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Preface

Naturally occurring genetic variation is an enigma. Using modern molecu-
lar techniques, variation is found in all species, sometimes at astonishingly
high levels. Yet, despite the ease of measurement, we remain essentially
ignorant of the forces that maintain variation. There are few phenomena in
biology that are so easy to observe and so hard to understand. The reason
is simple: the forces that alter the genetic structures of populations tend
to be very weak, operating on time scales of thousands to millions of years.
Direct experimentation is, except in rare cases, completely uninformative.
Instead, we must rely on indirect inferences based on models of the dy-
namics of genetic variation. The models serve up challenging mathematics,
and the connections between them and the patterns of genetic variation
are not always clear. Despite these obstacles, population genetics has made
enormous strides over the past 25 years on one of the most intellectually
challenging and exciting problems in biology.

As the study of naturally occurring genetic variation could be said to
define population genetics, it is not surprising that population geneticists
are constantly seeking new ways to measure it. In the middle and late 1960s
population genetics entered the molecular age with the publication of semi-
nal papers describing electrophoretically detectable variation in Drosophila
by Lewontin and Hubby [190] and Johnson et al. [142] and in humans by
Harris [116]. These papers showed that 5 to 15% of the examined protein
loci are heterozygous in a typical individual. When extrapolated to the
entire genome, these studies pointed to massive levels of variation, much
more than had been predicted.

Even before these electrophoretic studies were started, protein sequenc-
ing studies had uncovered variation between species. Enough sequence data
was available in 1962 for Zuckerkandl and Pauling [317] to notice an un-
expected constancy in rates of amino acid substitutions leading them to
postulate the existence of a molecular clock.

During the period just after the publication of the original electrophor-
etic studies, a flurry of theoretical activity showed that some form of bal-
ancing selection could account for protein polymorphism, even in light of
load theory that was previously thought to rule out selection as a viable
mechanism. In all of this discussion, no use was made of the species com-
parisons or of the molecular clock. By contrast, in 1968, Kimura [155] and,
in 1969, King and Jukes [164] published papers arguing that amino acid
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substitutions, as revealed by species comparisons, were due to the action of
genetic drift rather than natural selection. This was the birth of the neutral
allele theory or, as King and Jukes called it in their provocative title, the
theory of non-Darwinian evolution.

The paper that wedded polymorphism and molecular evolution data in
a single theoretical framework was Kimura and Ohta's 1971 paper [161]
"Protein polymorphism as a phase of molecular evolution." For me, this
paper represents a great moment in population genetics as it is the first
clear statement of a single mechanism for protein variation both within
and between species. As with all great papers, it brings together elements
that were previously only weakly connected. The neutral theory ascended
from its initial skeptical reception to the dominant theory to account for
molecular evolution and polymorphism in remarkably short time. Today,
it is widely accepted, a testimony both to the theory and to the pioneering
work of Kimura, Ohta, and others during the early 1970s.

There has been a persistent counterpoint to the neutral theory that has
not come in the form of a mature theory, but rather as a diverse series of
observations and theoretical works, each of which nibbles at just a small
portion of the theory. The observations tend to be examples of protein
variation that can be shown to have significant physiological consequences
and, by implication, effects on fitness. The theoretical results tend to show
that dynamics once thought to be the sole province of neutral alleles are
shared by selected alleles as well. None of these, by themselves, are sufficient
to topple the theory. Remarkably, they have never been accumulated in a
single work to see if the neutral theory can be sustained in the face of their
combined weight.

In this preface I will give a broad outline of what is to follow. This will
help to bind together chapters that run the gamut from purely experimental
to entirely mathematical.

The book is divided into three parts. The first consists of three chapters
(Protein Evolution, DNA Evolution, and The Molecular Clock) that review
the experimental observations on genetic variation. The second is made up
of two chapters (Selection in a Fluctuating Environment and SSWM Ap-
proximations) that give a unified treatment of the mathematical theory of
selection in a fluctuating environment. The final two chapters (Neutral
Allele Theories and Selection Theories) combine the earlier chapters in a
treatment of the scientific status of two competing theories for the main-
tenance of genetic variation. The three parts can be read independently;
however, the third does depend in large part on the first two. Those not
mathematically inclined may want to skip chapters 4 and 5 altogether.

The chapter on protein evolution begins with a series of examples of
what I call microadaptations, where one or a few amino acid changes in
a protein are implicated in an adaptation. Such examples are few and far
between, leading us to question whether they are tantalizing apparitions of
a general phenomenon lying just beyond the resolution of our experiments
or anomalies positioned to mislead overzealous selectionists. As our story
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unfolds, I hope to convince the reader that the former is the true situation.
Part of the argument involves a short treatment of the thermodynamics of
protein folding designed to show that it is not chemically unreasonable for
even conservative amino acid changes to alter kinetic properties of proteins.

A short section on rates of substitutions argues that the observation
that certain proteins, like immunoglobulins, evolve two orders of magnitude
faster than others, like histones, cannot be entirely understood by claiming
that the latter are more "constrained" than the former. Rather, the argu-
ment must be expanded to include the effects of a changing environment:
some proteins are more "environmentally challenged" than others and, as
a consequence, evolve more rapidly. This view is motivated, in part, by the
examples of microadaptations, all of which are in response to an aspect of
the environment that changes through time or space.

The final section examines the extensive literature on electrophoretic
surveys of protein polymorphisms. Despite the vastness of this literature, it
serves up remarkably few insights into the forces responsible for the mainte-
nance of the variation. Later in the book I will argue that most populations
may be out of equilibrium due to linked hitchhiking events, suggesting that
patterns of polymorphism are too dependent on historic events to be infor-
mative about mechanisms. One conclusion of this section that differs from
the view of 10 years ago is that the enzymes used in electrophoretic studies
may be more polymorphic than typical protein loci and may have misled
us about the level of protein variation in the genome.

The chapter on DNA evolution concentrates on silent variation within
coding regions. Two general questions are examined: does mutation limit
the rate of silent substitution, and does the spectrum of silent substitu-
tions match the mutational spectrum? Both questions are answered in the
affirmative, although the available data are still too sparse to make these
answers definitive. Next, the evolution of GC% and codon usage is dis-
cussed. I have taken the unorthodox view that the GC% is an evolved
property, reflecting a value that is deemed optimal by natural selection and
that this value has a marked impact on patterns of codon usage. Finally,
patterns of DNA polymorphisms are reviewed.

The first two chapters allow us to contrast the dynamics of silent and
replacement substitutions. One major difference seen in mammals is that
silent substitutions appear to exhibit a generation-time effect while replace-
ment substitutions do not. This difference will play a major role in our final
judgment about the contrasting mechanisms of silent and replacement evo-
lution.

The molecular clock is the focus of the third chapter. In it we see that
rates of nucleotide substitution are anything but constant. Variation in
rates may be partitioned into lineage effects, variation shared by all loci
on a particular lineage, and residual effects, variation left over once lineage
effects are removed. One example of a lineage effect is the generation-time
effect.

Residual effects are quantified by R(t), the ratio of the variance in the
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number of substitutions on a lineage to the mean number. The average
value of R(t) for replacement substitutions is over seven, while for silent
substitutions it may not be significantly greater than one. A digression into
the theory of point processes is used to argue that the variability in rates
of protein evolution implies that protein evolution is episodic, with periods
of quiescence marked by occasional bursts of substitutions.

In the fourth chapter we turn from data to mathematics. If we are
to propose that molecular evolution is due to the action of natural selec-
tion, we need a mathematical theory to demonstrate that the dynamics of
selection are compatible with the observations on molecular variation. It
is my conviction that the only viable model of selection is one based on
temporal and spatial fluctuations in the environment. The mathematics
of selection in a random environment have never been systematically de-
veloped or brought to the point where they serve as a model of molecular
evolution. Both situations will be remedied in this chapter. Unfortunately,
the mathematics are very difficult. Yet, if molecular evolution is in response
to a changing environment, then this is the sort of mathematical challenge
that we must be willing to face. This chapter is littered with unresolved
problems that should prove interesting to those with a mathematical bent.

The next chapter demonstrates how population genetic models that
involve strong selection and weak mutation may be approximated by a
technique that brings even the most difficult of problems into submission.
The approximating models, called SSWM Markov chains, can be used to
describe the genealogy of alleles. In this chapter I formulate a number of
models that exhibit the same episodic pattern of substitutions inferred in
the analysis of the protein evolution data.

The chapter on neutral allele theories, the first of two concerned with the
fundamental scientific issues posed by the first three chapters, begins with
an examination of the assumptions underlying the neutral theory, proceeds
to examine the arguments that bear on the theory, and concludes that the
theory should probably be abandoned for amino acid variation but may be
valid for silent variation. Whatever neutral variation is present is likely to
be far from equilibrium, reflecting historical events.

The final chapter presents the selection alternative. After summarizing
the arguments supporting the role of natural selection on amino acids, a
strong-selection model is described that is compatible with the episodic
molecular clock. Some speculations on a unified theory of selection in a
fluctuating environment are presented that should provide a springboard
for further work.

This book is a statement of my own views on molecular evolution. It is
not meant to be a review of molecular evolution or of population genetics.
I have attempted to cite review articles where appropriate for the benefit of
readers who may want more information. I have also attempted to cite those
responsible for my views, either through written works or conversations.
However, as many of the ideas in this book are in the "public domain,"
many are expressed without any attribution.
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1
Protein evolution

The study of protein evolution, like that of morphological evolution, is a
multi-level enterprise. At the most fundamental level are those studies that
infer what actually happened. At the next level are studies of rates of
change. Once we know what happened, we want to know how quickly it
happened. Finally, we want to know why these changes occurred. What
are the mechanisms producing the changes in the amino acid sequences of
proteins?

The Atlas of Protein Sequence and Structure [52] is the repository of
much of the work on the first two levels. However, the Atlas is of little help
on the issue of mechanism as it does not deal with functional aspects of
proteins. Population geneticists, the natural custodians of the third level,
have failed to reach a consensus despite many years of discussion.

That protein function has been shaped by natural selection has never
been an issue. The controversy centers on the fraction of substitutions that
contribute to adaptive evolution. Supporters of the neutral allele theory
claim that less than 10% of all amino acid substitutions are functionally
significant. Others claim that the fraction is much higher, perhaps as high
as 100%. Why is it that we cannot agree to within an order of magnitude
on an issue as fundamental as the mechanism of protein evolution?

Perhaps we are investigating phenomena that are below the resolving
power of our current (and perhaps future) techniques. Selection coefficients
for single amino acid substitutions as small as 10~4 to 10~3 are large enough
to dominate genetic drift, yet are refractory to direct experimental investi-
gations. In other words, most of protein evolution could be due to strong
natural selection, yet we have no experimental protocol capable of measur-
ing the selective differences. If this is so (as will be argued throughout this
book) then what should be done?

One thing that we can to is to latch onto examples in which effects are
large enough to measure and use them to gain insight into effects that will
remain forever beyond our reach. I feel so strongly about this approach
that I am beginning this book with examples of amino acid changes that
appear to have functionally important consequences. These will guide our
understanding of protein evolution to a point where the claim that most
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amino acid substitutions could cause fitness effects as large as 10~3 seems
entirely reasonable. My view of these examples is that they are ordinary in
their qualitative effects, but extraordinary in their quantitative effects.

1.1 Examples of microadaptations

What follows are a selection of my favorite examples of microadaptations in
proteins. I call these microadaptations only to emphasize that the numbers
of amino acid substitutions responsible for the adaptation are generally
quite small, as are the (inferred, always unmeasured) effects on fitness. I
don't mean to imply that the large adaptive differences between, say, fish
and horse hemoglobins are the results of processes other than the microad-
aptations that are described in this section.

Each example contains a certain amount of background information.
This was added under the assumption that, like myself, many readers will
have forgotten some of their basic biochemistry.

Lactate dehydrogenase

Lactate dehydrogenase (LDH) is a tetrameric enzyme that catalyzes the
interconversion of pyruvate and lactate and of NAD and NADH. In verte-
brates, there are usually three major loci directing the synthesis of three
distinct subunits, M (for muscle, also called A), H (for heart, also called
B), and C. The subunits combine at random to produce isozymes. For ex-
ample, a cell that synthesizes the H and M subunits will contain the HU,
HsMi, H2M2, HiM3, and MU isozymes in binomial proportions. In skeletal
muscle the predominant isozyme is M.4 whereas in the liver and heart the
predominant isozyme is HLj.

The muscle and heart forms play a key role in the Cori cycle as illus-
trated in Figure 1.1. In skeletal muscle glycolysis predominates with the
consequent buildup of lactic acid. The lactic acid is transported through
the blood to the liver where it feeds into gluconeogensis to produce glucose.
The glucose is transported back through the blood to the muscles, thus
completing the cycle. The MU isozyme favors the conversion of pyruvate to
lactate whereas the Hv

Somero and his colleagues have studied adaptations of LDH in ec~
totherms in remarkable detail over the past 15 or so years (reviewed in [130,
269]). These studies were aimed mainly at understanding adaptations of
LDH to different temperatures and pressures. They have examined var-
ious kinetic and thermostability properties of M<i-LDH from vertebrates
with wildly different body temperatures ranging from an Antarctic fish
(Pagothenia borchgrevinka) whose body temperature is near the freezing
point of sea water, —1.86°C, to a desert lizard (Dipsosaurus dorsalis) whose
temperature gets as high as 35-47°C.

