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Abstract

In our paper we investigate the unbiased movement of the unicellular

eukaryotic ciliate Tetrahymena Pyriformis. We use a time-delayed version of

the previously known model to describe the specific movement of this species.

With the help of semi-discretization, we state analytic results for the model.

1. Introduction

The most common principle for modeling self-organizing systems in develop-

mental biology is the law of conservation. With an arbitrary surface ∂Ω enclosing

the volume Ω, the rate of change of the amount of the substance inside Ω is equal

to the flux across the surface ∂Ω plus the production of material inside Ω. Thus

∂

∂t

∫
Ω

u(t, x)dV = −
∫
∂Ω

Jds+

∫
Ω

f(u, t, x)dV,

where u(t, x) is the amount of material at point x at time t, J is the flux of material

and f(u, t, x) is the rate of production of u(t, x). Applying the divergence theorem

and taking into account that the volume Ω is arbitrary yields

∂

∂t
u(t, x) = −∇J+ f(u, t, x)

Assuming there is no cell proliferation, the unbiased motion of the cells is

described by Fick’s equation (see [5]):
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∂u(t, x)

∂t
= D

∂2

∂x2
u(t, x) (1.1)

where u(t, x) is the concentration of cells at time t at point x. D > 0 is the

Fick constant, which is proportional to the typical displacement of the cells in a

given time. To have a unique solution, we have to specify the initial conditions

u(0, x) = u0(x), and boundary conditions (for a closed system, ∂u(t,x)
∂ν

=0).

The idea that the unbiased movement of the unicellulars can be approximated

with the same equation as molecular diffusion is based on the observation that if a

system of bacteria is left alone, the cells move fast and randomly. This random bac-

terial movement can be approximated with the diffusion (in fact, very accurately).

2. The delay

Due to the fact that in an average Tetrahymena Pyriformis population, a

considerable amount of cells (even up to one third of them, see [2]) is in “rest state”

(they do not move or react to chemical compounds), there is a delay in their reaction

to the changes of the environment (like the changes of cell density or gradient of a

chemotactical compound), while equation (1.1) assumes immediate response. The

delay we have to deal with is, however, not constant, since at any given time just

a portion of the cells is unresponsive. So the change of the system is based on the

present and on the past. To describe this type of delay, we have to use a convolution

of the present and past state of the system with an appropriate density function

s(t) to express the influence of the past. For the derivation of the delayed diffusion

equation see [6]. The delayed form of (1.1) is the following:

∂u(t, x)

∂t
=

∫ t

−∞

D
∂2

∂x2
u(τ, x)s(t− τ)dτ (2.1)

To have a unique solution, we need an initial function instead of an initial

condition which is defined on the support of s(t).

In what follows, we consider the system in one dimension, on the finite interval

[0, L]. To be able to state analytical results, we approximate this system with

the help of semi-discretization. Time is still considered to be continuous, but the

discretized version of (2.1) in space is taken instead. We divide the interval on which

our equation holds to n+ 1 uniform sections (their diameter is denoted by h), and

we consider the approximation of the partial space derivatives. All of our analytic

results are valid for this semi-discretized version, which is a good approximation for

the original equation if h is small. At point xi = i · h (i = 0, 1, . . . , n + 1), let us

denote u(t, xi) by ui(t). We use the following approximation for the derivatives:

∂2

∂x2
u(t, x)

∣∣∣∣
x=xi

∼ ui+1(t)− 2ui(t) + ui−1(t)

h2
.
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From Neumann boundary conditions it follows that u0(t) = u1(t) and

un+1(t) = un(t). We have the following differential equations for each ui(t),

i = 1, 2, . . . , n:

du1(t)

dt
= d

∫ t

−∞

(u2(τ) − u1(τ))s(t − τ)dτ,

dui(t)

dt
= d

∫ t

−∞

(ui+1(τ)− ui(τ))s(t − τ)dτ+

+

∫ t

−∞

(ui−1(τ) − ui(τ))s(t − τ)dτ i = 2, . . . , n− 1,

dun(t)

dt
= d

∫ t

−∞

(un(τ) − un−1(τ))s(t − τ)dτ.

The constant d > 0 is the Fick coefficient multiplied by h2.

Remark. This kind of approximation actually leads to the patchy environ-

ment method.

There is no analytical solution for this system for arbitrary s(t), so we investi-

gate a special type of delay function, namely the exponential and gamma function.

Figure 1. The exponential (left) and gamma (right) density functions for different

parameters

On the left side of Figure 1 we can see the single parameter exponential

density function (ae−at) for different parameter values. If a is relatively large, then

the function is mainly concentrated on the neighborhood of 0. In terms of the

delayed equation, this means that the influence of the past state for the present

dynamics is quite little.



