rv=(1 + j!RvCv),
and Vs is the reference voltage source. The term ! represents
the angular frequency and j =

p�1, Rs the reference source
impedance, and Rcc is a 1-M
 resistor. The lock-in amplifier
has an input impedance characterized by the resistance Rv and
capacitance Cv . The circuit elements, Rps1, Lps, Rps2, and
Cps represent the reference source coaxial lead series resis-
tance, series inductance, parallel resistance, and parallel capaci-
tance elements, respectively. The circuit elements, Rpv1, Lpv ,
Rpv2, and Cpv represent the corresponding amplifier coaxial
lead series and parallel elements. In the limit that the coaxial se-
ries components are negligible and the input impedance of the

lock-in amplifier is very large, (5) reduces to the passive lead
correction (PsLdC) model

Zc =
VcZps1Zps2h

Zps2Vs � Vc

�
Zps1Zps2
Zpv2

+ Zps1 + Zps2

�i : (6)

If the impedance of the coaxial leads is very large then the
above relation reduces to the passive voltage divider (PsVD)
model

Zc =
VcZcc

(Vs � Vc)
: (7)

If the impedance Zcc is much large than Zc Vs will be much
larger than Vc and the above relation will reduce to the passive
constant current (PsCC) model

Zc =
Zcc
Vs

Vc: (8)

For the active current source also shown in Fig. 1, basic cir-
cuit theory [23] can again be used to derive the active reference
(AcRef) model

Zc =
VcZps2n

Zps2Is � Vc

h
Zps2(Zpv2+Zv)

(Zpv1Zpv2+Zpv1Zv+Zpv2Zv)
+ 1

io (9)

where Vc is the measured electrode voltage, Zps2 = Rps2=(1+
j!Rps2Cps), Zpv1 = Rpv1 + j!Lpv , Zpv2 = Rpv2=(1 +
j!Rpv2Cpv), Zv = Rv=(1+ j!RvCv), and Is is the reference
current source. In the limit that the serial impedance compo-
nents are negligible and the lock in amplifier input impedance
is very large (9) reduces to the active lead correction (AcLdC)
model

Zc =
VcZps2Zpv2

[Zps2Zpv2Is � Vc(Zps2 + Zpv2)]
: (10)

In the limit that the coaxial cable impedances are very large,
(10) reduces to active constant current (AcCC) model

Zc =
Vc
Is
: (11)

To illustrate the systematic errors associated with the different
circuit approximations, the normalized deviation of the experi-
mentally estimated impedance magnitude and phase are defined
as

j�Zj = jZj � jZcj
jZcj and �� = � � �c: (12)

The term j�Zj represents the magnitude deviation resulting
from the difference in the experimentally estimated impedance
magnitude under a given circuit approximation, jZj, and the ac-
tual know value jZcj. The phase deviation, ��, is given by the
difference between the experimentally derived angle, � and the
actual angle, �c.
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Fig. 2. Cell covered electrode distributed parameter model at a cell-cell junc-
tion. A closed form solution for the cell covered impedance Zc can be derived
from this model in terms of bulk cell-cell, cell-matrix, and membrane impedance
components. The parameters dRm , dCm , dRT , dZn , andRb represent the dis-
tributed membrane resistance, membrane capacitance, transcytoplasmic resis-
tance (assumed zero), naked electrode impedance, and intercellular resistance,
respectively.

D. Cellular Impedance Model

Fig. 2 shows the distributed parameter model of the endothe-
lial cell used in this study. The impedance of one membrane is

Zm1 =
Rm

1 + j!RmCm

: (13)

where Rm is the membrane resistance and Cm is the membrane
capacitance. If the apical and basal membranes are assumed to
be identical, the combined impedance of the series combination
is

Zm =
2Rm

1 + j!RmCm

+Rt: (14)

For the purposes of this study, the transcytoplasmic resis-
tance, Rt, is assumed to be negligible. For a cylindrical cell this
distributed parameter model is equivalent to the closed from so-
lution [18], [19]

1

Zc
=

1

Zn

2
4 Zn

Zn + Zm
+

Zm
Zn+Zm

rc
2

I0(rc)
I1(rc)

+Rb

�
1
Zn

+ 1
Zm

�
3
5
(15)

where Zc is the cell covered impedance, Zn the naked elec-
trode impedance, Zm the series combination of the apical and
basal membrane impedances, I0(rc) and I1(rc) are modified

Bessel functions of the first kind of zero and first order, respec-
tively. The term rc represents the cell radius and