The kinetic parameter that proved most interesting in these studies is
the Michaelis constant, Km, for the reduction of pyruvate. Their funda-
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Figure 1.1. The Cori cycle.

mental observation is that Km is conserved across species when the Km

from each species is measured at a temperature that falls within the nor-
mal range of body temperatures for that species [269, Figure 1]. In fact, the
Kms fell within the relatively narrow range of 0.15 to 0.35 mM of pyruvate.
This twofold range is considerably narrower than the over tenfold range
that is observed if Kms are measured at temperatures outside the normal
body temperatures of the species.

Why are the Kms conserved? Or, why does there appear to be an
optimal K"m? The answer, which will take us on a short digression into
enzyme kinetics, is extraordinarily important for our appreciation of the
microadaptations of enzymes.

The classic Michaelis-Menten model of enzyme catalysis involves the
rapid binding and dissociation of the substrate with the enzyme and the
rate-limiting catalysis and release of the product,

The rate at which the product is produced is given by the velocity

where the square brackets indicate the concentration and [Et] is the total
concentration of the enzyme. Figure 1.2 illustrates the dependency of the
reaction rate on the substrate concentration.

The maximum rate of the reaction,

occurs when the concentration of the substrate is high enough to saturate
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the enzyme. The Michaelis constant, defined by

may be viewed as a measure of the strength of the binding between the
substrate and the enzyme. Low values of Km indicate tight binding; high
values, weak binding. When the substrate concentration is equal to Km,
v is equal to one-half Vmax, suggesting that Km could also be defined as
the concentration of the substrate at which the velocity of the reaction is
one-half the maximum velocity.

When the substrate concentration is much smaller than Km, the reac-
tion behaves almost as a first-order reaction with velocity

As intracellular substrate concentrations are usually less than Km, it is
commonly assumed that kcat/Km is the best measure of the in vivo activity
of an enzyme [72].

Although the Michaelis-Menten model is a gross simplification of the
dynamics of any particular enzyme-catalyzed reaction, it has proven to be
a valuable guide for discussions of the major features of enzyme kinetics.
For evolutionary studies, it focuses attention on three aspects of catalysis:

* The strength of binding of the substrate to the enzyme as measured
by/ fm.

» The efficiency of catalysis* as measured by fccat-

9 The in vivo velocity as measured by Vmax/Km.

With this background, we can return to our discussion of the conser-
vation of Km in ectotherms. If natural selection is responsible for the
evolution of Km to an intermediate value, we should be able to understand
why it would be maladaptive to exhibit values that are much less or much
greater than the intermediate value.

It has often been argued that Km should be larger than the intracellular
concentration of the substrate, [S]. This guarantees that the enzyme is
far from saturation and thus has sufficient reserve capacity to respond to
fluctuations in the substrate concentration [7,269]. In fact, the Kms of
most enzymes for which such data are available (including LDH) turn out
to be 1 to 100 times the intracellular concentrations of their substrates [72,
Fig. 12-7]. Thus, very small values for Km are probably maladaptive.

On the other hand, if Km is much larger than [5], the velocity of the
reaction in the cell is determined by Vmax/Km, which is a decreasing func-
tion of Km. It is generally felt that it is advantageous for kcat/Km to be as

* There is no universally recognized measure of the efficiency of an enzyme. This
is but one of several that have been used.
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Figure 1.2. The velocity of an enzyme-catalyzed reaction under the Michael is-Men-
ton model.

large as possible to maximize the efficiency and transient performance of
a pathway [63,295]. Thus, there will be an evolutionary force to decrease
Km to meet this requirement. Hochachka and Somero [130] point out that
with a very large Km an enzyme is not realizing a significant fraction of its
catalytic potential—& bad thing. Thus, the "optimal" Km is one that best
satisfies the need for reserve capacity and high in vivo velocity.

Fersht [72] gives an entirely different evolutionary argument for the ob-
servation that Kms usually fall between [5] and 100[S]. In general, we
would expect evolution to maximize kcat/Km since this is the kinetic pa-
rameter that best reflects the rate of an enzyme-catalyzed reaction in vivo.
Lowering Km and increasing kcat will obviously lead to increases in this
ratio.

Suppose, however, that fundamental constraints in the structure of en-
zymes make the simultaneous increase of kcat and decrease of Km impossible
(beyond some point), as seems likely. Tighter binding of substrates involves
increases in the number and strength of weak bonds between the enzyme
and the substrate. This, in turn, limits the conformational flexibility of the
enzyme with a consequent reduction of its catalytic efficiency.

Suppose that kcat/Km is maximized at the value m. If kcat/Km equals
m, then kcat will equal mKm. If this is plugged into equation 1.1, we see
that the velocity of the reaction in the cell will be an increasing function of
Km, given our assumption that kcat/Km is held constant.

Increases in kcat are more effective at increasing the velocity of the
reaction than increases in Km are at decreasing the velocity under the
particular constraint that we employed (kca.t/Km = m). The dependence
of the velocity on Km is concave. As Km increases, the rate of increase in
the velocity decreases. Fersht argues that evolution will increase Km until
such time as further increases do not result in significant increases in the
velocity, at which point evolution stagnates.

7
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Fersht's scenario nicely accounts for the high values of Km because the
slope of the curve of velocity versus Km is large when Km tv [S]. Thus,
evolution should have little trouble moving Km to values that are larger
than [5]. The weakness in the argument is its dependency on the exact
relationship between Km and kcat.

As an alternative model, assume that

making kcat a concave rather than a linear function of Km. Plugging this
constraint into equation 1.1 shows that an intermediate value of Km will
maximize the intracellular velocity when

If a w 0.9, for example, then the Km that maximizes the intracellular
velocity is about 10[S]. This small change in Fersht's argument changes our
view of the adjustment of Km from one involving evolutionary stagnation
to one of optimization.

With two very different models for the evolution of Km in hand, we
cannot say for certain which—if either—is correct. However, at this point
in our discussion it is important merely to accept that there are plausible
reasons for Km to be evolutionary adjusted to intermediate values. This
forms the theoretical basis of our acceptance of the conservation of Km in
ectotherms as evidence for the action of natural selection in response to
different thermal environments.

It would be of considerable interest if the conservation of Km, which is
apparent when creatures are examined with a wide range of body temper-
atures, could also be observed between closely related species with rather
small differences in body temperatures. Two such studies have been un-
dertaken.

Graves and Somero [111] compared four species of barracudas of the
genus Sphyraena that live in the Pacific Ocean just off the coast of the
Americas. The species are largely allopatric. Moving south from California
to South America the species are, in order, S. argentea with a midrange
body temperature at 18°C, 5. lucasana at 23°C, S. ensis at 26°C, and S.
idiastes at 18°C.

Thus, two of the species are temperate with similar midbody tempera-
ture ranges and two are tropical with ranges that are only 5-8° C higher. The
measured Kms are illustrated in Figure 1.3, which shows that the M4-LDH
Kms have evolved in exactly the manner predicted by the pattern observed
in species that are much more distantly related. Moreover, the evolution is
in response to remarkably small differences in body temperatures.

There are no sequence data for these barracudas, but electrophoretic
studies were performed. The two temperate species had identical electro-
phoretic and kinetic properties suggesting that they may have identical M
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Figure 1.3. Michael is constants for three species of barracuda as a function of tem-
perature. The solid lines indicate the normal body temperature for each species.
Redrawn from [111, Fig. 3].

chains. The two tropical species, on the other hand, could be distinguished
from each other and from the temperate species by electrophoresis. The
genetic identities of the four species, based on an electrophoretic analysis
of 19 loci, suggests that speciation occurred 3 to 6 million years ago. If the
average rate of evolution of LDH is about 3.4 x 10~10 amino acid substitu-
tions per site per year [52, Table 1], then we expect that these LDHs differ
by about 0.7-1.3 amino acids, assuming that the M chain is 329 amino acids
long as it is in the spiny dogfish [52, p. 67]. Thus, the adaptive evolution
of Kms in these species may be due to only one or two substitutions per
species.

The second study, by Graves et al. [110], used four pairs of fish species
that have been separated by the Panama land bridge for approximately 3.1
million years. The fish on the Pacific side experience average temperatures
that are 2-3°C colder than their close relatives on the Atlantic side.

Of the four pairs, two showed significant differences in their Kms in
the expected direction: Pacific fish have higher K^s when the comparisons
are made at the same temperatures. Electrophoretic analyses found that
only one of the two pairs of M4-LDHs could be distinguished among these
two species, and only one pair could be distinguished between the two
species pairs that failed to show significant kinetic differences. The former
is probably due to the inability of electrophoresis to uncover all amino
acid substitutions. The latter is more enigmatic. It could be that the
substitution caused a kinetic change that was too small to be detected
under the experimental conditions, affected some property of the molecule
that is not expressed in the assay, or had no effect at all.

What is striking in these studies is that adaptive changes in LDH—
adaptive as judged by their adherence to the general pattern of LDH

Temperature
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evolution—occur with only a 2-3°C change in temperature. Temperature
may be of extraordinary importance in the evolution of proteins, a point
of view that has been convincingly championed by Somero and others for
a number of years [268].

A second aspect of these studies is also important: the catalytic efficien-
cies of enzymes vary in such a way that cold-adapted species have higher
catalytic efficiencies than warm-adapted species [130]. Enzymes speed up
reactions by lowering the free energy of activation, AG*. A more efficient
enzyme has a smaller AG*. Thus, cold-adapted species exhibit smaller
AG*s. Warm-blooded animals, such as mammals, have less efficient en-
zymes. According to Hochachka and Somero [130, page 382], "no exception
to this pattern of temperature compensation has been found." One explana-
tion for this phenomenon involves an instance of evolutionary compromise.

As a general rule, enzymes undergo conformational changes when sub-
strates are bound or released and during catalysis. These changes are nec-
essary if the enzyme is to be an effective catalyst. Conformational changes
are possible because the tertiary structures of intracellular enzymes are
completely determined by weak bonds: van der Waals and hydrophobic
interactions; hydrogen and electrostatic bonds. To be an efficient cata-
lyst, an enzyme needs enough weak bonds to maintain the appropriate
tertiary structure but riot so many that it loses its ability to undergo con-
formational changes. Thus, an enzyme should be viewed as a compromise
between structural stability and conformational flexibility.

Temperature plays an important role in that hydrogen and electrostatic
bonds and Van der Waals interactions become less stable as the temperature
increases. To prevent the tertiary structure from being disrupted, organ-
isms with higher body temperatures must evolve enzymes with a greater
number of weak bonds. As a consequence, there will be some loss of flexi-
bility leading to higher AG*s. This is the essence of Somero's evolutionary
explanation for the lower catalytic efficiency of enzymes in warm-adapted
organisms [268,130].

Borgmann and Moon [21] favor a related hypothesis that focuses on the
binding of ligands rather than the overall structure of the enzyme. They
point out that ligands are bound by weak bonds and are thus subject to
large temperature effects. Creatures living at higher temperatures will need
to use more weak bonds to stabilize the enzyme-ligand complex, giving up
some catalytic efficiency in the process.

As further evidence in support of the view that enzymes represent a com-
promise between stability and flexibility, it should be noted that enzymes
from warm-adapted species tend to be more resistant to heat denatura-
tion than those from cold-adapted species [130]. An enzyme denatures at
temperatures that are far in excess of the lethal body temperature of the
creature providing the enzyme. Thus, thermal stability should be viewed
not as a property under direct evolution, but rather as an index of the num-
ber of the weak bonds stabilizing the tertiary structure. The weak bonds
that raise AG* in warm-adapted species also increase the thermal stability
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of their enzymes. A related observation is that enzymes that denature at
higher temperatures also have longer half-lives in cells [104].

In the barracuda study, the catalytic efficiencies of the four species var-
ied in exactly the pattern suggested by this discussion [111]. That is, the
two temperate species had a higher catalytic efficiency than the two tropical
species. Within the tropical species, the one living at a warmer temperature
had a lower catalytic efficiency than the one living at a colder temperature.
(Catalytic efficiency, in this case, is measured by kcat, which is an exponen-
tial function of — AG*.) If our inference that the LDHs of these barracudas
differ by very few amino acids is true, then these results are quite remark-
able. The substitutions seem to have affected both Km and kcat in a way
that is congruent with the evolution of these parameters in ectotherms gen-
erally and, at the same time, is compatible with a very appealing model of
the effects of temperature on enzyme structure and function.

Studies that examine Km and Vmax separately illustrate one aspect of
the evolution of enzymes to meet different thermal environments. Another
aspect is captured in kmax/Km, the pseudo first-order rate constant when
the substrate concentration is well below Km. When species from different
thermal environments are compared, evidence for adaptation may often
be seen in the behavior of kmax/Km as a function of temperature [21].
The most carefully done studies on the evolution of kmax/Km in LDH
involve comparisons of alleles from within a species rather than comparisons
between species. These studies were done by Place and Powers on two
alleles of the heart form of LDH, LDH-B4, in the fish Fundulus heteroclitus.

The common killifish, F. heteroclitus, is a small coastal minnow whose
range extends from Newfoundland to Florida. This stretch of coastline has
a very steep thermal gradient that averages about 1°C per degree of lat-
itude. The mean water temperature ranges from about 7°C in the north
to about 23°C in the south. A number of enzymes exhibit marked lati-
tudinal gradients as well [241]. One of the most striking is the B form of
LDH, which has two alleles: B6, which is nearly fixed in the north and
Ba, which is nearly fixed in the south. The enzymes from the three geno-
types, 64, B0/Bfr and B*, have been isolated and their kinetics examined
in extraordinary detail [239].

