The Application of Cell-Based Impedance Technology in Drug Discovery

Yama A. Abassi, PhD
Sr. Director
Cell Biology and Assay Development
ACEA Biosciences

ACEA Biosciences

- Founded in early 2002
- Located in San Diego, CA
- Mission: Integration of microelectronics with cell biology and molecular biology for providing innovative and cost-effective microelectronic biological analysis systems and applications for life science industry and clinical diagnostics
- ACEA's first product was marketed under the brand name of RT-CES system in 2004
- In November of 2007 Roche and ACEA Biosciences entered into an exclusive agreement for the development, supply and distribution for ACEA Bioscience's real-time cell assay technology. Under the terms of the agreement, RAS will exclusively market systems for real-time cell analysis, based on ACEA Bioscience's impedance-based technology
- The first joint Roche/ACEA product is marketed under the brand name of xCELLigence

xCELLigence RTCA SP System

Computer and Software

Analyzer

Plate Reader(RTCA SP) (in CO2 incubator)

Gold Microelectrode
Covers 80% of Well Area

Electronic Sensor Technology Applied to Cell Biology: Principle of Operation

Derivation of Cell Index

A dimensionless parameter termed Cell Index (CI) is derived as a relative change in measured electrical impedance to represent cell status.

Several features of the CI are summarized:

- 1. When cells are not present or are not well-adhered on the electrodes, then the CL is zero
- 2. Under the same physiological conditions when more cells are attached on the electrodes, then the CI values are larger. Thus, CI is a quantitative measure of cell number present in a well.
- 3. Additionally, change in a cell status, such as cell morphology, cell adhesion or cell viability will lead to a change in CI.

Advantages of xCELLigence System for Cell-Based Assays and Drug Discovery Applications

- Label free, no reporters
- Non-invasive measurement
- Real-time Monitoring
 - -Short-term (milliseconds)
 - -Long-term (days and weeks)
- Continuous QC

Cell-based Assays:

Traditional Methods

Cell-based Assays:

Traditional Methods vs xCELLigence System

- •Label-free: Electronics-based detection
- •Real-time: Continuous measurement, data analysis and display
- •Therefore, both <u>short term</u> and <u>long term</u> compound effects can be captured

Applications Developed on the xCELLigence System

- Cell Proliferation
- Cell Quality
- Compound-mediated Cytotoxicity
- Cell-mediated Cytotoxicity
- Cell Adhesion and Spreading
- Functional Monitoring of Receptor Tyrosine Kinase Signaling
- Functional Monitoring of GPCR Signaling
- IgE Receptor Function
- Cell Invasion and Migration
- Barrier Function
- Viral Cytopathogenecity

Applications Developed on the xCELLigence System

- Cell Proliferation
- Cell Quality
- Compound-mediated Cytotoxicity
- Cell Response Profiling
- Cell-mediated Cytotoxicity
- Cell Adhesion and Spreading
- Functional Monitoring of Receptor Tyrosine Kinase Signaling
- Functional Monitoring of GPCR Signaling
- IgE Receptor Function
- Cell Invasion and Migration
- Barrier Function
- Viral Cytopathogenecity

Time-Dependent Cell Response Profiling

The Road to Cellular Cytotoxicity Takes Many Twists and Turns

Are Impedance-Based Cell Response Profiles Predictive of Biological Mechanism?

TCRP Approach

Seed 4000 A549 Cancer Cells in 96 well E-Plates

Spectrum Compound Library from MS Discovery (Collection of FDA approved drugs, nature compounds Experimental compounds, insecticides and herbicides)

Monitor the cellular response for 48 hours

Compare cytological profiles

Hit Selection and Clustering Analysis

TCRP with Known Mechanisms

Short-Term Response

Long-Term Response

TCRP with Known Mechanisms

Short-Term Response

Long-Term Response

TCRP of Anti-mitotic Compounds

Characterization of Impedance-Based Anti-mitotic Profile

Mitotic Index

Validation of Mitotic Arrest Profile

Eg5 Small Molecule Inhibitor

antitubulin Ab

anti- PH3

Compounds with Anti-mitotic Profile from the Spectrum Collection

SAPPANONES

Systematic Analysis of Impedance-Based Cell Response Profiles

Curve Classification Algorithm and Display

Protein Synthesis In **Clustering Analysis DNA Damaging** Ca Modulator Anti-mitotic TAMOXIFEN FLUPHENAZINE PERPHENAZINE **METHIOTHEPIN** COLCHICINE NOCODAZOLE NOSCAPINE beta-PELTATIN **ESTRADIOL** PUROMYCIN PYRROMYCIN CYCLOHEXIMIDE **EMETINE** LYCORINE TENIPOSIDE CAMPTOTHECIN STROPHANTHIDIN OLEANDRIN ETOPOSIDE BUDESONIDE HOMATROPINE HYDRALAZINE HYDROCORTISONE **METHYLPREDNISOLONE**

TCRP COX-2 Inhibitors

TCRP COX-2 Inhibitors

Validation of Celecoxib as Modulator of Intracellular Calcium Levels

Validation of Celecoxib as Modulator of Intracellular Calcium Levels

Monastrol

Monastrol

Monastrol

Functional Monitoring of GPCR Signaling

GPCR Activation Leads to Modulation of the Actin Cytoskeleton

Dynamic Monitoring of GPCR-mediated Morphological Dynamics Using the xCELLigence RTCA System

Functional Monitoring of Gq Coupled Receptors on the xCELLigence RT-CA System

Histamine H1 Receptor

RT-CA Assay

3H-IP₃ Assay

Functional Monitoring of G_s Coupled Receptors on the xCELLigence RT-CA System

cAMP Assay

Functional Monitoring of G_i Coupled Receptors on the xCELLigence RT-CA System

5-HT1A Receptor

cAMP Assay

Dynamic Monitoring of Endogenous Receptors Using the xCELLigence System

Dynamic Monitoring of Receptors in Disease-Relevant Cell Types

Cor.AT Cells from Axiogenesis

Mouse ES Cell-Derived Cardiomyocytes 100% Pure Population

β2 Adrenergic Receptor Activation in Cardiomyocyte-Differentiated

Identification of Histamine H1 Receptor Inverse Agonist using the xCELLigence RT-CA System

List of Receptors Functionally Monitored by the xCELLigence System

- RTK
- FcR (IgE and IgG)
- TCR
- Death Receptors (FasR, TNFR)
- Integrins
- Toll Receptors
- Nuclear Hormone Receptors

Summary

- Impedance-based monitoring of cellular status using the xCELLigence platform allows for monitoring of both short term and long term responses
- The ability to monitor short and long term responses within the same experiment provides cytological profiles which can be predictive of mechanism of action
- The non-invasive nature of impedance readout provides the advantage of working with primary cells or disease relevant cells both for long term cytotoxicity studies and short term receptor responses