 =

s
�

h

�
1

Zn
+

1

Zm

�
(16)

where � is the conductivity and h is the separation between the
electrode and the cell substratum. The solution depends on Rb,
the resistance between the cells per unit area, and �, where

� = rc

r
�

h
: (17)

Based on this model, electrode polarization effects of the naked
electrode [24] are implicitly included in the model by direct ex-
perimental measurements. Prior to each electrode inoculation,
the naked electrode impedance,Zn, is measured, the cells are al-
lowed to attach and then the cell covered electrode impedance,
Zc, is measured. As a result, the parameters �, Rb, Cm, and
Rm represent the cellular impedance effects and not naked elec-
trode artifacts assuming the attached cells do not change the
naked electrode properties.

E. Statistical and Numerical Parameter Optimization

The model to be fitted in this study is of the form

Zc = Zc(x;a) (18)

where the measured impedance Zc has both real, <, and imagi-
nary, =, components. The set of independent variables x in this
study consist only of the measured lock-in reference frequency,
fL. The fitting parameter vector, a, has the elements �, Rb, Cm,
and Rm. In this experimental system, the noise at different ref-
erence frequencies is assumed independent but that the real and
imaginary noise components at a given reference frequency can
be correlated and have different averages and variances. The re-
duced chi squared merit function, �2v , in this case is defined as

�2v(�;Rb; Cm; Rm)

=
�2(�;Rb; Cm; Rm)

v

=

NfP
k=1

[<(Zck�Zc)=(Zck�Zc)]�
�1
k

�
<(Zck�Zc)
=(Zck�Zc)

�
v

(19)

where �k and Zck are the covariance matrix and measured
impedance at the kth reference frequency and �2 is the
weighted squared distance between the experimental data and
the model function. [25] The term v represents the number of
degrees of freedom defined as the number of data points minus
the number of free parameters and the term Nf refers to the
number of reference frequencies. During a frequency scan noise
covariance estimates at each sampled frequency were obtained
by sampling the electrode voltages at each frequency at a rate
of 512 Hz for 2 s. The electrical noise covariance matrix, �ek ,
for the kth reference frequency was obtained by repeatedly
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Fig. 3. Magnitude and phase components of the experimentally measured naked and cell covered voltages and a cell covered model fit voltage assuming a constant
1-�A electrode current. (a) The magnitude of the cell covered electrode voltage, jVcj, shows an increase with respected to the naked electrode magnitude, jVnj, but
poor agreement with the optimized cell covered voltage fit, jVc�fitj. (b) Similarly, the cell covered electrode voltage phase, j�cj, is distinctly different from the
naked electrode voltage phase, j�nj, but is in poor agreement with the model fit voltage phase j�c�fitj. Each point represents the average of 1024 time sequence
voltage measurements sampled at a rate of 512sover 2 s using a 32-ms time constant and 12 dB/decade roll off filter. Error bars representative of the data standard
deviation are less than the symbol sizes. The overall quality of the model fit is poor with a reduced chi squared value �2

v
= 3:778� 106 .

sampling the data at the kth frequency. The real and imaginary
values were used to calculate the sample covariance matrix, i.e.,

�ek =

�
S<<
k

S<=
k

S=<
k

S==
k

�
(20)

where

S<<k =

NdX
i=1

<
�
Zi

ck
� Zck

�
<
�
Zi

ck
� Zck

�
(Nd � 1)

S<=k =

NdX
i=1

<
�
Zi

ck
� Zck

�
=
�
Zi

ck
� Zck

�
(Nd � 1)

S=<k =

NdX
i=1

=
�
Zi

ck
� Zck

�
<
�
Zi

ck
� Zck

�
(Nd � 1)

and

S==k =
NX
i=1

=(Zck � Zck)=(Zck � Zck)

(Nd � 1)
: (21)

The averages are calculated from the Nd data samples at each
frequency, i.e.,

Zck =
1

Nd

NdX
i=1

Zi

ck: (22)

The A/D contribution to the noise covariance matrix can be
estimated as follows. Since the A/D resolution for the SR830 is
16 bits, the A/D interval at the kth frequency can found using
the relation

�VADk =
2� Vks

216 � 1
(23)

where Vks represents the SR830 amplifier sensitivity setting at
the kth frequency. Assuming the A/D noise is uncorrelated, the
A/D noise covariance matrix is

�ADk =

"
(�VADk)

2

12 0

0 (�VADk)
2

12

#
: (24)

The total system noise variance estimate at the kth frequency is
therefore

�k = �ek + �ADk: (25)