From our point of view, the most important aspects of this study are
summarized in Figure 1.4, which illustrates the dependence of k
temperature for both the forward (lactate oxidation) and reverse (pyruvate
reduction) directions. Note that in both directions the northern genotype,
LDH B*, has a higher kcat/Km at colder temperatures whereas the southern
genotype has a higher rate at warmer temperatures. The heterozygote rate
tends to be intermediate over most temperatures, although not exactly so.
This pattern is just what we would expect if natural selection favors large
kcat/Km.

In addition to these kinetic differences, the genotypes also differ in their
thermal stabilities in the expected direction. The southern genotype, 64, is
more thermally stable than the northern genotype, B*, with the heterozy-
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Figure 1.4. The rate of reaction for LDH genotypes from the fish Fundulus hetero-
clitus. Redrawn from [239, Fig. 6].

gote falling in between. DNA sequencing reveals that these alleles differ by
two amino acids, one affecting the electrophoretic mobility and one affect-
ing the thermostability [Powers, pers. com.]. Alleles that were not detected
electrophoretically have also been uncovered, promising a more complex
story for the future.

At 10°C, the rate constant for LDH-64 is about 40% higher than that of
LDH-BJ. A difference this large might be expected to have some measurable
physiological consequences. Indeed, this is the case. However, the evidence
is not as clean as one would like because the enzyme concentrations differ
among genotypes along with the kinetic parameters [49]. The evidence
for physiological correlates with genotype will be presented first followed
by some discussion of the relative roles of kinetic parameters and enzyme
concentrations.

DiMichele and Powers [56] have shown that fish with different LDH
genotypes vary in their ability to swim for prolonged periods of time. When
fish are acclimated at 10°C, LDH-B^ fish swim longer and maintain a swim-
ming speed that is about 20% higher than LDH-BJ fish.

The explanation for this difference appears to lie not with the Cori
cycle, but rather with the effects of LDH on the concentration of ATP in
the erythrocyte: levels of erythrocyte ATP are lower in LDH-BJ fish than
in LDH-B* fish. (The reasons for this are not understood at present.) ATP
has the same effect on hemoglobin in fish as does 2,3-diphosphoglycerate in
mammals: it lowers the oxygen affinity. Thus, LDH-B^ fish exhibit a lower
oxygen affinity than LDH-B^ fish. More importantly, ATP also exaggerates
the Bohr effect. At a lower blood pH, LDH-B* fish will have an enhanced
ability to distribute oxygen to the muscles, which may account for their
increase in swimming performance at 10°C. These differences disappear at
24°C as expected from the kinetic studies.

The LDH variation is also correlated with hatching time. LDH-BJ fish
hatch in 11.9 days, LDH-B^ fish in 12.8 days, and LDH-Ba/B6 fish in 12.4

Temperature Temperature
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days, exactly half-way between the times of the two homozygotes [55]. The
eggs of F. heteroclitus are laid on grasses during spring tides in such a
way that they develop above the water level. When the next spring tide
arrives and the eggs are submerged, the respiratory stress caused by the
low oxygen partial pressure in the water triggers hatching. Given that ATP
levels affect the binding properties of hemoglobin, it is not surprising that
the genotypes show differences in their hatching times. The direction of the
difference suggests that it is the release rather than the binding of oxygen
that is the key factor.

Recent work has shown that the enzyme concentrations of LDH in Fun-
dulus are a function of both genotype and temperature [49]. That this fish
possesses various mechanisms to adapt to temperature differences should
not be surprising when one considers that the QIQ of enzymes is typically
between two and three. Since Fundulus inhabits a stretch of coastline with
a temperature difference of about 16°C at the extremes, all else being equal,
the activities of northern fish would be less than half that of southern fish.
Of course, all else is not equal. The northern genotype has a higher k
at cold temperatures than the southern genotype, it produces more enzyme
as evidenced by higher levels of mRNA [49], and all Fundulus have the abil-
ity to increase the levels of LDH at colder temperatures by increasing the
level of transcription of the locus. Crawford and Powers have argued that
when all three factors are taken into account, the in vivo activity of north-
ern fish in their native temperature regimes is equal to that of southern
fish in theirs. This is a very provocative conclusion. It hints that evolution
may strive to preserve the metabolic state of organisms, as summarized
in substrate pool sizes and pathway fluxes, when a species experiences an
altered thermal environment.

Our interpretation of the Fundulus results must be accompanied by the
usual qualification: It may be that some of the physiological differences
between genotypes are not due to activity differences between the LDH
enzymes, but to linked loci.

Phosphoglucose isomerase

Phosphoglucose isomerase (PGI) sits at one of the great metabolic intersec-
tions. Glucose begins its trip through metabolism by acquiring a phosphate
to become glucose- 6-phosphate. From here it can go north to glycogen, east
through the hexose-phosphate shunt, or south through glycolysis. The first
step south is to fructose-6-phosphate, this step being catalyzed by PGI. It is
hard to imagine a more important step in all of intermediary metabolism.
Not surprisingly, PGI has received a great deal of attention from evolu-
tionists interested in the functional consequences of enzyme variation. In
some ways, the patterns of evolution parallel those seen for LDH. This is
important in our quest for generalization. But PGI will also serve up some
surprises. Most notably, it will give us overdominance (or underdominance)
for kinetic parameters.
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Figure 1.5. The Michaelis constants for two species of bivalves measured in both
directions. Redrawn from [115, Fig. 2].

We begin our story, as we did with LDH, by looking at comparisons
between closely related species. There are distressingly few such studies
in the literature. The most complete that I could find is a comparative
study done by Hall [115] of two bivalves from the Atlantic coast of North
America. The northern species is the common (and tasty) blue mussel,
Mytilus edulis. The southern species is the clam, Isognomon alatus. The
two species are found in very different thermal environments. Mytilus edulis
is seldom found in waters that are warmer than 20° C whereas /. alatus is
a tropical species that inhabits waters from 25°C to 35°C.

When the Michaelis constants from these two species are compared over
a wide range of temperatures, the results are remarkably similar to the pat-
tern seen in LDH: the K
the southern species at all measured temperatures (Fig. 1.5). As a conse-
temperature that each species inhabits. This is another manifestation of
temperature that each species inhabits. This is another manifestation of
the conservation of Km. Moreover, when the thermal stabilities of the two
enzymes are compared, the southern enzyme is found to be substantially
more thermostable than the northern enzyme. This also mimics the pattern
seen in LDH.

The similarity to LDH begins to break down when we turn to kcat.
Hall gives data for V
he used were 97-99% pure and his V
zyme concentration. This may reflect a feeling on his part that the enzyme
concentration, Et, can never be properly corrected for in an experiment
designed to determine kcat. This is, of course, a constant problem with all
such studies.

In the forward direction, G6P->F6P, the Vmax of M. edulis is generally
higher than that of I. alatus; in the reverse direction, the opposite is true.
The differences in Vmax are quite small, but this result does go against the
pattern that warm-adapted enzymes always exhibit lower kcats due to a
trade-off of stability for flexibility.

Tempertaure Tempertaure
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In thinking about this contradiction, the Haldane relationship,

which places a thermodynamic constraint on the forward and reverse Mi-
chaelis constants, Kf and Kr, and the fccats, needs to be considered. The
four parameters must be such that the equilibrium constant for the reac-
tion, Keq, is not altered by the enzyme. Evolution is thus operating in a
three-dimensional rather than a four-dimensional parameter space, ignor-
ing, of course, other constraints imposed by the protein's structure that
may further restrict the dimensionality of evolution on kinetic parameters.)
As a consequence, we should not be surprised to see evolutionary changes
among closely related species that do not fit broader patterns exhibited by
more distantly related species.

A comparison of Vmax/Km reveals that this ratio is nearly the same for
the two species at 5°C, but deviates steadily with increasing temperatures
such that /. alatus always exhibits a higher value. At 35°C, there is about
a twofold difference. Since Vmax is nearly the same in the two species, the
differences in Vmax/Km are due almost entirely to differences in Km (see
Fig. 1.5). Insofar as Vmax/Km is a measure of kcat/Km, it appears that /.
altatus has a higher pseudo first-order rate constant at all temperatures. In
this aspect of PGI, there is no evidence that the northern species is better
adapted to colder temperatures than the southern species.

When we turn to comparisons between alleles within a species, there are
many studies of PGI to choose from. The work of Watt and his colleagues
stands out as the most complete at this time so will be taken up first.

Watt studies PGI in a species complex of sulfur butterflies, genus Col-
ias, found in a particularly scenic area of Colorado. There are four common
alleles segregating within these species*. With four alleles there are ten
genotypes. Undaunted, Watt has characterized each genotype by at least
12 kinetic parameters (forward and reverse Kms and kcats at three tem-
peratures) and one thermostability parameter, or 130 observations (with
replicates) [293,294]. For the more interesting genotypes he has included
observations at different pHs as well. In addition, he has made extensive
field observations to document fitness component and behavioral traits that
correlate with the PGI genotypes. It is impossible to do justice to this ex-
cellent work here; only some of the highlights will be mentioned.

The basic obstacle to comprehending this work is the interactions that
occur between alleles. Although heterozygotes tend to be intermediate,
they are not exactly so. Moreover, under some experimental conditions
and between certain pairs of alleles, overdominance is observed. To further
complicate the story, thermostability does not appear to be correlated with
kinetic parameters. For example, the ordering of alleles (numbered 2 to 5)

*As far as can be determined, there are only four alleles, although without sequence
data there is always the possibility of some cryptic alleles.



Figure 1.6. TheMichaelis constants forthe three genotypes of PGI in Colias measured
in both directions. Data are from [294, Table 4].

by the thermostability of their homozygotes is 5 > 4 > 3 > 2. By contrast,
the ordering of Kms for G6P is 4 > 3 > 5 > 2.

There does not appear to be any simple way to summarize the data.
This may be the most important message from the entire effort. It suggests
that each amino acid substitution will affect several properties of a protein
and that the effects are tangled. By this I mean, for example, that one
amino acid substitution may lower both the Km and the thermostability,
while another may lower the Km but raise the thermostability. There may
be no low-dimensional property of amino acids that can be used to predict
the full range of their consequences on the functional properties of the
molecule. This is not a great insight. Were it otherwise, protein chemists
would be able to tell us about the workings of a protein by knowing only
its primary structure.

Alleles 3 and 4 have received the most attention. One reason is il-
lustrated in Figure 1.6: there is marked underdominance for Km at all
temperatures. Since PGI is a dimer, the cells of heterozygotes have three
forms of PGI. Presumably, the subunits of the 3/4 heterodimer interact in
such a way that the Km is outside of the range of the two homodimers.
(This should be contrasted to LDH in Fundulus where we saw that the
heterozygote was nearly intermediate in its kinetic properties.) Vmax, on
the other hand, is relatively similar in the these three genotypes. As a con-
sequence, there is overdominance for Vmax/Km suggesting that these two
alleles may be held in the population because of the superiority of the 3/4
heterozygote. If, that is, we accept that there is some advantage in having
a larger Vmax/Km.

Butterflies follow the maxim "fly early, fly often." Viewed as a machine
for turning nectar's simple sugars into eggs or sperm, it is easy to imagine
that butterflies that begin their flights to the flowers first will accrue some
advantage. These may well be the individuals that can fire up glycolysis the

16 Protein evolution
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fastest in the chill of the morning. Since PGI is the first step in glycolysis,
and since Vmax/Km of the 3/4 heterozygote is greater than that of the
3/3 or 4/4 homozygotes, it is natural to see if there are relatively more 3/4
individuals flying about early in the morning than at the warmer periods of
the day. In fact, this is exactly what is observed. For example, in one study
with six different samples, 3/4 heterozygotes made up a larger fraction of
the early morning fliers than they did among the peak period flyers [296,
Table 1], This fits with the maxim's fly early component.

The 3/4 heterozygotes also fly more often. In one study in Tracy, Cal-
ifornia, it was observed that the 3/4 heterozygotes are active for a longer
period of the day and that the 3/3 homozygotes were not far behind. The
4/4 homozygotes, on the other hand, flew for a distinctly shorter period
of time [296, Fig. 1]. As can be inferred from Figure 1.6, this mirrors the
relative positions of Vmax/Km f°r the three genotypes.

These observations were made at low to moderate temperatures (from
a butterfly's point of view). Given the thermostability differences between
alleles, it might be expected that some evidence for differential survival
under heat stress could also be found. The 5/5, 4/5, and 4/4 genotypes
are the most thermostable. There are two studies that suggest that the
frequencies of these genotypes increase throughout the summer [296, Table
4]. This may well be due to their increased thermostability, although more
direct evidence would be desirable.

The amount of information that Watt and his colleagues have amassed
on the role of temperature in the biology of Colias in general and glycolysis
in particular is staggering. The work of Kingsolver should also be mentioned
as it extends the Colias story significantly [167,168]. While the details of
this work are fascinating, from our point of view there are four general
observations that are relevant to the theme of this book:

There are significant kinetic and thermostability differences between
alleles that segregate in Colias populations.

Heterozygotes are generally intermediate in their properties, but never
exactly so. In one important instance overdominance in Vmax/Km is
observed at all temperatures.

There are behavioral correlates with genotype that fit predictions
based on the ordering of Vmax/Km among genotypes and the as-
sumption that flight is limited by the flux through glycolysis.

There is some evidence that natural selection favors more thermosta-
ble genotypes during hotter periods of the summer.

Except for the overdominance, this summary is remarkably close to that
for LDH in Fundulus.

