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a b s t r a c t

We performed micromotion experiments using electric cell–substrate impedance sensing (ECIS) on a con-
fluent layer of 3T3 fibroblasts exposed to different low levels of the toxin cytochalasin B. This toxin is know
to affect actin polymerization and to disrupt cytoskeletal structure and function in cells, changing the mor-
phology of confluent cell cultures and altering the nature of the cellular micromotion, which is measured
by ECIS as changes in impedance. By looking at several measures to characterize the long- and short-term
correlations in the noise of the impedance time series, we are able to detect the effects of the toxin at
concentrations down to 1 �M; there are intriguing hints that the effects may be discernible at levels as
ECIS
Noise analysis
Toxin assay
C

low as 0.1 �M. These measures include the power spectrum, the Hurst and detrended-fluctuation-analysis
exponents, and the first zero and first 1/e crossings of the autocorrelation function. While most published
work with ECIS uses only average impedance values, we demonstrate that noise analysis provides a more
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ytochalasin B sensitive probe.

. Introduction

Impedance measurement through microelectrodes was first
sed to study the characteristics of anchorage-dependent cul-
ured cell lines by Giaever and Keese Giaever and Keese (1984).
hey developed a cell-based biosensor, referred to as electric
ell–substrate impedance sensing (ECIS), which can be applied to
etect subtle changes in cell–substrata interactions, including cell
otion. A cell-electrode model of the system developed earlier

hows that most of the current flows under or around the cells,
hile the current flowing through the cells is significant but small

n comparison (Giaever and Keese, 1991). Upon the attachment and
preading of cells, the impedance increases, because the cells act as
nsulating particles to restrict the current. An intriguing feature is
he fluctuation in the measured impedance, which is always associ-
ted with living cells and persists even if the cell layer becomes fully
onfluent (Giaever and Keese, 1989). This behavior is attributed to
otion or micromotion of the cells, an indication of cell viability

nd morphology change. When cells are exposed to a cytotoxic

ompound, the chemical might affect any downstream event in a
ignaling cascade, resulting in cytoskeletal disruption and reorgani-
ation, and then alter cell morphology and motility. In this aspect,
ell–cell and cell–substrate interactions measured by ECIS assays
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an be used as a predictor of cytotoxicity to reflect integrated cel-
ular responses to toxic stimuli (Keese et al., 1998).

The toxin cytochalasin B interferes with cytoskeleton func-
ion by inhibiting actin polymerization (Shier and Mebs, 1990;
anenbaum, 1978; Bonder and Mooseker, 1986; Brown and
pudich, 1981). At sufficiently high concentration, cytochalasin poi-
oning of cells leads to a number of morphological and functional
ffects, including arborization, inhibition of endocytosis and secre-
ion, suppression of cytoplasmic division, and enucleation (Shier
nd Mebs, 1990; Tanenbaum, 1978; Foissner and Wasteneys, 2007;
hmori et al., 1992). The electrical resistance of a cell culture jumps

apidly with the addition of a low concentration of the toxin to the
edium in a flow cell; this jump is reversed just as rapidly when

he toxin is flushed (Brischwein et al., 2003). Although such jumps
n resistance provide an unmistakable signature for the addition
nd subsequent elimination of cytochalasin B, the absolute resis-
ance gives a far less sensitive signal: given an average resistance
ver half an hour, one can perhaps distinguish a 2.5- �M concen-
ration in the medium from no toxin, but the correlation between
bsolute resistance and concentration is too weak for finer compar-
sons when the experiment does not permit dynamic control over
he levels of toxin in the medium.
Although ECIS has found wide application in monitoring cell cul-
ures, in most published ECIS work (e.g., Giaever and Keese, 1984; Lo
t al., 1993; Xiao and Luong, 2005; Hartmann et al., 2007; Charrier
t al., 2007; Saxena et al., 2007; Earley and Plopper, 2008), only
time-averaged signal, or a secular trend in resistance over many

http://www.sciencedirect.com/science/journal/09565663
http://www.elsevier.com/locate/bios
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ig. 1. Displayed is resistance as a function of time in confluent cultures of 3T3
broblasts exposed to medium containing the toxin cytochalasin B in concentrations
f 0, 0.1, 1.0, 2.5, 5.0, and 10 �M.

ours, is used. We will argue that a statistical analysis of impedance
oise does a better job of distinguishing low levels of cytochalasin
in culture than does average impedance.