A total of ten sets of naked and cell covered electrodes were
measured and the parameters evaluated. The uncertainty and
correlation for a single set of parameters were estimated by
using the �2 function curvature at its minimum. [26] The bi-
ological variability was quantified by evaluating the covariance
matrix associated with the 10 sets of parameter measurements.
[27]

III. RESULTS

This study can be motivated by attempting to optimize en-
dothelial cell model barrier parameters using electrode voltage
measurements converted to equivalent impedances under the as-
sumption of a constant 1-�A electrode current [18]. Fig. 3 shows
a representative set of experimentally measured real and imag-
inary voltages obtained from a naked electrode and the same
electrode supporting a confluent endothelial cell monolayer fol-
lowing sixteen hours of attachment. An optimal fit to the cell
covered impedance model, Zc, (15) obtained by minimizing the
�2v function (19), however, produced poor fits with very large
�2v values. The following results identify the random and sys-
tematic errors responsible for these poor model fits and the sig-
nificant improvement in the model fit produced by using filtering
and circuit corrections.
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Fig. 4. Power spectral analysis of 1024 experimentally measured in phase naked electrode voltages sampled at a rate of 512 Hz for 2 s. The lock-in amplifier
reference frequencies, fL , were (a), (d) and (g) 100 Hz, (b), (e), and (h) 1 kHz, and (c), (f), and (i) 10 kHz, respectively. (a)–(c) Without synchronization filtering
harmonic noise appears at multiples of the reference frequency. (c)—(f) Adding synchronization filtering reveals 60-Hz noise consistent with sum and difference
components of the lock-in reference frequency. Additional low-pass filtering with a 30-ms time constant and a 12-dB roll off significantly reduces the 60-Hz noise.
(i) At high reference frequencies, the noise level is reduced to the level of the A/D. Aliasing produces spectral folding for signal frequencies exceeding the 256-Hz
Nyquist frequency.

A. Random and Deterministic Errors Following Phase
Sensitive Detection and Digital Filtering

The different contributions to the instrumental noise can be
revealed using a progression of filtering techniques. Beginning
with minimal amounts of filtering, synchronous and 60-Hz noise
were most clearly observed using a spectral analysis of the ac-
quired voltage data at the different lock-in frequencies. Fluctua-
tions about the measured averages shown in Fig. 3 were smaller
than the symbol sizes and produced a consistent pattern of noise.
Fig. 4 provides a spectral analysis of 1024 experimentally mea-
sured naked electrode voltages sampled at a rate of 512 Hz at
the three different lock-in frequencies 100 Hz, 1 kHz and 10
kHz, respectively, under different filter settings. The top row of
Fig. 4 shows the spectra obtained with a low pass filter time con-
stant of 10 �s and a 6 dB/decade roll-off. Adding synchronous
filtering produced the middle row and increasing the filter time
constant to 30 ms and the roll off to 12 dB/decade produced the
bottom row. Without synchronous filtering, a 100-Hz reference
frequency produced large artifacts at multiples of the lock-in
reference frequency. At 1 and 10 kHz reference frequencies,
artifacts consistent with the spectral folding of the reference

frequency harmonics or 60-Hz noise were present. At low ref-
erence frequencies, synchronous filtering significantly reduced
the harmonic noise components but revealed artifacts consis-
tent with 60-Hz noise. The 100-Hz reference frequency spec-
trum contained sum and difference 60-Hz noise components at
40 and 160 Hz, respectively. The bottom row of three spectra
in Fig. 4 demonstrates that a filter with a 30-ms time constant
and 12 dB/decade roll off effectively removed most of the syn-
chronous and white Gaussian instrumental noise. At higher ref-
erence frequencies the filtering reduced the noise to the level of
the A/D and the standard deviation of these measurements went
to zero.