One could have argued that the role of temperature in the evolution of
aquatic organisms may be very different from that of terrestrial ectotherms
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since the latter have the option of behavioral regulation of their body tem-
peratures. The Colias results suggest that temperature may be even more
important in terrestrial organisms due, in part, to the greater fluctuations
in temperature and, in part, to the tendency for evolution to balance the
advantages of longer periods of activity with the risks of moving about at
extreme (hot or cold) temperatures.

Allelic variation in PGI has been examined in several other species as
well. Fundulus has two segregating alleles that exhibit the same sort of cline
along the Atlantic coast as seen in LDH. Van Beneden and Powers [285]
have isolated the two alleles and shown that the southern allele is more
thermostable than the northern allele although the kinetic parameters are
generally the same. The one significant difference was in the binding con-
stant for the inhibitor 6-phosphogluconate at temperatures above 30°C. No
studies were performed to see if this difference has any physiological conse-
quences. Similarly, Anthony Zera [315] found differences in thermostability
and other kinetic parameters in two clinally varying PGI alleles from the
water strider Limnoporus canaliculatus and Hoffman [131] has found kinetic
differences between alleles in the sea anemone Metridium senile.

Hemoglobin

The major role of hemoglobin is to bind oxygen from the lungs or gills
where the partial pressure of oxygen is relatively high, to transport it to
regions of low oxygen partial pressure, and to release it in these areas for
use by the cells.

The oxygen-binding properties of hemoglobin that make all this hap-
pen are illustrated in Figure 1.7. There are two important things to note
about this graph. The first is that the curves are sigmoidal. This prevents
hemoglobin from releasing oxygen continuously as it moves through the
oxygen partial pressure gradient in the arteries. Rather, it holds onto oxy-
gen until the partial pressure drops below a critical value before releasing
it. The nonlinear binding of oxygen is called cooperativity since the binding
of the first molecules facilitates the binding of subsequent molecules. The
partial pressure of oxygen at which hemoglobin is 50% saturated, PSQ, is
called its oxygen affinity.

The second important aspect of this curve is the shift to the right as
the pH is lowered. This is called the alkaline Bohr effect or, more often,
simply the Bohr effect. The Bohr effect facilitates the release of oxygen in
regions of low pH—frequently due to the buildup of lactic acid or carbon
dioxide—signaling the need for oxygen. Various anions, including chloride,
phosphate, D-2,3-bisphosphoglycerate (DPG), and inositol hexaphosphate
(IHP), can exert a strong influence on the Bohr effect. Much of the variation
in the properties of hemoglobins from different species have to do with the
binding properties of these molecules.

Hemoglobin is a tetramer composed of two alpha chains and two beta
chains. In humans and many mammals the alpha and beta chains are



19

Figure 1.7. Oxygen affinity curves for human hemoglobin. The pH is indicated by
the number next to each curve. Redrawn from [54].

made up of 141 and 146 amino acids, respectively. Each chain contains a
histidine that is bound to a heme group, a porphyrin ring with an iron atom
that can bind a single oxygen molecule. Since each subunit has one heme
group, each hemoglobin molecule can bind four oxygen molecules. X-ray
crystallographic studies indicate that the molecule should be envisioned as
made up of two fairly rigid a/3 dimers that rotate with respect to each other
by about 15 degrees when the molecule changes from the deoxy to the fully
oxygenated state.

Cooperativity, the property yielding the sigmoid oxygen affinity curve,
is due to configuration changes that occur in hemoglobin as oxygen is bound
or released. At any instant in time, all four subunits of a hemoglobin
molecule are in one of two states: The T (for Tense) state, which has a
relatively weak affinity for oxygen, and the R (for Relaxed) state, which has
a strong affinity. The equilibrium for the two states is strongly in favor of T
when no oxygen is bound and strongly in favor of R when all four oxygens
are bound. The shift from T to R usually occurs when two or three oxygen
molecules are bound. As the partial pressure of oxygen increases, the first
couple of oxygen molecules bind reluctantly because the hemoglobin is in
the T state; when two or three are bound, the configuration changes to the
R state allowing the final one or two oxygens to bind rapidly giving rise
to the sigmoidal oxygen affinity curve. There is obviously a lot of room
for evolutionary adjustment of oxygen affinity through alterations of the
binding constants of oxygen to the T and R states or through changes in
the equilibria constants for the T-R transitions.

The mechanistic explanation for the Bohr effect is more controver-
sial [129,243]. There are two competing models. The simpler model at-
tributes the Bohr effect to relatively few salt bridges between pairs of polar
amino acids on the surface of the molecule [237]. Under this model the

Examples of microadaptations
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bridge between the final histidine in the beta chain (His /J146) and aspartic
acid /394 accounts for up to 50% of the Bohr effect.

The competing model spreads the Bohr effect over many more amino
acids [248] including most of the histidines. This view is supported by
both NMR (nuclear magnetic resonance) studies [129] and an electrostatic
model [205]. Much of the confusion stems from the difficulty of attributing
NMR resonances to particular amino acids and from the confounding effects
of buffer conditions. Under some experimental conditions, for example, the
contribution of His /3146 to the Bohr effect is reduced to only 5% even
though the total Bohr effect is not diminished at all [129].

The outcome of this highly technical debate will be of no small interest to
evolutionists. Consider that the Bohr effect is but one—albeit an important
one—attribute of the hemoglobin molecule. If a large fraction of the charged
surface amino acids is shown to contribute to the effect, then it becomes
less likely that substitutions of one polar amino acid for another will be
inconsequential to the functioning of the molecule. Should other attributes
also be due to effects of a similar number of amino acids, then we must
conclude that changes in most amino acids will have a palpable affect on
the molecule's properties.

The usual picture of the hemoglobin molecule is one where relatively
few amino acids participate in functionally important activities such as lig-
and binding or determining the tertiary structure, and many more that
are merely filling space in alpha helices [236]. The latter amino acids are
free to evolve under the mild constraint that the amino substitutions are
conservative, which means that they do not appreciably alter the polarity
or the space occupied by the previous amino acid. Examples would in-
clude switches between glutamic and aspartic acids or between leucine and
isoleucine.

In fact, most of the amino acid substitutions that have occurred in
hemoglobin are conservative [54]. Some sites are invariant throughout the
evolution of myoglobin and hemoglobin, whereas others change very rarely.
Most of the latter have been shown to be critically involved in either the ter-
tiary structure, the binding of the heme group or, in the case of hemoglobin,
the contact between the subunits [54]. This supports the maxim that func-
tionally important amino acid sites tend to evolve very slowly.

There are many examples of vertebrate hemoglobin adaptations to dif-
ferent life styles and environments (reviewed in [130,236,240,303]). Even
among mammals, there are substantial differences in many properties of
hemoglobins such as oxygen affinity (e. g., larger mammals tend to have
higher oxygen affinities [251]), Bohr effect (e. g., larger animals have a
smaller Bohr effect [242]), and ligand binding (e. g., DPG lowers oxy-
gen affinities in most mammals but not cats, ruminants or lemurs [251]).
In most cases, these adaptations have been uncovered by comparisons of
species that are distantly related. Such species tend to differ by as many
as 20 or 30 amino acids, making it difficult to investigate the contributions
of individual amino acids to the adaptation. Perutz, in his fascinating re-
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view of this area [236], concludes that most of these adaptations may be
attributed to very few of the amino acid substitutions while the remaining
substitutions, he feels, are neutral.

One way to find support for the opposite point of view—that most
amino acid substitutions have some adaptive significance—is to choose at
random species whose hemoglobins differ by only a few amino acids and
to attribute some adaptive significance to these changes. If this approach
usually succeeded, we would eventually be persuaded that most amino acid
substitutions are important. However, as an experimental approach this
is far from satisfactory. While we may be able to find small functional
differences between hemoglobins of closely related species, it is unlikely that
we would be able to discover the environmental differences that selected for
the altered function. Presumably, this is why such studies do not appear
in the literature.

Alternatively, we could examine species from environments that differ
in such a way as to suggest the adaptive changes that should occur in
hemoglobin, and check to see if they do, in fact, occur. The obvious en-
vironmental property that should elicit adaptive changes in hemoglobins
is the partial pressure of oxygen. Indeed, there is an extensive literature
on the adaptations of hemoglobins in creatures living at high altitudes,
underground, and under water.

Since at least 1936 [114] we have known that the blood of species living
at high altitudes has a higher oxygen affinity than that of their lowland
relatives. These species also exhibit an increased resistance to hypoxia (see
[238]). The molecular bases for the adaptation can include a higher oxy-
gen affinity of hemoglobin itself, a higher titer of hemoglobin, a lowered
concentration of ligands, such as DPG, that reduce the oxygen affinity of
hemoglobin, or a reduced sensitivity of hemoglobin to these ligands [238].
In addition, some species have evolved elaborate cascade mechanisms with
multiple hemoglobins that differ in their oxygen affinities to, in effect, hand
down the oxygen from one component to another [304]. Thus, it would be
natural to expect that closely related species living at different altitudes
might exhibit microadaptations in their hemoglobins in the direction that
the highland species have increased oxygen affinities. In fact, there are
several such examples in the literature.

There is a remarkable example of parallel evolution in the hemoglobins
of the barheaded goose (Anser indicus) which lives above 4000 meters in
the Himalayas (and flies above 9200 meters to get over Mt. Everest) and
the Andean goose (Chloephaga melanoptera) which lives at 6000 meters in
the Andes. Ducks and geese usually have two hemoglobins in the adult,
hemoglobins A and D. The two hemoglobins have the same /3 chain but dif-
ferent a chains, aA and a°. The blood of the barheaded goose exhibits a
higher oxygen affinity when compared to its close lowland relative, the grey-
lag goose (A anser) and the barheaded goose itself exhibits an increased
resistance to hypoxia. This is due to properties of the hemoglobin molecule
itself rather than to concentrations of intracellular ligands or hemoglobin
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liters [238]).
A comparison of the amino acid sequences shows that the beta globins of

the barheaded and greylag geese differ by one amino acid (/3125 glu—*asp)
[224], the aA chains by three [224], and the a° chains by four [123]. When
these substitutions are examined in light of the three-dimensional structure
of hemoglobin, one change, a'4119 pro—*ala, stands out as a major contrib-
utor to the increase in oxygen affinity. The effect is thought to be due to the
disruption of the van der Waals contact that all9 pro usually forms with
/355 leu, shifting the equilibrium in favor of the R state and increasing the
oxygen affinity [123]. This is supported by the fact that only hemoglobin
A shows an increase in oxygen affinity and that abnormal hemoglobins in
humans that break similar contacts tend to shift the equilibrium in favor
of the Estate [236].

A second substitution, a'4 63 ala—>ser, is predicted to cause a large
change in the tertiary structure by moving the E and B helices apart by
1.5A, thereby making an additional contribution to the increased oxygen
affinity [224]. The difference in the oxygen affinities between the barheaded
and greylag geese is amplified about tenfold in the presence of inositol pen-
taphosphate. The substitutions at both aA119 and /3125 are thought to
contribute to this altered sensitivity [224].

The Andean goose is actually a closer relative of the mallard duck than
of some other goose. When the sequences of the mallard and Andean goose
were compared, it was discovered that they differed by five amino acids
in the J3 chain and five in the aA chain [122]. (The aP chain has not
been sequenced.) Remarkably, one of the substitutions is /355 leu—>ser, a
change that disrupts the very same van der Waals contact that is disrupted
by the substitution 0:̂ 119 pro—»ala in the barheaded goose. Since this
is a change in the /9 chain, both hemoglobins A and D demonstrate an
increased oxygen affinity. This is a very nice example of parallel evolution
of function—increased oxygen affinity—and mechanism—changed van der
Waals contact—by different amino acid substitutions.

The adaptive changes in the hemoglobins of these high altitude geese
are attributed to three substitutions of eight in the barheaded goose and
one often in the Andean goose. As far as I have been able to determine, no
careful studies have been performed to try to identify functional changes
that may be attributed to the other substitutions. It would be very inter-
esting to change, say, greylag goose hemoglobin into barheaded hemoglobin
one mutation at a time via site-directed mutagenesis. With each change,
a careful analysis of the oxygen affinity, ligand binding, and Bohr effect
should tell us whether these changes do alter the function of the molecule.
It would be of particular interest to see if the disruption of the aA 119-/355
contact causes some auxiliary changes that are modified by some of the
other amino acid substitutions.

There are a group of European and African vultures that often ascend
to extraordinary altitudes. A rather unlucky RiippelPs griffon (Gyps ruep-
pellt), for example, was hit by a commercial airliner over the Ivory Coast
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Table 1.1. Amino acids from the a globins of the black vulture (BV), the white-headed
vulture (WV), and Riippell's griffon (RG) at positions that show variation between these
species.

Amino acid site
Locus
BV
WV
RG
RG
BV
RG
RG

aA

aA

aA'
aA

& WV a°
aD'
aD

12
thr
thr
asn
asn
ala
thr
thr

34
ile
ile
ile
thr
ile
ile
ile

38
pro
pro
pro
pro
pro
gin
gin

104
cys
cys
cys
cys
cys
asn
cys

123
ala
ala
ala
ala
ala
ser
ser

137
thr
ser
thr
thr
thr
thr
thr

of Africa at 36,000 feet! The hemoglobins of several of these vultures in-
cluding Ruppell's griffon, the black vulture (Aegypius monachus), and the
white-headed vulture (Trigonoceps occipitalis) have been sequenced and
their oxygen-binding properties examined [124,125,126].