Fig. 1, plotting resistance against time for six separate cultures,
akes clear the inability of averaged resistance to distinguish low

evels of toxin. While the three higher concentrations are easily
istinguished from the three lowest, one cannot tell the differences
mong the three lowest concentrations. This is confirmed in Fig. 2,
howing that even averaging 5–7 h of data at each concentration

between nine and twelve runs, each of duration 2048 s) cannot
istinguish the three lowest toxin levels.

In Lovelady et al. (2007), we introduced a statistical technique
or analyzing the rapid and apparently “random” noise fluctuations

ig. 2. Average resistances of ECIS runs (as in Fig. 1) do not distinguish low concen-
rations of cytochalasin B. Symbols (×) plot the averages of multiple runs as functions
f concentration; control runs (0 �M) are plotted at 0.01 �M. For each concentra-
ion, the outer error bar gives the population standard deviation, the inner error bar
he standard error of the mean. The standard errors of the mean of the lowest three
oncentrations all overlap, consistent with the picture presented in Fig. 1. We aver-
ged nine 2048-s runs at 0 �M, twelve at 0.1 �M, twelve at 1.0 �M, ten at 2.5 �M,
leven at 5.0 �M, and ten at 10 �M.
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een in ECIS experiments and demonstrated that such analysis can
istinguish cancerous from non-cancerous cultures of human ovar-

an surface epithelial cells. We now apply these ideas to cultures of
T3 fibroblasts with levels of cytochalasin B in the medium ranging
rom zero to 10 �M and show that the noise spectrum distinguishes
ifferent concentrations more effectively than average resistance.
s with the previous work, the statistical measures include the
ower spectrum of the noise, Hurst exponents, detrended fluctua-
ion analysis, and statistical tests of population differences.

. Experimental

.1. Cell culture

The 3T3 fibroblasts, obtained from the American Type Culture
ollection (Manassas, VA), were grown in DMEM (4.5 g/Ld-glucose)
Mediatech, Manassas, VA) supplemented with 10% FBS (Mediat-
ch), 50 �g/mL streptomycin, 50 units/mL penicillin, and 250 ng/mL
mphotericin B under 5% CO2, and a 37◦C, high-humidity atmo-
phere. For ECIS micromotion measurements, cells were harvested
nd grown to confluence 24 h before addition of cytochalasin B into
he electrode wells, resulting in a cell density that was controlled
t 105 cell/cm2. Cytochalasin B (Sigma, St. Louis, MO) was diluted
n DMSO as a 10-mM solution before use.

.2. ECIS

We used the ECIS system (from Applied Biophysics, Inc., Troy,
Y) to collect micromotion time–series data, the fluctuations in
hich are caused by the movements in a confluent layer of live cells.

he system can be modeled as an RC circuit (Giaever and Keese,
989, 1991; Lo et al., 1993, 1995). The cells are cultured on a small
old electrode (5 × 10−4 cm2), which is connected in series to a 1-
egaohm resister, an AC signal generator operating at 1 volt and

000 Hz, and finally to a large gold counter-electrode (0.15 cm2).
his network is connected in parallel to a lock-in amplifier, and the
n-phase and out-of-phase voltages are collected once a second,
rom which we extract time series of resistance and capacitive reac-
ance. In ECIS experiments, the fluctuations in complex impedance
ome primarily from changes in intercellular gaps and in the narrow
paces between the cells and the small gold electrode (Giaever and
eese, 1991; Lo et al., 1995, 1993). A current of about one microamp

s driven through the sample, and the resulting voltage drop of a few
illivolts across the cell layer has no physiological effect: this is a

on-invasive, in-vitro technique.
To expose 3T3 cell layers to cytochalasin B, 0.4 mL of complete

ulture medium was used in each well before adding the cytocha-
asin B solution. Serial dilutions were prepared in culture medium,
nd 0.1 mL of toxin solution was carefully added to each well to
chieve the final desired concentration. In control experiments,
ach well received the same amount of culture medium without
ytochalasin B. Note that in the ECIS apparatus, the wells are com-
letely independent. We emphasize that we are not dynamically
hanging toxin levels as in flow-cell experiments (Brischwein et al.,
003); to see the effects of the toxin will require statistical analysis.
From 64 separate cultures, we collected time series of which
ine were at zero concentration of the toxin cytochalasin B. We
ook twelve runs at 0.1 �M, twelve at 1.0 �M, ten at 2.5 �M, eleven
t 5.0 �M, and ten at 10 �M.1 Each 2048-s run (just over 1/2 h) was