The effect of filtering on statistical measures of the time do-
main fluctuations gives a complementary perspective to the fre-
quency analysis. Using these statistics in a Monte Carlo simu-
lation also provides a link to the parameter errors for a given
level of filtering. Fig. 5 provides a statistical summary ofexperi-
mentally acquired naked electrode voltage fluctuations and their
propagation into parameter error estimates under different filter
settings. The top two rows of figures show the square root of the
noise covariance matrix determinant associated with 1024 data
points sampled at a rate of 512 Hz at each reference frequency
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Fig. 5. Experimentally acquired naked electrode voltage statistical summary and noise propagation into parameter error estimates under different filter settings.
(a), (c), and (e) Effects of increasing filter time constant with a 6 dB/decade roll off are shown while (b), (d), and (f) illustrate the effects of increasing filter roll
off with a fixed filter time constant of 30 ms. (c) and (d) Represent the same experiment illustrated in (a) and (b), but with the addition of synchronization filtering.
The parameter error fluctuations, shown in (e) and (f), were evaluated using Monte Carlo simulations based on the measured naked electrode statistics.

with changes in filter time constant and roll off. The left column
of figures illustrates the effect of increasing the filter time
constant while holding the roll off constant at 6 dB/decade. The
right column of figures shows the effects of increasing the filter
roll off while holding the filter time constant at 30 ms. The vari-
ance estimates include the A/D error based on (25). For a given
filter setting, the instrumental noise variance decreases with
increasing lock-in reference frequency. The middle row of plots
illustrates the effects of including synchronous filtering below
200 Hz. The bottom row of figures show the corresponding
parameter estimates obtained from these voltage measurements
after scaling them by a factor of 106, assuming a constant
1-�A electrode current. Based on Monte Carlo simulations
using the naked electrode noise statistics determined for each

filter setting, the parameter fluctuations show a monotonic
decrease with increasing filtering.

B. Systematic Error Sources and Correction

With reference to Fig. 1, the measured coaxial circuit model
parameters for the source and voltage cables using the BK Preci-
sion 889A Bench LCR/ESR meter were as follows. The source
coaxial cable components had the values: Rps1 = 85 m
,
Lps = 1:5 �H,Rps2 > 200M
, andCps = 86 pF. The lock-in
amplifier coaxial cable components had the values: Rpv1 =

75 m
, Lpv = 1:5 �H, Rpv2 > 200 M
, and Cpv = 86 pF.
Changes in these parameters were negligible over the lock-in
amplifier reference frequency range used in this study. Addi-
tional capacitances associated with the switch and connections
were also observed and included in the following analysis.
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Fig. 6. Passive and active current model systematic error propagation. (a) The passive source impedance magnitude deviations, (b) impedance phase deviations
and (c) parameter estimates associated with the constant current, PsCC, voltage divider, PsVD, and lead correction, PsLdC, show increasing agreement with the
reference model, PsRef. (d) The corresponding active source impedance magnitude deviations, (e) impedance phase deviations, and (f) parameter errors associated
with the constant current, AcCC, voltage divider, AcVD, and lead correction AcLdC models show a similar increase in agreement with the reference state AcRef.
Passive and active constant current (PsCC and AcCC) models produce the largest systematic errors. Although a passive voltage divider (PsVD) correction improves
the passive current source impedance estimates, lead correction models (PsLdC and AcLdC) are required to reduce the impedance and parameter systematic errors
compared to the reference models (PsRef and AcRef).

Fig. 6 shows the propagation of systematic errors produced by
the voltage to impedance conversion method into the impedance
magnitude, impedance phase and cellular barrier function pa-
rameter values for a cell covered electrode. The PsCC model
(8) produced systematic errors at both low and high frequency
impedance estimates and large systematic errors in the mem-
brane capacitance. The PsVD model (7) corrected the low fre-
quency systematic errors produced by the electrode voltage di-
vider effect but failed to correct the higher systematic errors
produced by circuit capacitances. Although the active current
source overcame systematic errors associated by low frequency
electrode impedance voltage divider effects, it still failed to cor-
rect the parameter errors produced by circuit capacitive ele-
ments. A lead correction model for both passive, PsLdC (6),
and active, AcLdC (10), current sources corrected the high fre-
quency systematic errors produced by the circuit capacitances.

Fig. 7 summarizes the propagation of lead capacitances into
the estimated impedance and parameter deviations under the as-
sumption of a constant current voltage to impedance conversion.
In addition to the low frequency deviations produced by elec-
trode voltage divider effect, Fig. 7 shows that at frequencies in
excess of 5.6 kHz the estimated impedance and parameter de-
viations are increasingly sensitive functions of the circuit ca-
pacitances. The active current source corrects circuit voltage di-
vider effects but does not compensate for circuit capacitances.
The parameter deviations produced by passive and active cur-
rent source regulation with increasing coaxial lead capacitances
show very similar patterns.