All three species have high overall oxygen affinities due, in part, to amino
acid substitutions at positions 34 and 38 in their a chains. This region
of a globin, the respiratory box, is involved in aifli and a.\fii contacts.
Substitutions in the respiratory box tend to have a marked effect on the
relative concentrations of the T or R states.

All three vultures have proline at position aA3& rather than glutamine
as is usual for birds (Table 1.1). Black and white-headed vultures also have
proline at aD38, as does one of the two D hemoglobins of Ruppell's griffon
(see below). All three species have identical ft chains. The white-headed
and black vultures also have identical a° chains. The aA chain of the white-
headed vulture differs from that of the black vulture by a single substitution,
a 137 thr—»ser, but the functional consequences of the substitution are not
yet understood. It has been suggested that the substitution may affect the
neighboring heme contact of a!36.

Ruppell's griffon hemoglobin is particularly interesting as it contains
four components, A, A', D, and D', which are thought to be due to du-
plications in both the aA and aP loci. Hemoglobins A and A' differ from
each other by a single amino acid substitution a34 ile—»thr. Paradoxically,
this substitution lowers rather than raises the oxygen affinity as might be
expected given the high-altitude nights of this bird. In addition, the two aA

chains differ from that of the black vulture by only one other substitution,
aA!2 thr—>asn.

Both D and D' have the substitution aD38 pro—>gln, which increases
oxygen affinity through the stabilization of the R configuration. They also
share the substitutions aD12 ala-+thr and 0^123 ala->ser. The former site
varies quite a bit among birds, but the latter contains alanine in all birds
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except the starling, tree sparrow, and goshawk, each of these containing
serine [126]. No functional significance is currently attributed to these
two substitutions, although the parallel evolution of a°123 is intriguing.
The two D chains differ by aD123 cys—>asn, but no functional significance
has been attached to this change either. The oxygen affinities of the four
components are such that D/D' is highest, A' is next, and A has the lowest
affinity. Thus, the griffon has evolved a cascade system where oxygen may
be passed down through three stages. This may well account for the fact
that the griffon is found flying at higher altitudes than either the white-
headed or black vultures. Why a vulture should want to fly at 36,000 feet
remains a mystery.

The microadaptations in the RiippelPs griffon is particularly notewor-
thy, with two substitutions of four exhibiting functional consequences that
appear to be adaptations to flying at extremely high altitudes. However,
this work is quite new so there are a few loose ends. Population samples
should be examined from all three species to be sure that some of the "sub-
stitutions" are not polymorphisms. It would also be valuable to compare
the properties of hemoglobin A in the black and white-headed vultures and
the two D hemoglobins in the griffon. Such comparisons, if done care-
fully, might uncover some functional changes that are not predicted by the
standard three-dimensional models.

The evolution of hemoglobins between populations of the deer mouse,
Peromyscus maniculatus, follows a pattern similar to that we just described
between species of birds. Deer mice are remarkable in their ability to live
at different altitudes. The subspecies P. m. sonoriensis, for example, may
be found below sea level in Death Valley, California, and at 4300 meters
in the adjacent Sierra Nevada and White Mountains [267]. At 4300 meters
the partial pressure of oxygen is about 56% that at sea level, a difference
that is known to cause hypoxia when experienced by lowland animals.

The evolution of the oxygen transport system within P. maniculatus is
extraordinarily complex. This is due, in part, to the fact that there are
two tightly linked adult a-globin loci and three adult /3-globin loci. Both
a-globin loci and one of the /?-globin loci are highly polymorphic, producing
a bewildering array of hemoglobin molecules within the species. In addition
to variation of the hemoglobin itself, deer mice exhibit variation in other
aspects of the molecular environment of the erythrocyte as is typical of
mammals living at different altitudes.

There is a strong positive correlation between oxygen affinity and al-
titude when subspecies are compared, but this correlation is not observed
within subspecies. Snyder [267] argued that deer mouse migration rates
are probably high enough to swamp out any local differentiation within the
steep altitudinal gradients that are typically occupied by single subspecies,
but are low enough between subspecies to allow the pattern to emerge. It
is difficult to sort out the contributions of particular alleles to this pattern
because of the large number that are segregating. To show that there is
some effect, Chappell and Snyder [39] focused on a particular classification
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of haplotypes of the a-globin loci that was suggested by the extraordinarily
high levels of linkage disequilibrium between these two loci.

The two a-globin loci are called Hba and Hbc. The alleles at each of
these loci fall into two classes based on isoelectric focusing. These are
called the a° and a1 alleles at Hba and the c° and c1 alleles at Hbc. The
most frequent haplotypes in natural populations are alcl and a°c°. The
"recombinant" types make up less than 0.015 of all haplotypes, on average.

As with oxygen affinity, there is a strong positive correlation between
the frequency of the a°c° haplotype and altitude across subspecies, but not
within subspecies. (There may be differentiation within subspecies that is
masked by the lumping of alleles into just two classes.) The frequency of
a°c° is nearly one in high-altitude subspecies and nearly zero in lowland
subspecies. Thus, the geographic pattern is not at all subtle.

Oxygen dissociation studies showed that the PSO values for the three
genotypes were ranked as expected [39]:

These studies used genotypes from a number of different subspecies. The
determinations of P$Q used intact erythrocytes, so Chappell and Snyder had
to go to some lengths to show that the effects were not due to intracellular
concentrations of DPG.

The maximum oxygen consumptions for the three genotypes were also
determined at two altitudes for mice subjected to stress through exercise
or cold temperatures and were shown to differ in a rather interesting pat-
tern. The maximum oxygen consumption was highest for a°c0/a°c0 mice
subject to either form of stress when the experiments were performed at
3800 meters, but was highest for a1c1/a1c1 when they were performed at
340 meters.

The sequences of these alleles have not been determined so we cannot
know at this time the number of amino acid differences that are respon-
sible for the functional differences. The importance of this study is its
demonstration that the same sort of functional differences that we observed
between hemoglobins of closely related species may also be seen between
alleles within a single species. Based on these observations, there is no rea-
son to think that the processes that lead to variation between species are
any different from those that lead to variation within species.

Osmoregulation

Many marine invertebrates adjust their osmotic pressures to match those of
the surrounding waters by changing the concentrations of intracellular free
amino acids. The most commonly used amino acids are alanine, proline,
and glycine; some other amino acids are also used. Coastal species often
live in environments with both temporal and spatial fluctuations in salinity.
Such species have the ability to change their osmotic pressures in response
to these fluctuations by increasing or decreasing the activities of enzymes
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involved in the production of osmoregulatory amino acids. These same en-
zymes are good candidates for genetically based variability in activity that
is maintained by natural selection. Indeed, there are two striking examples
of enzyme polymorphisms that appear to be involved with adaptations to
salinity changes.

The copepod Tigriopus californicus lives in splash pools along the west
coast of North America. These pools are subject to extraordinary fluctu-
ations in salinity due to evaporation in dry periods and freshwater runoff
in wet periods. Tigriopus has been shown to be able to tolerate salinities
in the laboratory ranging from 15% to 300% that of seawater [32]. When
a change in salinity occurs, the hemolymph osmotic pressure changes first
followed by the cellular pressure. Within 3 hours after a salinity change, the
free intracellular concentrations of proline, alanine, and glycine vary in the
appropriate directions: increases for hyperosmotic stress and decreases for
hypoosmotic stress. The response can continue for up to 24 hours, although
at a much reduced rate.

The final step in alanine synthesis is catalyzed by glutamate-pyruvate
transaminase (GPT). This enzyme, which is polymorphic in Tigriopus pop-
ulations, takes the amino group from glutamate and sticks it on pyruvate
to make alanine and a-ketoglutarate. I mention this because pyruvate is
an end product of glycolysis and a-ketoglutarate is an intermediate in the
citric acid cycle. Thus, GPT should not be thought of as an enzyme that
is sitting in some remote corner of metabolism.

Burton and his colleagues have devoted a great deal of effort to under-
standing the role of the GPT polymorphism in the adaptation of Tigriopus
to fluctuating salinities. In a population in Santa Cruz, there are two com-
mon electrophoretically distinguishable alleles, GPTF and GPTS [33]. The
frequency of the GPTF allele varies from 0.2 to 0.3 in this area. A simple
experiment to check for a correlation of genotype with intracellular ala-
nine concentrations showed that after 4 hours of hyperosmotic stress, the
intracellular concentrations of alanine were 19.68, 9.88, and 6.57 parts per
thousand for the genotypes GPTFF, GPTFS, and GPTSS, respectively.
The specific activity of GPTFF is about 1.46 times that of GPTSS in the
alanine synthesizing direction. (It is 1.11 times as active in the alanine ca~
tabolizing direction.) Thus, the increased concentration of alanine is likely
to be due to the effects of the GPT genotypes. In addition, GPTSS larvae
exhibit a significantly higher mortality under hyperosmotic stress than do
GTpFS or GTPFF larvae in the laboratory.

Unfortunately, more detailed kinetics are not available. With the avail-
able data, it is impossible to know if the specific activity differences are due
to the amino acid differences between the alleles or to differences in enzyme
concentrations.

Koehn and his colleagues at Stony Brook have thoroughly studied the
role of aminopeptidase-1 (called LAP from its former name, leucine amino-
peptidase) in osmoregulation in the mussel Mytilus edulis. Like GPT, LAP
catalyzes a reaction that results in the production of free amino acids used
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to adjust the mussel's osmotic pressure. LAP accomplishes this by digest-
ing N-terminal amino acids from oligopeptides. There are five polymorphic
alleles in M. edulis populations, three of which are relatively common. Al-
though there are physiological and fitness differences correlated with LAP
genotype, it appears that kinetic differences between alleles can account for
only a small part of this [171]. In particular, one of the common alleles,
Lap94, has a higher fccat than the other two, Lap96 and Lap98. Allele Lap94
is more frequent in regions with higher salinities and individuals with this
allele suffer a greater mortality at lower salinities. All this suggests that
Lap94 plays some role in adapting M. edulis to life at the higher salinities
of the open ocean. There is much more to the Mytilus story than suggested
by this small abstraction. Much of this, which is not directly applicable to
the theme of this section, may be found in [127].

Insulin

The previous examples involved amino acid changes that modify kinetic or
thermostability properties of enzymes. Insulin provides a nice example of
evolution for another aspect of proteins: the hydrophobicity of the exterior.

Insulin plays a key role in the regulation of glucose metabolism in ver-
tebrates. Insulin begins life in the j3 cells of the islets of Langerhans as
preproinsulin, a protein subdivided into three regions: a signal peptide fol-
lowed by the B, C, and A peptides. The signal peptide is cleaved off in the
rough endoplasmic reticulum to give proinsulin. Proinsulin is packaged in
storage granules along with proteases that remove the C peptide to produce
insulin as the granules mature. (The A and B peptides are held together by
disulfide bonds so the cleavage doesn't result in two unattached peptides.)

In most mammals, insulin associates into hexamers within storage gran-
ules. The formation of these hexamers is a two-step process. Two monomers
come together to form a dimer, then three dimers form a torus with two
zinc atoms in the interior. The zinc atoms bond to the histidine at the
tenth position in the B chain.

The hystricomorph rodents, guinea pigs and friends, have departed from
this pattern. They store their insulin as monomers rather than as hexamers.
The reason for this is not understood, but the evolutionary adjustments
that accompany the change make a fascinating story as told by Blundell
and Wood [19].

The story focuses on a patch on the surface of the insulin molecule where
the monomers are held together by hydrophobic bonds. In the changeover
to the monomeric storage form, this patch must become hydrophilic so
that the monomers will remain apart. The most important substitutions
responsible for the disruption of the hexamer storage form are shown in
Figure 1.8, which uses pig insulin as a basis of comparison. The substi-
tutions indicated in the figure are some of the ones that would be needed
to change pig insulin into guinea pig insulin. Obviously, guinea pigs did
not evolve from pigs (despite the suggestive names). The ordinarily slow
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Figure 1.8. A projection of the major features of the pig insulin molecule onto two
dimensions. Some of the amino acid changes that separate the pig from the guinea
pig are indicated. Modified from [19, Fig. 1],

and conservative evolution of insulin in mammals and the very rapid evolu-
tion in the hystricomorphs allows us to use this comparison without being
seriously misled.

Of the substitutions illustrated in Figure 1.8, none is more important
than BIO his—>asn since this is the histidine that binds to zinc to stabi-
lize the hexamer. Of the hystricomorphs that have been sequenced, two
(guinea pig and cuis) have asparagine at position BIO and two (coypu and
caisiragua) have glutamine. Two other hystricomorphs, the African por-
cupine and the chinchilla, have retained the histidine even though they
store insulin as monomers. Interestingly, these two also show much less
of an acceleration in their rates of evolution than the four other hystrico-
morphs [12].

Three other amino acid substitutions have occurred within the hy-
drophobic dimer contact sites B14, B17, and B20. These changes are to
larger and more hydrophilic residues. The substitutions at B4 and A4 are
to larger and more basic amino acids. It should be emphasized that all
of these substitutions are radical by almost any criterion. They all oc-
cur on the surface of the molecule and all contribute to an increase in the
thermodynamic stability of the molecule in an aqueous medium [19].

Of the remaining 12 differences that separate the pig and the guinea
pig, few would be called conservative. Not unexpectedly, there are many
functional differences between these molecules as well. The most striking
difference is the unusually low potency of guinea pig insulin even though
their insulin receptors appear to be "normal." That is, their receptors bind
more tightly to insulin from other mammals than to guinea pig insulin (as
do the receptors from other mammals) [272].