1 The equipment accommodates eight independent runs in each experiment, and
e chose to run all six concentrations in each experiment; so two concentrations
ere repeated in each experiment. This accounts for the small differences in num-
ers of runs. However, these differences do not affect our statistical analysis.
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aken 24 h after the introduction of the toxin to ensure that the
ells received the full effect at each concentration. We numerically
ifferentiated the resistance and capacitance time series to obtain
oise time series for each, which we normalized to zero mean and
nit variance.

. Results

While the power spectrum, Hurst exponent, and detrended fluc-
uation analysis give us ways of quantifying long-term correlations
n the noise, the Fourier transform of the power spectrum yields
utocorrelation, which enables us to quantify and study short-term
orrelations. In what follows we examine the real part of impedance
rom the experiments. At 4000 Hz, the imaginary or capacitive part
as not as useful at distinguishing the different toxins levels; we
ould expect capacitance to become more sensitive to cell motions

t higher frequencies (Lo et al., 1995).

.1. Long-term correlations

We first examine correlations at long time scales. In the low-
requency limit, the power spectrum at the lower concentrations
hows signs of long-time correlations, with the correlations get-
ing weaker as the concentration is increased. A log–log plot of
pectral density against frequency f suggests an intensity varying as
−˛, with this trend becoming less clear at higher concentrations.
e estimated ˛ with least-squares straight-line fits of power from

nly the lowest 100 frequencies (excluding zero frequency and the
ext lowest frequency). For each run, we split the 2048 noise ampli-
udes into half-overlapping windows of 256 s, multiplied by a Hann
indow, Fourier transformed, and squared, averaging the resulting

pectra in order to reduce scatter (Press et al., 1994).
Having obtained an ˛ for every experiment, we then averaged

hese separately for each concentration. Our results are shown in
able 1, where ¯̨ is the average, �˛ is the standard deviation, and
˛/

√
N the standard error of the mean, where N gives the number of

xperiments in the sample. The power ˛ is also plotted against toxin
oncentration in Fig. S1 in the supplement to this paper. The first
hing we notice in the table is that the means of the ˛ s are separated
y several standard errors (�/

√
N). This implies that already with

he power spectrum alone, given enough experiments, one could
n principle distinguish the concentrations. More significantly, the

eans at concentrations of zero, 2.5, and 5.0 �M are separated from
heir neighboring means by at least a standard deviation �; thus the
ower spectrum might be the strongest indicator for distinguishing

ifferent levels of this toxin in 3T3 fibroblasts. Although the mean
alues for ˛ at every concentration in Table 1 are separated from
hose at every other concentration by at least a standard error, a ver-
ion of the Student’s t-test for non-equal-variance samples (Press
t al., 1994, Eq. 14.2.3) shows a marginally insignificant (probabil-

c
fi
t

(

able 1
ong-term correlation. Power-spectral, Hurst, and DFA measures of confluent layers of 3T
f the toxin cytochalasin B.

oncentration N ¯̨ �˛ �˛/
√

N H̄

0.0 9 0.854 0.102 0.034 0.76
0.1 12 0.780 0.097 0.028 0.76
1.0 12 0.664 0.131 0.038 0.74
2.5 10 0.400 0.104 0.033 0.69
5.0 11 −0.283 0.361 0.109 0.69

10.0 10 −0.843 0.463 0.147 0.60

he first and second columns give the concentration in �M and the number (N) of inde
etrended fluctuation analysis (D) exponents at low frequencies. The means of the ˛ va
eviation), allowing us to distinguish the populations composed of N runs just from the po
.0 �M are separated by �, the standard deviation.
lectronics 24 (2009) 2250–2254

ty 11%) separation between the control and 0.1 �M populations.
ll other pairs of populations are significantly separated (proba-
ility <3%). The Kolmogorov–Smirnov test applied pairwise to the
istribution of ˛ values in each population gives the same result.