C. Corrections and Biological Summary

Fig. 8 shows the same voltage measurements shown in Fig. 3
filtered and converted to equivalent impedances with correc-
tions for circuit capacitive elements and voltage divider effects
effects using (5). Compared to the analysis shown in Fig. 3,
the reduced chi squared, �2v given by (19), was reduced from
3:778�106 to 6:682�104 indicating a significant improvement
in the optimization. For this representative set of experimental
measurements, the optimized parameters were � = 7:310 �

0:002 
0:5
� cm, Rb = 2:840� 0:004 
 � cm2, Cm = 0:4638�

0:00003 �F � cm�2, and Rm = 9� 3 k
 � cm2. The correlation
coefficients were � � Rb = �0:9625, � � Cm = �0:8160,
��Rm = �0:8269, Rb�Cm = 0:9019, Rb�Rm = 0:8807,
andCm�Rm = 0:8507. Note that the error estimates and corre-
lation coefficients in this representative case were estimated by
calculating the curvature of the �2 at the optimized minimum.
[26] The numerical parameter error estimates and the correla-
tion coefficients between the four parameters �, Rb, Cm, and
Rm, obtained in this manner showed a consistent pattern over
the ten different samples measured in this study. The parameter
� was consistently negatively correlated with Rb, Cm and Rm.
The parameter Rb was consistently positively correlated with
Cm andRm and the parameterCm was always positively corre-
lated with Rm. This raises issues related to the identifiability of
these parameters. Small changes in one parameter can be easily
compensated for by changes in one or more of the other param-
eters to give the same quality of the fit. In this study, estimates
of the fourth parameter, Rm, consistently had large errors asso-
ciated with it based on the �2 curvature.
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Fig. 7. (a)–(c) Impedance magnitude and phase sensitivity analysis for coaxial cable capacitances using passive and (d)–(f) active current sources. Increasing
coaxial cable capacitances produce increasing parameter errors. The membrane capacitance parameter, Cm , is very susceptible to this artifact. Changing Cps and
Cpv produces similar effects. The true values of �,Rb, Cm and Rm are 2 
0:5

� cm, 2 
 � cm2 , 2 �F � cm�2 , and 10 k
 � cm2 , respectively. The similarity of
the last column of figures indicates that the active current source does not correct the parameter systemic errors produced by circuit capacitances.

Compared to individual parameter error estimates, the bio-
logical variability among the ten sets of parameters in this study
were much greater and the correlation between the parameters
much less. The statistics of the ten confluent endothelial cell
impedance parameter estimates gave the following averages and
standard deviations: � = 7� 2 
0:5 � cm, Rb = 7� 3 
 � cm2,
Cm = 0:5�0:2�F�cm�2, andRm = 5�3
�cm2. The correla-
tion coefficients were ��Rb = �0:0499, ��Cm = �0:6163,
��Rm = 0:4178,Rb�Cm = �0:4392,Rb�Rm = �0:0883,
and Cm � Rm = �0:5047. The biological variability evalu-
ated using standard statistical methods [25] was therefore sig-
nificantly greater than parameter error estimates obtained from
a single optimization. [26]

IV. DISCUSSION

The accuracy and precision of cellular barrier function param-
eters are complicated functions of the data acquisition and anal-
ysis. The few studies that have examined these model parameter
estimation methods for this application, however, do not con-
sider instrumental noise. [21] Voltage measurements obtained
from a gold two-electrode configuration using phase sensitive
detection, however, are corrupted by harmonic, 60 Hz, white
Gaussian, and quantization errors. In addition, the voltage to
impedance conversion introduces systematic errors depending
on the underlying instrument circuit assumptions. Model param-
eter stability and the numerical methods introduce additional er-
rors. Systematically identifying and reducing each of these er-
rors is, therefore, an important consideration in quantitative cel-
lular barrier function parameter estimation.

Although phase sensitive detection can be used to recover
small signals, this technique can potentially introduce a number
of artifacts into the data. [28] The phase sensitive detector output

consists of two ac signals, one at the difference frequency (!S�
!L) and the other at the sum frequency (!S + !L). If the ref-
erence frequency !L equals the signal frequency !S, the differ-
ence frequency component will be a DC signal. In this case, the
filtered phase sensitive detector output will be

VPSD =
1

2
jVS jjVLj cos(�S � �L) (26)

where jVS j is the signal voltage amplitude, jVLj the lock-in
reference voltage amplitude, �S the signal voltage phase, and
�L the lock-in reference phase. The output signal is therefore
a DC signal proportional to the signal amplitude. The sum
frequency, however, introduces a second reference frequency
harmonic. In addition, noise signals that appear at frequencies
other than the reference frequency appear as sum and differ-
ence signals of the reference and noise frequencies. Without
synchronous filtering, harmonic noise was a significant noise
source below 200 Hz. Using synchronous filtering, however, re-
vealed sum and difference 60-Hz noise components. Depending
on the reference frequency, sampling rate, and possible aliasing
effects, these noise components can appear at frequencies that
can be easily misinterpreted as biological effects.