Steiner et al. note that there are quite a few strange things about the
role of insulin in guinea pigs that may be correlated with the accelerated
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evolution [272]. Among these are a higher level of insulin in the blood, a
higher density of insulin receptors, greater growth factor activity, greater
interactions with platelet-derived growth factors, and higher levels of IGF
II in adults. Thus, it may well be that the shift from hexamer storage to
monomer storage was part of a more general evolutionary shift in insulin
function. In fact, since guinea pig glucagon also has an altered function,
Seino et al. [252] feel that the entire gastro-entero-pancreatic hormonal
system in hystricomorphs has undergone a major evolutionary change in
the New World. They also point out that a similar rate acceleration is
seen in the insulin of the New World owl monkey. They even speculate
that there could be a common environmental factor responsible for both
accelerations, although none has been identified.

Insulin was brought into the discussion at this point for two reasons.
One was as an illustration of the evolution of surface properties of a pro-
tein. The other was to introduce the idea that an acceleration in the rate
of evolution of a protein may often be used as an indicator that important
adaptive changes have occurred. Although a more complete discussion of
this will be postponed until the chapter on the molecular clock, it is worth-
while at this point to give some of the evidence that the rate of evolution
is, in fact, higher in the hystricomorphs.

Among nonhystricomorph mammals, the rate of evolution of insulin is
about 4.4 x 10~10 amino acid substitutions per site per year [52, Table
1]. This is about one-third the rate of hemoglobin suggesting that insulin
should be viewed as a relatively slow-evolving protein. For example, pig
and mouse I* insulins differ by only 4 amino acids even though these species
have been separated for approximately 70 million years. By contrast, pig
and guinea pig insulins differ by 18 amino acids, even though they have
been separated for exactly the same length of time.

Beintema and Campagne [12] have used parsimony techniques to infer
an insulin evolutionary tree for rodents and the pig. An abbreviated ver-
sion is shown in Figure 1.9. The tree is based on amino acid sequences
but the inferred number of substitutions along each branch are nucleotide
substitutions. The branch lengths are drawn in proportion to the number
of substitutions rather than in proportion to the length of time each lin-
eage represents. This gives a dramatic visualization of the speedup in the
hystricomorphs. Consider, for example, that the time from the junction of
the pig and mouse branches to the tips of all of the branches is about the
same. There is one inferred substitution on the pig lineage and 32 inferred
substitutions from the rodent-pig split to the casiragua or about a 30-fold
increase in the rate of amino acid substitution. Using an approach that does
not involve parsimony, Kimura [160] estimated that the hystricomorph rate
is more than 10 times the average rate in mammals.

It should be noted briefly that an alternative reason for the speedup in
the evolutionary rate of insulin in the hystricomorphs is a "relaxation of

*Mice and rats have duplicate insulin genes.
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Figure 1.9. An unrooted maximum parsimony tree for insulin in rodents and the pig.
The lengths of the branches and the number are the inferred numbers of nucleotide
substitutions on the branches. The hystricomorph rodents are in the region surrounded
by the dashed line. Modified from [12, Fig. 2].

constraints" that accompanies the shift from the hexamer to monomer stor-
age forms [162]. This scenario claims that the substitution of asparagine
for histidine at position BIO is an instance of the fixation of a deleterious
allele by genetic drift. For some reason, the consequent changeover to the
monomer storage form makes many previously constrained sites neutral,
allowing rapid evolution. While this might be a plausible suggestion in
the absence of other data, the fact that the amino acid substitutions made
the exterior more hydrophilic and the fact that there are numerous func-
tional consequences of the amino acid substitutions in this very important
hormone make this hypothesis untenable.

Lysozyme c

Our final example, lysozyme c, is like insulin in that we will see an ac-
celeration in the rate of evolution associated with a change in function of
a protein. Also like insulin, the number of substitutions involved is fairly
high, so it will not be possible to attach significance to all of them.

Lysozyme, an enzyme that attacks peptidoglycan in the cell walls of bac-
teria, is part of the antibiotic arsenal of many animals. It is found, among
other places, in tears and saliva of mammals and in the whites of bird eggs.
Artiodactyls (cows, deer, and the like) and leaf-eating monkeys (such as
the langur) have independently recruited lysozyme as a means of digesting
bacteria that flow from their rumins into their stomachs. Presumably, this
allows them to retrieve some of the nutritional value that is contained in
the bacterial cells. Lysozyme has independently evolved in cloven-hoofed
mammals and langurs to resist digestion and to function in the low pH,
protease-rich environment found in their stomachs. Some remarkable par-
allels in the amino acid substitutions that have occurred in the two groups.
D. E. Dobson, Jacqueline and Pierre Jolles, Caro-Beth Stewart and Allan
Wilson are the central figures in the work on parallel evolution in lysozyme
although several others from Wilson's lab have contributed as well.



Figure 1.10. The left tree gives the maximum parsimony estimates of the number of
aminoacid substitutions in lysozyme among artiodactyls (modified from [146, Fig. 4]).
The right tree gives the number of amino acid substitutions in lysozyme from primates
(modified from [273, Fig. 4]).

We will look at the evolution of lysozyme in artiodactyls first, using
this as a basis for examining evolution in the langurs. The history of amino
acid substitutions, as inferred by parsimony techniques [146], is given in the
left side of Figure 1.10. The most important thing to note is the apparent
acceleration in the rate of evolution of lysozyme in the first half of the
ruminant lineage followed by a deceleration in the second half. The rate
along the AB branch (the early part of ruminant evolution) is about 1.16
substitutions per million years or about three times the typical mammalian
rate of 0.4 substitutions per million years. The average rate along the BC
branch (the later part of ruminant evolution) is about 0.2 substitutions per
million years or one-half the typical rate.

As further support for rate variation, Jolles et al. [146] noted that for
five other proteins the ratio of the number of substitutions on branch AB to
those on branch BC was 0.9 as compared with about 6 for lysozyme. The
acceleration occurs in the same branch where lysozyme was recruited for use
in the stomach (assuming that the recruitment did not occur independently
in each ruminant lineage). With some 34 amino acid substitutions on this
branch, it is unlikely that we will ever know which ones play a role in the
adaptation for life in the stomach and which ones, if any, are neutral.

Jolles et al. [146] attempted to identify the functionally most important
substitutions. They began by summarizing those properties of lysozyme
that are shared by deer and cows but are distinct from those of the pig. The
assumption is that these properties are the very ones that adapt lysozyme
to function in the stomach. The most important of these are as follows.

The pH optimum of ruminant lysozyme is lower (a narrow profile
centered at 5) than that of the pig (a broad profile from 5 to 8).

The isoelectric points of cow and deer are both close to 7 while that
of the pig is about 10. This appears to support the general adaptive
strategy that enzymes that function at lower pHs should be less basic.

The number of aspartyl and amide bonds is reduced in the ruminants
relative to the pig (17-18 vs. 23-25). This is thought to confer stability
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at a lower pH. The pig asp-pro bond at sites 102 and 103, which is
known to be sensitive to acid, is not present in the ruminants.

The number of arginine residues is reduced in the ruminants (3-4,
down from 7-9 in the pig). This is thought to make the enzyme more
resistant to destruction by diacetyl, a common product of fermenta-
tion, or to attack by pancreatic trypsin.

By examining the placement of the amino acid substitutions on the three-
dimensional structure of lysozyme, Jolles et al. conclude that at least 21 of
the substitutions contribute to these adaptations.

The evolution of lysozyme in langurs is summarized in the right side of
Figure 1.10. There appears to be an acceleration in the rate of evolution
here as well. The branches leading to the langur and the baboon cover
the same period of time, yet the number of amino acid substitutions on
the langur branch (10) is 2.5 times that on the baboon branch (4). As
with the ruminants, this acceleration is associated with the recruitment of
lysozyme for use in the stomach. The most extraordinary aspect of this
story, however, is the fact that five of the ten substitutions on the langur
lineage are to arnino acids that are found in the comparable positions in the
cow lysozyme [273]. This is the most striking case of convergent evolution
at the molecular level of which I am aware.

Equally intriguing is the fact that two of the three substitutions on the
short branch leading from the human-monkey split to the langur-baboon
split are also to the same amino acids as found in the cow suggesting that
lysozyme may have evolved to some purpose in this lineage that preadapted
it, in part, for use in the stomach of leaf-eating monkeys. In support of
this, the baboon and langur lysozyrnes both exhibit a pH dependency that
is nearly identical to that of the cow. It has been suggested that the sub-
stitution arg—>ser at position 101, which is in the polysaccharide binding
site, is a likely candidate for the downward shift in pH optimum [273].

The five substitutions in the langur lineage that converge to the cow
lysozyme are on the surface of the molecule, well away from the active
site. Three of these are from arginine, as are two of the nonconvergent
substitutions. This is concordant with the ruminant pattern where the
loss of arginines was thought to be adaptive. Three of the arginines are
changed to lysines, whereas two are changes to glutamic acid. These latter
two are interesting because glutamic acid is two mutational steps away
from arginine. The contributions of these substitutions to the new role
of lysozyme in the gut of langurs has not been examined directly. Our
inference that these substitutions are functionally important is based on
the acceleration of rates coupled with the parallel evolution with the cow
lysozyme.
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Chemostat studies

The results of a series of chemostat studies of selection for allelic forms of
glycolytic enzymes in Escherichia coli by Dykhuizen and Haiti and their
colleagues at Washington University stand in stark contrast to the examples
examined thus far. Their basic approach is to engineer E. coli to produce
two strains differing only in their alleles for a glycolytic enzyme and a neu-
tral marker for T5 (a bacteriophage) resistance. The coupling of an enzyme
allele with T5 resistance makes it possible to identify the genotype of a par-
ticular cell without having to resort to electrophoresis. As a consequence,
they can follow the frequency of an allele in a chemostat with an accuracy
of about 5% with a relatively small commitment of time.

Dykhuizen and his colleagues have examined naturally occurring, elect-
rophoretically detectable alleles of five enzymes: phosphoglucose isomerase
(PGI), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate
dehydrogenase (6GPD), phosphogluconate dehydrase (edd), and 2-keto-3-
deoxygluconate aldolase (eda). The latter two, while not mainstream gly-
colytic enzymes, form a short pathway that allows glucose molecules that
took a wrong turn into the pentose shunt to return forthwith to glycolysis.

The fitnesses of alleles from nature were compared with each other and
to the allele found in the K12 strain of E. coli by following their relative
frequencies over a 100-hour period in chemostats in which glucose or some
other sugar is the limiting resource. The design allows the detection of
fitness differences between alleles of approximately 1% in the earlier studies
down to about 0.4% in the later studies.*

In addition to measurements of fitness differences, kinetic studies were
also undertaken for some of the alleles. Thus, these experiments are similar
to the ones reported earlier, differing only in that the objects of study are
kinetics and fitness rather than kinetics and physiology. The results, in a
highly condensed form, may be found in Table 1.2. What stands out in this
work is the general failure to identify kinetic differences between alleles and
the apparent neutrality of alleles when the competition occurs in glucose-
fed chemostats.' On the other hand, when sugars were chosen to feed into
the pathways occupied by the locus under study, or when mutants were
introduced to the same end, selective effects were observed in 9 of 24 cases
(37.5%).

The most distressing aspect of these results is their failure to demon-
strate kinetic differences between many of the electrophoretically distin-
guishable alleles. This disrupts our emerging generality that most alleles
from natural populations differ kinetically. It could be that the examples
from the previous subsections are a nonrandom collection of loci and that
the E. coli study reflects a more typical situation. This possibility will be
taken up in the next subsection. Here we will consider another possibility:
the kinetic studies of E. coli enzymes were not performed with sufficient

In the papers the resolution is given in units of hours rather than generations as
we have done here.
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Table 1.2. Measurable effects of allelomorphs of E. coli on kinetic parameters and
fitness. The alleles column is the number of naturally occurring strains used in the
studies. The left number in the kinetics column gives the number of strains that could
be distinguished from the K12 allele based on enzyme kinetics. The right number is the
number of strains that were examined. The left number in the fitness column gives the
number of alleles with fitness effects large enough to be measured in a glucose-limited
chemostaL (For 6PGD only six of the seven al leles were examined.) The right number
is the number of alleles with measureable fitness effects in a chemostat with either a
sugar other than glucose or a mutation meant to exaggerate fitness differences. ND
means "not determined." The references refer to the original works, most of the data
was obtained from [119].

Enzyme
PGI
G6PD
6PGD
edd
eda

Alleles
5
6
7
6
6

Kinetic
1/5
0/6
3/4
ND
ND

Fitness
0/1

0/ND
0/3
0/4
0/1

Reference
[60]
[58]
[61]
[59]
[119]

rigor to be reasonably confident that kinetic differences, if present, would
be detected.

The kinetic studies reported in the previous subsections, in the main,
included the following ingredients.

Purified enzymes rather than crude homogenates were used in the
determination of Km, Vmax, and kcat.

Kinetic parameters were measured in both the forward and reverse
directions. This allows a check on the quality of the kinetic data via
the Haldane relationship.

The experiments were performed in a variety of conditions; most im-
portantly, temperature and pH were varied. In addition, different
buffers were explored as certain buffers tend to obscure kinetic differ-
ences.

Each experiment was replicated enough times to allow a proper sta-
tistical comparison of the parameters.