218 O. SÁFÁR, L. KŐHIDAI and A. HEGEDŰS

Remark. The substitution method we apply later also works for gamma

density function. This type of distribution (see the right side of Figure 1) can be

concentrated on the neighborhood of any positive number r > 0 for appropriate

parameters. If this kind of density function was used for s(t), then the present

dynamics would mainly depend on the state r seconds before.

In our article we investigate the case s(t) to be the exponential density func-

tion, since in the investigated population, most of the cells are able to respond

immediately at any given point in time.

The following substitution is useful for this type of density functions (see [1]):

Ki(t) :=

∫ t

−∞

(ui+1(τ) − ui(τ))ae
−a(t−τ)dτ ;

from this we get

dKi(t)

dt
= −aKi(t) + a(ui+1(t)− ui(t)),

dui(t)

dt
= dKi+1 − dKi.

Due to the Neumann boundary conditions K0(t) = 0 = Kn(t) and

du1(t)

dt
= dK1(t), (2.2)

dui(t)

dt
= −dKi−1(t) + dKi(t), i = 2, . . . , n− 1, (2.3)

dKi(t)

dt
= −aKi(t) + a(ui+1(t)− ui(t)), i = 1, . . . , n− 1, (2.4)

dun(t)

dt
= −dKn−1(t). (2.5)

With this substitution, the initial functions transform into initial conditions, since

ui(0) =

∫ 0

−∞

ui(τ)ae
−a(t−τ)dτ,

Ki(0) =

∫ 0

−∞

(ui+1(τ)− ui(τ))ae
−a(t−τ)dτ.
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3. Main results

Theorem 3.1. Let n ∈ N arbitrary. The system (2.2)–(2.5) has a unique

solution on (0,∞). Each solution converges to one of the elements of the subspace

(c, 0, c, . . . , 0, c), which is a continuum of equilibria. The value of c is determined by

the initial condition:

c =

∑n

i=1 ui(0)

n
.

Remark. Let us notice that
∑n

i=1 ui(t) = c · n is an invariant quantity, since∑n

i=1
dui(t)
dt = 0, so Theorem 3.1 states that the system converges to the uniform

concentration distribution, since the zeros in the equilibrium vector correspond to

the auxiliary variable Ki(t).

Proof. First let us apply the substitution t = a · τ . This transforms the

system (2.2)–(2.5) to the simpler form

du1(t)

dt
=

d

a
K1(t), (3.1)

dui(t)

dt
= −d

a
Ki−1(t) +

d

a
Ki(t), i = 2, . . . , n− 1, (3.2)

dKi(t)

dt
= −Ki(t) + ui+1(t)− ui(t), i = 1, . . . , n− 1, (3.3)

dun(t)

dt
= −d

a
Kn−1(t). (3.4)

Let us denote d/a by d̃ from now on. We take the equations in the following

order: u1,K1, u2,K2, . . . , un−1,Kn−1, un. The corresponding matrix of the system

is tridiagonal; the main diagonal is (0,−1, 0,−1, . . . ,−1, 0), the upper subdiagonal

is (d̃, 1, d̃, 1 . . . , d̃, 1), the lower subdiagonal is (−1,−d̃,−1, . . . ,−1,−d̃).
We can give a recursive formula for the characteristic polynomial:

pn(λ) =

{−λpn−1(λ) + d̃pn−2(λ), if n = 2k + 1,

(−1− λ)pn−1(λ) + d̃pn−2(λ), if n = 2k.

We have p1(λ) = −λ, p2(λ) = λ2 + λ+ d̃.

Remark. The value of d̃ actually depends on n. To get the proper pn(λ) we

have to fix n and substitute the corresponding d̃ in the recursion for every n.

Lemma 3.2. Let us denote pn(λ) = an0 + an1λ + · · · + annλ
n if n is odd and

pn(λ) = bn0 + bn1λ+ · · ·+ bnnλ
n if n is even. Then

(a) a2n+1
0 = 0,

(b) b2n0 = d̃n,

(c) a2n+1
1 = −d̃n(n+ 1),

(d) b2n1 = −d̃n−1 n(n+1)
2 .
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Proof of Lemma 3.2. Since a2n+3
0 = da2n+1

0 and a1 = 0, part (a) follows.

We have b2n+2
0 = d̃b2n0 − a2n+1

0 and b2 = d̃, so (b) follows by induction.

We handle the last two statements together. From the recursion and (a)–(b),

we have

a2n+1
1 = −d̃n + d̃a2n−1

1 , (3.5)

b2n+2
1 = d̃n(n+ 1) + d̃b2n1 . (3.6)

By induction the lemma follows.