The very large change in the noise variance as a function of
frequency, shown in Fig. 5, has important consequences for the
numerical analysis of this type of data. In a least squares based
non-linear fitting algorithm it is important to weight the data less
if it has a higher variance. [25] Weighting the data equally in this
case would put too much emphasis on the lower frequency data
points that have relatively high amounts of noise. Introducing
the measured noise estimate into the optimization overcomes
this problem. At higher frequencies where the filtering effec-
tively reduces the noise level to the A/D level it is important to
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Fig. 8. Naked and cell covered impedance estimates from experimental measurements and an optimal fit to the cell covered impedance following filtering and
circuit corrections. (a) Filtering and circuit corrections provide a more accurate estimate of the naked electrode impedance magnitude, jZnj, and cell covered
electrode impedance magnitude, jZcj, and improves the numerical fit to the cell covered electrode jZc�fitj. (b) Filtering and circuit corrections also improve the
accuracy of the naked electrode impedance phase, j�nj, and cell covered electrode phase, j�cj, and improves the numerical fit to the cell covered electrode j�c�fitj.
The optimized fitted parameter values to the cell covered electrode measurement in this case are:� = 5:07�0:04,Rb = 6:77�0:04,Cm = 5:130�0:006, and
Rm = 2:2�0:8. The correlation coefficients are ��Rb = �0:9992, ��Cm = �0:9622,��Rm = �0:4477,Rb�Cm = 0:9709,Rb�Rm = 0:8714,
and Cm � Rm = 0:8108. The statistics for a single measurement were obtained from the curvature of the �2v minimum. The reduced chi squared value is
�2v = 6:682 � 10

4 .

include A/D noise estimates into the algorithm to avoid singu-
larities in the optimization.

The electrode voltage to impedances conversion can poten-
tially introduce a number of frequency dependent systematic
errors. Impedance estimates in this type of cellular microsensor
have traditionally been made assuming that the current provided
by a 1-V source across a 1-M
 resistor in series with the elec-
trode is a constant 1 �A. [1]–[3], [18].With such a passive cur-
rent source, however, electrode loading produces a voltage di-
vider effect that leads to frequency dependent systematic errors
in the estimated impedance if a constant current assumption is
made. For a gold electrode this is particularly a problem at low
frequencies where the electrode impedance is relatively large
compared to the 1-M
 resistor. Introducing an active current
source to maintain a constant 1-�A current corrects these low
frequency voltage divider effects. Both the passive and the ac-
tive current sources, however, suffer from artifacts at higher fre-
quencies where circuit capacitances produce systematic errors
in the estimated electrode impedance.

In both the passive and the active current source circuit con-
figurations analytical formula can be used to convert the mea-
sured voltages into equivalent impedances based on different
circuit approximations. This has the potential to reduce system-
atic errors associated with voltage divider effects and capaci-
tive impedance elements not accounted for in a constant cur-
rent assumption. [17] The resulting transformed noise that en-
ters the numerical optimization, however, can contribute to ad-
ditional parameter instability depending on the underlying nu-
merical methods. In this case, Monte Carlo simulations using
the transformed noise should be used to quantify the parameter
errors. [26]

The coaxial cables introduce capacitive elements into the cir-
cuit that should be minimized by using either short cable lengths
or calibration standards. The measured series resistive and in-
ductive components, however, were found to be negligible as ex-
pected. In addition, the large resistance between the cable inner
conductor and outer sheath was large enough to discount. The

parallel capacitance introduced by the coaxial cable produced
systematic errors at higher frequencies. As a result, parameter
estimates sensitive to higher frequency impedances will be most
susceptible.

Including filtering and corrections for capacitive circuit ele-
ments increased the quality of the fit significantly from �v =

3:778 � 106 to �v = 6:682 � 104 for the representative case
shown in Figs. 3 and 8. Similar improvements were observed
for the remaining nine samples considered in this study. The
reduced chi squared value should, however, be on the order of
unity. The fact that is much higher than this, even after filtering
and systematic error correction, indicates that other sources of
error exist. The model itself, for example, may not be appro-
priate. Other effects such as instrumental and biological drift or
numerical instabilities may also be contributing to the large re-
duced chi squared values.
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