The studies reported by Dykhuizen and his colleagues were not up to this
standard. They were performed on crude homogenates, in one direction,
under one set of conditions, and with, at most, two replicates. As a conse-
quence, it is difficult to assess their power. In one paper it is claimed that
the resolution is about 20% [58], In another, it is reported that a kinetic
difference was found using one lot of buffer but not when a subsequent lot
from the same supplier was used [60]. This inconsistency, which remains
unresolved, should be taken as an indication of the reliability of the kinetic
data.
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I belabor this point only because I am trying to establish in this book
that naturally occurring alleles generally exhibit kinetic differences. The
work of Dykhuizen and his colleagues has been widely cited as evidence
against this point of view. By calling attention to the issue of experimental
rigor, I hope to place the conclusions from the kinetic aspects of the E. coli
studies on hold until proper experiments can be performed.

The failure to find measurable fitness differences under most experimen-
tal conditions should come as no surprise. The chemostat design is simply
too crude to measure very small selective differences. Fitness differences of
the order of 0.4 to 1% must be considered large by almost any standard.
Such differences would characterize neutral alleles only if the effective size
of the population were less than about 250 (the reciprocal of the selection
coefficient). There is no compelling evidence that the effective population
size of E. coli is this small. It would be very hard to reconcile, for example,
the high levels of variation in E. coli populations with this number if the
alleles were, in fact, neutral.

What should be emphasized in these experiments is that some fitness
effects could be uncovered in 35% of the cases when some effort was made
to exaggerate fitness differences by altering the environment or the genetic
background. In this regard, these results are concordant with those of the
previous subsections.

For example, the LDH alleles in Pundulus appeared to have no effect
on lactate levels in resting fish or in fish that were exercising at a temper-
ature where the kinetic differences are insignificant. They did, however,
have effects on fish exercising at temperatures where the kinetic effects
are substantial. Similarly, glucose-limited chemostats at 37°C with all
the appropriate minerals undoubtedly represent a culture condition that
minimizes physiological differences. A more informative design would be
one that varies aspects of the culture conditions including temperature,
pH, sugar type and concentration, flow rate, and other bacterial species.
When one considers the extraordinary environmental fluctuations that E.
coli must experience both within and outside of guts, it is hard to imagine
that glucose-limited chemostats will reveal those selective forces that are
acting in natural populations.

The significance of amino acid substitutions

This parade of examples leaves us with the impression that naturally oc-
curring variation in the primary sequences of proteins, both within and
between species, is likely to have kinetic and physiological consequences.
In this summarizing section we will firm up this impression. In addition,
we will consider some aspects of the physical chemistry of proteins that will
help us to understand why such small changes in the structure of proteins
can have such profound effects. Finally, some speculations on the evolution
of kinetic parameters will be reviewed.

Much of what I hope to accomplish in this book rests on the generality
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that naturally occurring variation in proteins has functional significance.
The effects need not be limited to kinetic parameters of enzymes, but may
include structural and surface properties as well. While the examples in
this section support this view, they cannot be wholly convincing since they
were chosen from a literature in which the publication of negative results
has been repressed. The fraction of investigations that uncover kinetic
differences could be quite low, yet the literature could still be rich with
examples of successes.

There are several ways to circumvent this problem. An experimentalist
could choose at random, say, 10 polymorphic enzymes and perform de-
tailed kinetics on each one. This represents an astonishing amount of work
when one considers that each of the enzymes must be purified and kinetic
evaluations performed under a variety of conditions. Another approach is
to pick a species that receives a fair amount of attention and to see what
fraction of a group of enzymes, chosen by some unbiased criteria, have re-
ports of functional variation. Two obvious candidates are Homo sapiens
and Drosophila melanogaster. While the former would undoubtedly prove
enlightening, that literature is far too vast for the uninitiated. (Harry Har-
ris, who is initiated, once concluded that 60% of a group of 30 polymorphic
loci showed some kinetic differences between alleles.)

Drosophila melanogaster, on the other hand, is a perfect creature for this
purpose. The initial problem is to choose a set of enzymes by criteria that
are not biased with respect to the likelihood of finding kinetic differences.
The enzymes that appeared in the first published survey of electrophor-
etic variation in melanogaster [222] appear to be a good choice. As anyone
working at the time will verify, these enzymes were chosen mainly for tech-
nical or historical reasons, not because of any previous reports of kinetic
variation. Ten loci were used in this study as shown in Table 1.3.

Of the six enzymes for which there are published data, all exhibit kinetic
differences between alleles. I have been unable to find reports for the other
four loci. Note that there are no studies that report a failure to find kinetic
differences. The unreported cases may be cases of unreported negative (or
positive) results or may be enzymes that simply have not received any at-
tention. All of the enzymes that have been studied, with the exception of
esterase-6, are glycolytic or nearly so. Of those that have not been studied,
only xanthine dehydrogenase has a clearly defined role in metabolism sug-
gesting that workers have adopted the reasonable strategy of investigating
only those enzymes that are best known metabolically. Of the six well-
known enzymes that have received attention, all exhibit measurable kinetic
differences. Many of these have physiological correlates as well.

In filling in Table 1.3, I have generally cited the most recent papers for
each enzyme to give the reader an entry into the literature. This does little
justice to the extensive literature that exists for many of these enzymes.
Alcohol dehydrogenase, in particular, could form the basis of an entire
book.

The generality that allelic differences in the primary sequence of proteins
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Table 1.3. A scorecard for the enzymes used in the original electrophoretic survey
of Drosophila melanogaster [222] indicating those polymorphic loci for which
kinetic, stability, or physiologica! differences between alleles have been reported. The
question marks indicate my failure to find any relevant papers. Abbreviations not used
previously are aCPD, alpha glycerophosphate dehydrogenase; Est, esterase; MDH,
malate dehydrogenase; XDH, xanthine dehydrogenase; APh, alkaline phosphatase;
ACPH, acid phosphatase.

Enzyme
6GPD
G6PD
aGPD
ADH
Est-6
MDH-1
XDH
Larval APh
LAP-D
ACPH-1

Kinetic
yes
yes
yes
yes
yes
yes
?
?
?
?

Stability
no
yes
no
yes
yes
yes
?
?
?
?

Physiological
yes
yes
yes
yes
?
?
?
?
?
?

Reference
[16,36]
[16,36]

[208,211]
[121,286]

[306]
[2]

tend to have structural or functional effects cannot help but to make us
uncomfortable. How can changes in one or two amino acids out of the 200
or 300 in a typical protein possibly have any measurable effects? How can
amino acids that are not involved with ligand binding or catalysis have
an effect? The answer appears to rest with the idea that a protein is
a compromise between structural stability and conformational flexibility.
To achieve sufficient flexibility for efficient catalysis, proteins appear to
be remarkably close to denaturation. We first encountered this idea in
Somero's explanation for the evolution of fccat to lower values in warm-
adapted organisms.

Further evidence comes from studies on the physical chemistry of pro-
teins. A common paradigm for protein folding is the reaction

folded ̂  unfolded

whose equilibrium constant is defined

In the right-hand expression, AGU is the difference in free energy between
the folded and unfolded states, R is the gas constant, and T is the absolute
temperature. When one considers the large number of bonds that stabilize
the folded state of an intracellular enzyme, it is natural to expect that the
free energy change will be large.

Remarkably, this is not the case. Typical values for AGU fall within
the range 3-15 kcal/mol under physiological conditions [232]. To calibrate
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this, consider that the energy changes associated with weak bonds are in
the range of 1-7 kcal/mol. Thus, the addition or subtraction of a single
weak bond could cause a protein to shift from being mostly folded to mostly
denatured.

The explanation for the small free energy change rests with the large
entropic cost of folding. A folded protein is in one of a very large number of
possible states, the vast majority of which represent denatured states. The
energetic cost of achieving this improbable state nearly offsets the energy
of the weak bonds holding it together. For example, a net free energy
change of 5 kcal/mol may represent a favorable energy of 300 kcal/mol
from the weak bonding and an unfavorable energy of 295 kcal/mol from
the entropic cost [232]. At 37°C the equilibrium constant when AGU = 5 is
Ku = 0.00029. The loss of a single hydrogen bond could easily reduce AGU

to 3 kcal/mol with a resulting change of Ku to 0.0075, or about 26 times
higher than before. Thus, our view of a protein should not be as a rigid
structure that is immune to small changes in its components but rather as
a delicate structure sitting on the edge of disaster that may be altered by
even the smallest change in a component.

Partial support for this view comes from studies that exploit genetic
techniques to change the amino acid sequences. In a review of this area,
Pakula and Sauer [232] mention a number of studies in which mutations
alter the stability of proteins. For example, T4 lysozyme has its AGU low-
ered by 1.7 to 3.2 kcal/mol when an isoleucine that is about 80% buried in
the hydrophobic core is changed to trp, tyr, ser, thr, or asp. Unfortunately,
this and other studies using site-directed mutagenesis typically use assays
that are somewhat crude from an evolutionist's perspective. Nonetheless,
this direct experimental approach to questions of protein evolution holds
extraordinary promise. Additional support comes from the common obser-
vation that alleles from warmer parts of a species range, or from warm-
adapted species, tend to be more thermostable. It appears that even small
temperature increases may necessitate the addition of a weak bond.

While this discussion may help to understand why we consistently ob-
serve kinetic differences between alleles, it places us squarely into a second
dilemma: why should small kinetic or thermostability differences have any
effect on the physiology or fitness of an organism? In certain cases, as in
the evolution of hemoglobin for life at high altitudes, the answer is fairly
straightforward. But what about glucose phosphate isomerase alleles? Why
should a small kinetic change in an enzyme that catalyses a reversible re-
action in a pathway that is regulated by some other enzyme have any con-
sequences at all? If we adopt a steady-state flux view of metabolism, the
answer may be that they have no effect. The steady-state flux through a
pathway that is regulated by a single enzyme is insensitive to the activities
of the other enzymes.

Watt, more than anyone else, has argued that the steady-state flux view
of metabolism might be misleading [295]. The pathways of organisms faced
with a constantly changing spectrum of food quality and physiological state
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may rarely achieve steady state. The transient dynamics of pathways will
be sensitive to the kinetic parameters of each of the nonregulatory enzymes.
The simplest demonstration of this is given by Easterby [63] who showed
that the transient of a coupled enzyme system is the sum of the transients
of the individual steps.

Consider a pathway that is regulated by the first enzyme

where VQ is the rate of reaction of the regulated step and Vi and Ki are Vmax
and Km for the ith step. Easterby showed that the concentration of the
product at time t, when the initial concentrations of all of the intermediate
substrates are set to zero, is asymptotically

where T* = Ki/Vi may be viewed as the lag or transient of the ith step.
The transient for the entire pathway may be roughly defined as the

time of first appearance of the product, which is given by the sum of the
transients of the individual steps. Clearly, each enzyme plays a role in the
transient dynamics of the pathway. The least active enzyme makes the
largest contribution; the most active makes the smallest. Moreover, if the
activity of the least active enzyme is changed by, say 5%, this will have a
larger effect on the transient than if the activity of the most active enzyme
is changed by 5%. Kacser and Burn's "molecular democracy" [147] is a sim-
ilar concept that applies to the steady-state flux through an unregulated
pathway. It must be emphasized, however, that in simple models of regu-
lated pathways such as Easterby's, the steady-state flux, VQ, is independent
of the activities of the individual enzymes.

These comments may be helpful in understanding why Watt finds evi-
dence for selection for PGI alleles in Colias while Dykhuizen finds no such
evidence in E. coli. In essence, Watt's butterflies are operating away from
steady state while Dykhuizen's chemostats are operating close to steady
state. This contrast should be taken very seriously, particularly in light of
the other examples of this section. Collectively, they clearly show that our
ability to assess the importance of variation in enzymes depends on our
understanding of the (internal and external) environmental factors that are
relevant to an enzyme's role in metabolism.

In most of the examples, some background work on the ecology of the
organisms was required to make sense of the variation. Often, comparisons
between distantly related species provide hints about the forces that shape
enzymes. The ecological factors were relatively transparent in the studies of
temperature and LDH or altitude and hemoglobin. For insulin, the radical
shift in the "internal ecology" of glucose metabolism provides the biological
context in which the acceleration in the rate of evolution makes sense.
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Negative results in experiments designed to measure physiological or
fitness effects of alleles should be examined very carefully. While I do not
want to close the door on the use of negative results to argue for neutrality,
I do want to argue that an experimental program in this area is a major
undertaking. The best work that has been done is by investigators who have
devoted a major part of their careers to one or a few enzymes. The impact
of their work should not be diluted by negative experiments that were
performed with considerably less attention to the environmental context of
the organism.

1.2 Rates of substitution

So much has been written about rates of amino acid substitutions that it
is pointless to add yet another summary here. Rather, I will make a few
observations that I hope will prove provocative. A more complete treatment
of the facts may be found in the Atlas of Protein Sequence and Structure [52]
or in Li and Graur's recent book [191].

Average rates of protein evolution present us with a rich phenomenol-
ogy; the most striking is the extraordinary variation in rates of amino acid
substitution exhibited by different proteins and by different sites within a
protein. Table 1.4 lists the rates of amino acid substitution in units of sub-
stitutions per site per year for a selection of proteins taken from the Atlas
of Protein Sequence and Structure [52]. From it we see, for example, that
the rate for Ig kappa chain C region is 370 times that of histone H4 (and
infinitely faster than ubiquitin).

The standard explanation for rate variation is that some proteins are
more "constrained" than others. By that we mean that the chemical change
caused by the substitution of one amino acid for another in some proteins
has a much larger effect than in others. Since we imagine that changes
of large effect are usually deleterious, it seems reasonable that the rate of
substitution in tightly constrained proteins is lower than that in loosely
constrained proteins.