Remark. From this lemma it follows that 0 is an eigenvalue of (3.1)–(3.4)

with multiplicity 1. Straightforward calculations show that the corresponding eigen-

vector is (1, 0, 1, 0, . . . , 0, 1).

From [3] we use the following theorem:

Theorem. If λ is an eigenvalue of a (possibly) complex tridiagonal matrix

whose diagonals are (a1, a2, . . . , an−1), (b1, b2, . . . , bn), (c1, c2, . . . , cn−1), where akck
is real and moreover akck ≤ 0 for k = 1, . . . , n− 1, then

min{�bj|j = 1, . . . , n} ≤ �λ ≤ max{�bj |i = 1, . . . , n}.

Proof. In our case, this means that the real parts of the eigenvalues are

non-positive (and greater than −1), thus the solutions converge to the equilibrium

(c, 0, c, . . . , 0, c). This completes the proof of Theorem 3.1.

However, this model can not be applied for any choice of a and d. For certain

values of the parameters, due to the very strong oscillation, the solution may became

negative in the beginning, which of course does not have a biological meaning. In a

special case, which has an important application (see Section 4), we can guarantee

the positivity of the solution for all t ∈ R.

Theorem 3.3. We consider the system (2.2)–(2.5) for n = 2, with the initial

conditions u1(0) = 0, u2(0) = 1. This system has a unique solution on (0,∞) with

the following properties:

(a) The equilibrium (1/2, 0, 1/2) is asymptotically stable.

(b) The system undergoes a node-focus bifurcation at d/a = 1/8, that is, the

monotone convergence becomes oscillatory at this parameter value.

(c) If

1

2
ln 2 < −1

2
ln

d

a
+
− arctan

(√
−1 + 8d/a

)
+ π√

−1 + 8d/a
,

(that is, d/a < 1.52 . . .) then u1(t) and u2(t) are positive on (0,∞).
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Proof. If n = 2, the corresponding equations are

dK(t)

dt
= a(u2(t)− u1(t))− aK(t)),

du1(t)

dt
= dK(t),

du2(t)

dt
= −dK(t).

The initial conditions are

u1(0) = 0, u2(0) = 1, K(0) = 1.

Now let t = a · τ again. With the new time variable τ , the equations have the

following form:

K ′(τ) = u2(τ) − u1(τ)−K(τ),

u′1(τ) =
d

a
K(τ),

u′2(τ) = −
d

a
K(τ).

As in the previous proof, let us denote 0 < d̃ = d/a. Since

u′1(t) = −u′2(t) (3.7)

and u1(0) + u2(0) = 1, we have

u2(t) = 1− u1(t). (3.8)

We compute only the solution u1(t).

The characteristic polynomial is λ(λ2+λ+2d̃), so λ1 = 0 is a root. The other

two roots are

λ2(d̃) = −1

2
−

√
1− 8d̃

2
, λ3(d̃) = −1

2
+

√
1− 8d̃

2
.

Their real part is negative if and only if d̃ > 0, thus the solutions are asymptotically

stable, which proves (a).

The eigenvalues are real if d̃ ≤ 1/8 and complex if d̃ > 1/8, and for every

parameter value the real part is negative, which proves (b).

Lemma 3.4. The solution of the system (2.2)–(2.5) for n = 2 with the initial

conditions u1(0) = 0, u2(0) = 1 is strictly monotone if d̃ ≤ 1/8 and oscillates (with

an amplitude that tends to 0) if d̃ > 1/8.
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Proof of Lemma 3.4. If d̃ < 1/8, the solution has the form

u1(t) =
1

2
+ c2(d̃)e

λ2(d̃)t + c3(d̃)e
λ3(d̃)t, (3.9)

where

λ2(d̃) = −1

2
+

√
1− 8d̃

2
, λ3(d̃) = −1

2
−

√
1− 8d̃

2
,

c2(d̃) = −1

4
+

4d̃− 1

4
√
1− 8d̃

, c3(d̃) = −1

4
+

1− 4d̃

4
√
1− 8d̃

.

By differentiating (3.9), we get u′1(t) > 0 for all t > 0, d̃ ∈ (0, 1/8), so u1(t) is

strictly increasing and from (3.8) it follows that u2(t) is strictly decreasing.

If d̃ = 1/8, then the solution is

u1(t) = −1

2
e−

1

2
t − 1

8
te−

1

2
t +

1

2

which is also strictly decreasing.