These power-slope averages also show a clear trend. As concen-
ration increases, the power slope decreases. Thus, the long-term
orrelations, which are strongest at zero concentration, are dis-
upted by addition of the toxin.

There is a danger in looking only at power-law behavior to
etermine the existence of long-term correlations in time–series
ata (Rangarajan and Ding, 2000; Coronado and Carpena, 2005):
hite noise may mimic correlated (pink) noise in a short series.

o guard against this problem, we look at two other indica-
ors of long-term correlation, the exponents provided by rescaled
ange analysis (Hurst analysis) and detrended fluctuation analysis
Bassingthwaighte et al., 1994; Mandelbrot and Wallis, 1969; Feder,
988; Peng et al., 1994, 1995). Both methods are binning techniques.
time series is split into bins of duration �, and it is then deter-
ined how a measure S(�) scales with �. For Hurst, one subtracts

he mean from all the data in a bin and characterizes that bin by its
tandard deviation, �. The series is integrated, and the minimum
alue subtracted from the maximum, yielding the range, R. For each
in, one records the ratio R/� and averages over bins of the same
ize. The procedure is repeated for successively larger bins (�). A
traight-line fit to a log–log plot of R/� against bin size � reveals
power law, R/� ∼ �H , where H is the Hurst exponent. Detrended
uctuation analysis runs along similar lines, but within each bin
ne subtracts a best-fit line, thus detrending the data. The data in
he bin are then characterized by standard deviation � ∼ �D, where

is the DFA exponent.
Table 1 shows the results. H̄ (D̄) is the Hurst (DFA) exponent aver-

ged over all experiments for each concentration. �i is the standard
eviation and �i/

√
N the standard error for measure i = D, H.

Neither Hurst nor DFA is as clear-cut as the power-spectrum
nalysis. For Hurst, concentrations that are close to each other over-
ap even when considering just the standard error. DFA is a little
etter, but using the standard error cannot distinguish zero con-
entration from 0.1 �M. Both Hurst and DFA show a decline in the
xponents from the lowest concentration to the highest. That the
verall separation seems to be better for DFA than for Hurst might
e due to finite-size effects in the time series. As pointed out by
oronado and Carpena Coronado and Carpena (2005), DFA does
better job with finite time series than does Hurst. The Student’s

-test seems to support this. While neither DFA nor Hurst differs sig-
ificantly (t-test or Kolmogorov–Smirnov) among the three lowest

oncentrations of 0, 0.1, and 1 �M, the trends in these measures con-
rm the result of power-slope ˛, with the measures approaching
heir uncorrelated limits as concentration increases.

Moreover, Hurst and DFA can be used to validate power-spectral
˛) results (Rangarajan and Ding, 2000). For purely correlated data,

3 fibroblast resistive noise series averaged over all runs at different concentrations

�H �H/
√

N D̄ �D �D/
√

N

4 0.062 0.020 0.832 0.036 0.012
8 0.038 0.011 0.837 0.045 0.013
6 0.045 0.013 0.787 0.035 0.010
0 0.032 0.010 0.706 0.032 0.010
3 0.074 0.022 0.558 0.052 0.016
5 0.118 0.037 0.403 0.107 0.034

pendent experiments. Shown are estimates for 1/f ˛ behavior (˛), Hurst (H), and
lues differ by many standard errors of the mean (�/

√
N, where � is the standard

wer spectrum. Notice that for the power spectrum, concentrations of zero, 2.5, and
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he Hurst exponent is fixed by ˛: H = (1 + ˛)/2. However, finite-
ize effects can lead to artificially large values for ˛, which an
ncompatible Hurst or DFA exponent can expose. We repeated the
echnique we introduced in Lovelady et al. (2007, Fig. 4), computing
iscrepancies between the values for both Hurst and DFA predicted
rom the numerical estimates for ˛ and those measured in the
ime series. As in the previous work, the experimental discrepan-
ies between ˛ and DFA or Hurst were more consistent with those
easured in artificial time series constructed to have long-time

orrelations than with the larger discrepancies of artificial white
oise.