If 1/8 < d̃, then the solution has the form

u1(t) =
1

2
+ c2(d̃)e

�λ(d̃)t sin(	λd̃t) + c3(d̃)e
�λ(d̃)t cos(	λd̃t)

where

λ(d̃) = −1

2
+ i

√
8d− 1

2
, c2(d̃) =

1

4

√
8d− 1− 1

4
√
8d− 1

, c3(d̃) = −1

2
.

Since

A sin(α) + B cos(α) =
√

A2 +B2 sin
(
α+ arccos

( A√
A2 +B2

))
,

u1(t) can be transformed to the form

1

2
+ ĉ1e

−
1

2
t sin((	λd̃+ ĉ2) t) (3.10)

The amplitude of the oscillation is ĉ1e
−

1

2
tn , for some tn ∈ R which goes to 0 if

tn →∞. This finishes the proof of Lemma 3.4.

If d̃ ≤ 1/8, then the solutions are positive, since u1(0) = 0, and u1(t) is

increasing. u2(0) = 1 and u2(t)→ 1/2 decreasing, so u2(t) is also positive.

If 1/8 < d̃, then u′1(t) = 0, u′2(t) = 0 infinitely many times. From the form

(3.10) it follows that it is enough to examine the sign of u2(t) in the first minimum



TIME-DELAYED MODEL OF THE UNBIASED MOVEMENT 223

(let us denote it by t1), since the function sin(.) is multiplied by a strictly decreasing

positive function. From (3.7) and (3.8), we get that if u2(t1) > 0, then u1(t) and

u2(t) are positive on (0,∞).

By differentiating u2(t) = 1− u1(t) we get that the first zero is

t1 =
2 arctan(−

√
8d̃− 1) + 2π√

8d̃− 1
. (3.11)

Substituting into u2(t) and using sin(arctan(x)) = 1/
√
1 + x2, we get the following

inequality:

−
√

d̃

2
e−

1

2
t1 +

1

2
> 0. (3.12)

Substituting (3.11) into (3.12) we obtain

1

2
ln 2 < −1

2
ln

d

a
+
− arctan(

√
−1 + 8d/a) + π√

−1 + 8d/a
. (3.13)

Solving (3.13) numerically we get (c).

4. The capillary assay

In this section we apply the system (2.2)–(2.5) to model the capillary assay

(for a more detailed description see [4]). The sketch of the assay is on Figure 2.

Figure 2. Capillary assay
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At the beginning of the measurement the cells are placed in the lower tank,

then the free surfaces are joined. The cells can move through the common fluid

surface. After a period of time, the upper tank is removed, and the cell density in

the upper tank is determined. The result refers to the general state of the cells, and

can be used as a control value for further measurements (where chemical compounds

are placed in the capillary).

We apply the slightly modified system (2.2)–(2.5) to describe this assay, with

n = 2. The value of u1(t) corresponds to the density in the upper tank, u2(t) in

the lower tank. Since the volume of the two tanks differ, we have to use a non-

equidistant division of the original interval (the length of the steps corresponds to

the volume of the tanks). We have

dK(t)

dt
= a(αu2(t)− u1(t))− aK(t),

du1(t)

dt
= dK(t),

du2(t)

dt
= −dK(t),

where the parameter α > 0 refers to the ratio of the two tanks’ volume.

The initial conditions are

u1(0) = 0, u2(0) = 1, K(0) = 1.

Similarly to Theorem 3.3, straightforward calculation shows that the solu-

tions are asymptotically stable for all d̃ > 0, monotone if d̃ < 1
4(1+α) . However the

condition for the positivity of the solution can be no longer described by a sim-

ple inequality, since the equations for the zeros of the solution derivative have no

analytical solution.

Figure 3. The cell density in the capillary
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On Figure 3, the curve shows the solution u1(t) for the parameter values

a = 0.7, d = 0.4, α = 1/6 while the circles show the corresponding densities in the

upper tank and the dots show their variances corresponding to the measurement.

Note that for this special choice of parameters, the solution is positive.

If d
a
< 1

4α holds for the parameters, then the solutions are monotonous. This

means that, compared to the diffusivity and the memory of the cells, the surface

area over which diffusion is taking place has to be large enough to avoid oscillation.

If oscillation occurs, one has to wait until the cell densities stabilize to get precise

results on the steady state, like in our current case.

5. Conclusions

In our present article our interest is to study the movement of the eukaryotic

ciliate Tetrahymena Pyriformis. We modeled the movement of the cells with regard

to the fact that at any specific time a considerable amount of cells is not active.

This observation led us to the delayed equation, which gives a good qualitative

description of the capillary assay for a feasible set of parameters. Our goal in the

future is to model the chemical compound biased movement of the cells.
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