.2. Short-term correlations

In order to investigate the short-term correlations in these
ystems, we look at the first zero and first 1/e crossings of the
utocorrelation function. Our results are shown in Table S1 in the
upplement. The 1/e crossing can distinguish zero concentration
rom 2.5 �M and 2.5 �M from 5.0 �M using the standard deviation,
hile the first zero crossing can do so with the standard error of the
ean. Student’s t-test confirms the significance of the 1/e crossing

or distinguishing concentrations ≥ 1�M from zero concentration.
The trend for the 1/e crossing supports our hypothesis that the

ystem is becoming less correlated with higher concentration of the
oxin, as displayed in Fig. S2 of the supplement. The zero crossing
oes not do nearly as well; it cannot distinguish any of the three

owest concentrations.

.3. Measure space

Using our measures of long- and short-term correlations in
he noise, we can construct a multidimensional space each axis
f which represents one of our measures, and each experiment is
hen a point in this space. We construct such a space with the four
imensions ˛, D, H, and 1/e crossing, normalizing to unit variance.

We find the vector in this space that represents the average posi-
ion for each concentration and then construct a sphere about each
verage position with radius given by the root mean square of the
tandard errors along the four axes. Dividing the distance between
he average position of the populations at two concentrations by the
um of their radii measures roughly their separation, with a ratio
arger than unity indicating good separation. Table S2 in the sup-
lement compares the six spheres. Even those clusters that overlap
nder this criterion, such as the zero-concentration and 0.1-�M
pheres, have separation parameters closer to unity than to zero,
uggesting that longer data sets might separate the measurements
ore clearly.
In order to get some picture of what is happening in this

our-dimensional space, we project onto a plane whose two axes
aximize the variance, i.e., the first two principal components

Hotelling, 1933). Fig. S3 in the supplement shows clustering of the
ifferent concentrations. For this principal-component analysis, we
mitted the runs at 10 �M. Starting from the highest concentration,
he clusters are distinct, but as the concentration is reduced, the
lusters get closer together and begin to overlap.

. Discussion

We previously demonstrated use of these statistical tools on
lectrical-noise measurements from ECIS to distinguish cancerous

nd non-cancerous human ovarian surface epithelial cells in culture
Lovelady et al., 2007). We have now used these same tools to differ-
ntiate toxin levels in cultures of 3T3 fibroblasts. We have observed
hat, as the toxin level is increased, the long-term correlations, as

easured by the power spectrum, Hurst exponent, and detrended

L
L
L

M
O
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uctuation analysis, decrease. In addition, the short-term corre-
ations, as measured by the first zero and 1/e crossing of the
utocorrelation function, decrease as the toxin level is increased.
f we interpret these correlations as a description of the level of
ommunication and cooperation between cells, then these mea-
ures are describing a system that is in some sense coordinated,
hat coordination being disrupted by addition of the toxin cytocha-
asin B. Eventually, as the toxin reaches a threshold, the system is
nable to work together, and the measures approach values typ-

cal of random systems. For example, the Hurst exponent drops
rom 0.764 in the control runs, indicating correlation, toward the
alue of 1/2 expected for white noise. At the highest concentrations,

appears to go negative; however, the log–log power-spectral
lots also become harder to interpret, so we expect that longer
uns would give ˛ = 0 (white noise). The loss of temporal cor-
elation with increasing toxin concentration can be explained by
he effects of cytochalasin B on the cytoskeleton (Shier and Mebs,
990; Tanenbaum, 1978). As the cytochalasin B interferes with cell
unction, the ability of the cells to maintain tight cell junctions is
isrupted. The power-spectral slope, ˛, detects physiological effects
n the culture at a statistically significant level for concentrations of
ytochalasin B as low as 1 �M (Table 1), while the non-overlapping
tandard errors hint at a possible result for a concentration of
.1 �M. However, careful analysis of multidimensional measures
as so far failed to confirm this.

Noise analysis of ECIS data can be used to test statistical–
echanical models of micromotion. Looking further, we envision a

atabase of electrical (ECIS) characteristics, with the collection of
oise measures for each cell type and environment (e.g., toxin) con-
tituting a kind of fingerprint: this could open the door to further
pplications, including drug screening and environmental sensing.
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