The constraint explanation for variation in rates contains two compo-
nents that are frequently confused. The first is concerned with the func-
tional consequences of amino acid substitutions. An amino acid substitu-
tion at a site that is highly constrained will have a substantial functional
consequence. We will call the consequence of a substitution the site-effect to
avoid using the term constraint with all its implications about mechanism.
A highly constrained protein is one with a large proportion of sites of large
effect. The left side of Figure 1.11 illustrates a possible relationship between
the chemical change embodied in a particular amino acid substitution and
its functional consequence for sites of small and large effect.

The second component invokes a mechanism of evolution, usually some
version of the neutral allele theory. Should this be the correct mechanism,
then a monotonic relationship between the level of constraint and the rate
of substitution is assured: less constrained sites will evolve more rapidly.
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Table 1.4. Rates of amino acid substitution for various proteins. The units are substi-
tutions per site per 109 years. Data are from [52, Table 1].

Protein Rate
Ig kappa chain C region 1.850
Kappa casein 1.650
Ig gamma chain C region 1.550
Serum albumin 0.950
Hemoglobin alpha chain 0.600
Hemoglobin beta chain 0.600
Trypsin 0.295
Lactate dehydrogenase 0.170
Cytochrome c 0.110
Glutamate dehydrogenase 0.045
Histone H3 0.007
Histone H4 0.005
Ubiquitin 0.000

Suppose, however, that molecular evolution is not driven by mutation
and genetic drift but rather by environmental change. Were this true, then
we would require that slow-evolving proteins, like histones, function in an
environment (intra-nuclear, tightly bound to DNA in this case) that has
remained relatively unchanged over billions of years while rapidly evolving
proteins, like immunoglobulins, are evolving in response to a rapidly chang-
ing environment (perhaps the environment of fast-evolving pathogens). We
will call fast-evolving proteins that are responding to a changing environ-
ment environmentally challenged. Are histones evolving slowly because they
are highly constrained or because they are not environmentally challenged?
Are immunoglobulins environmentally challenged or loosely constrained?
We really don't know.

These ideas are brought together in the right side of Figure 1.11. The
constraint paradigm is restricted to the left side of the shaded area. Yet
there is no reason why we should assume that that is the correct paradigm.
If it were always true, as is claimed by Kimura in one of his five principles of
molecular evolution, that "Functionally less important molecules or parts
of molecules evolve (in terms of mutant substitutions) faster than more
important ones" [159, p. 103), we might choose the constraint point of
view. However, a glance at Table 1.4 leaves me undecided.

I can see no compelling pattern that more important molecules evolve
more slowly. I would be hard put to argue that histones are more important
that immunoglobulins or that glutamate dehydrogenase is more important
than hemoglobin. (One could argue, based on our experience with sickle cell
hemoglobin, that hemoglobins are more environmentally challenged than
glutamate dehydrogenase.) The figure also points out that there are at least
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Figure 1.11. On the left, possible relationships between the effects of substitutions
and their functional consequences; on the right, the space of proteins in the context
of site-effects and environmental changes.

two dimensions involved: the site-effect dimension and the environmental-
challenge dimension. Thus, the occurrence of a large fraction of sites of large
effect does not necessarily imply that a protein will evolve more slowly.

I feel that, as suggested by Figure 1.11, our view of protein evolution
is dimensionally inadequate. If proteins evolve to match the environment,
as was strongly implicated in the previous section, then the rate of envi-
ronmental change, as experienced by the protein, must be included in any
explanation for variation in rates of substitution.

A closely related idea is expressed in another of Kimura's five principles
of molecular evolution:

Those mutant substitutions that are less disruptive to the existing
structure and function of a molecule (conservative substitutions) occur
more frequently in evolution than more disruptive ones.

Basically, substitutions with only a small site-effect occur more frequently
than those with a large effect [159, p. 103].

The best quantitative demonstration of the conservative nature of sub-
stitutions in molecular evolution lies with the amino acids. There have been
a number of papers graphing the chemical difference between pairs of amino
acids versus the rate of substitution from one to the other, the most recent
example being found in Kimura's book [159, Fig. 7.1]. This figure uses
Miyata et al.'s [214] measure of chemical difference between amino acids,
based on polarity and volume, and rates of substitution from McLachlan's
1972 paper [209]. Kimura shows that the relationship between rate, Y, and
distance, X, is exponential

Thus, more conservative substitutions (those with a smaller X) occur more
frequently.

Chemical  Difference of A,ino acid substitution Environmental Challenge
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Miyata's distance

Figure 1.12. The relationship between the chemical difference between amino acids
and their rates of substitution.

A reexamination of the relationship using more data and a slightly mod-
ified approach turned up a somewhat different result. McLachlan's rate
estimates are not ideal for our purposes in that they are obtained from
comparisons between proteins with a large number of amino acid substitu-
tions. In contrasting his estimates with those used in The Atlas, McLachlan
noted that the former apply to "closely related proteins" while his apply
to cases where the "genetic relationship may be distant." Our interest is
clearly with the instantaneous rates, making those from The Atlas more
suitable.

However, even the rates from The Atlas need some refinement since they
come from a somewhat artificial discrete-time Markov chain model called
the PAM matrix model. Wilbur [307] has reexamined the estimation of
rates using a continuous-time Markov process. His Table 1 appears to be
the best estimates that we have for the rates of substitution between pairs
of amino acids based on the protein sequences appearing in The Atlas.

Wilbur's single-step rates (those between amino acids that are one nu-
cleotide substitution apart) are plotted against the chemical difference be-
tween amino acids using Miyata et al.'s index of chemical difference in
Figure 1.12*. Remarkably, the figure shows that the most frequent substi-
tutions are not between the chemically most similar amino acids, but rather
between a group of amino acids with a chemical difference near one.

We cannot perform a statistical analysis on the scatter-plot because the
points are not independent. Moreover, each point is really an estimate of
a parameter, the rate of substitution between a pair of amino acids, rather
than a random quantity. However, we can fit a polynomial (6th order)
by the method of least squares to help our eye pick out the main trend
in the rate estimates. Examination of the polynomial shows that Kimura's
exponential fit to the data does not apply with the improved rate estimates.

*The rates are expressed in units of PAMs (accepted point mutations, inverted)
which are amino acid substitutions per 100 residues per 100 million years of sepa-
ration (or 200 million years of actual evolution). To convert from PAMs to actual
rates in units of substitutions per site per year multiply the PAMs by 0.5 x 10~10.
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Our data represents average properties taken from a large number of
proteins and species. As such, there are many opportunities for biases
that could obscure the true relationship. For example, the more rapidly
evolving pairs may reflect a tendency for such pairs to be located in regions
of proteins fax away from ligand binding sites rather than reflecting their
chemical differences. Much more work is needed before we can feel confident
with this phenomenology.

The final property of amino acid substitution rates that should be men-
tioned concerns the variation in rates between sites within a protein. Very
few proteins have been sequenced in enough species to allow a precise de-
scription of the rates for each site. Holmquist et al. [133] examined five
proteins—a-crystalline A chains, myoglobin, a and /? hemoglobin, and cy-
tochrome c—for which enough sequences were available and showed that
the site-specific rates, viewed as random quantities, fit a negative binomial
distribution. In some cases the estimated parameters were such that a geo-
metric distribution, which is a special case of the negative binomial, fit the
data adequately. If every site evolved at the same rate and if substitutions
occurred at exponentially distributed intervals of time, the data would be
expected to fit a Poisson distribution rather than a negative binomial.

Holmquist et al. concluded that the rate of substitution varies across
sites in a significant fashion. The qualitative part of this conclusion was
not new. The earliest studies showed that certain sites were conserved in
evolution, for example, those in active sites, whereas others evolved at a
much faster rate. The quantitative part was an extension of an earlier
observation by Uzzell and Corbin [284].

The negative binomial distribution is not the only one to have been
proposed as a description of variation in rates between sites. Many years
ago Fitch [77] introduced a model that placed sites into two rate-categories:
those that evolve and those that do not. The sites that do evolve were called
covarions. He went on to argue that the set of sites that are evolving changes
slowly over time. The Holmquist at al. study shows that the covarion model
is too restrictive and should be abandoned in favor of models with a greater
range of rates.

The main point of this short section is to try to abate, if even slightly, the
tendency to equate rates of evolution with functional importance. This idea
so permeates our thinking that one commonly reads that some region of a
sequence is not important because it is evolving rapidly or that some other
region is important because it is evolving slowly. In many instances, this
may be the correct interpretation. In others, some interesting phenomena
might be missed.

1.3 Electrophoretic surveys

The aim of this section is to provide a statistical description of protein
variation in natural populations. We need to know the properties of this
variation before we can hope to understand why it is there. The traditional
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tool for such studies is electrophoresis. Modern DNA techniques have not
made a significant inroad because the most widely used techniques—based
on restriction enzymes—do not distinguish between nucleotide changes that
alter amino acid sequences and those that do not. Even with the limitations
of electrophoresis, there are a number of important generalities that have
emerged over the years. These will be the focus of this section.

How much protein variation?

Summarizing 25 years of estimates of electrophoretic variation is no small
task. We must all be eternally grateful to Nevo and his colleagues who have
spent countless hours doing exactly this. Their most comprehensive study
is a 200-page tome that summarizes data from 1111 species from all walks
of life [220]. This paper will be the source of many of the generalities that
appear in this section.

The three most commonly used measures of genetic variation are the
fraction of polymorphic loci, the mean number of segregating alleles, and
the average heterozygosity. Of the three, only the average heterozygosity
is relatively free of sample size effects. It is also the most useful statistic for
estimating parameters that appear in theoretical models. For this reason,
it will be used as our favored summarizing statistic.

Consider a sample from a particular locus containing K different alleles.
Let pi be the frequency of the ith allele in the sample. The heterozygosity
for this locus, call it the jth locus, is defined to be

If the species happens to mate at random, this may be viewed as an esti-
mator for the fraction of individuals that are heterozygous at this locus in
the population. Otherwise, the heterozygosity has no biological significance
other than as a measure of the level of variation.

The average heterozygosity, H, is simply the average of the heterozy-
gosities across loci within a species. Again, for randomly mating species
this may be interpreted as the fraction of loci that are heterozygous in
the population. Similarly, it may be used to estimate the fraction of loci
that are heterozygous in a randomly drawn individual. It is important to
note that these interpretations are not meant to extrapolate to the entire
genome, but only to those loci that appear in a particular study.

Average heterozygosities from major taxonomic groups are given in Fig-
ure 1.13. They range from about 0.04 for mammals to about 0.14 for mol-
lusks. This is only about a 3.5-fold spread over a very diverse set of taxa.
The average heterozygosity for all invertebrates is 0.1 and for all vertebrates
is 0.054. While these differences are statistically significant, they are not
large enough to dispel the impression that there is a remarkable uniformity
across taxa.
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Figure 1.13. The average heterozygosities for various taxa. Parthenogenetic lizards
have been excluded from the reptiles and Drosophila have been plotted separately
from the other insects. Data are from [220].

Average heterozygosities can be misleading. They mask the variation of
heterozygosity between species and between loci. For example, Figure 1.14
gives histograms of average heterozygosities for mammals and Drosophila.
These two groups were chosen because they represent two extremes. Among
mammals, the most common heterozygosity class is 0 to 0.01. Included
in this class are such disparate groups as the weasels, genus Mustela, the
pocket gophers, genus Pappogeomys, and the black bear, Ursus americanus.
There are some highly variable mammals as well. For example, two bats
of the genus Myotis have heterozygosities of 0.126 and 0.144. By contrast,
the modal Drosophila heterozygosity is in the range 0.09 to 0.12, much
higher than in mammals. Interestingly, the most heterozygous Drosophila
is not much more variable than the most heterozygous mammal. This
could represent a biologically imposed limit to variability or a technical
limit imposed by electrophoresis.

For several years it was thought that the average heterozygosities of all
species fall in the narrow range 0.056 to 0.185 [188, Fig. 18]. It is clear
even from our mammal histogram that this is not the case. A histogram
of all 1111 species in the Nevo et al. review [220, Fig. 2c] has a mode at
zero and decreases monotonically with increasing heterozygosity. This may
reflect an overrepresentation of mammals, but does make the point that the
lower limit of 0.056 was very misleading. The upper limit of around 0.30 is
more intriguing. To understand the nature of this limit—whether it is due
mainly to the presence of monomorphic loci or not—we must descend one
more step to an examination of the variation of heterozygosities among loci
within species.

The most complete analysis of electrophoretic variation within a species
other than our own is surely Singh and Rhomberg's recent work on Droso-

Average Heterozygosity
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Figure 1.14. Histograms of average heterozygosities for Drosophila and mammals.
Data are from [220].

phila melanogaster [263]. This study examined 80 to 117 loci at 15 localities
world wide. Fifty-six out of the 117 loci (48%) were completely monomor-
phic. This figure is typical for Drosophila species generally. The percent of
loci polymorphic in mammals is somewhat lower, 20%, while for vertebrates
as a whole it is 23%. Invertebrates are higher at 37%, with the highest per-
centage among major taxonomic groups being the echinoderms with 55%
polymorphic*. This shows that the limit on heterozygosity reflects, in the
main, a low percentage of polymorphic loci.

A histogram of heterozygosities for the 61 polymorphic loci of D. mel-
anogaster is given in the back part of Figure 1.15. This study included
samples from several localities and as allele frequencies generally vary from
one locality to another, some form of averaging must be used as an es-
timate of the heterozygosity of a locus. The one chosen for the figure is
based on allele frequencies for the species as a whole. It is called HT by
Singh and Rhomberg. There is an apparent bimodality in the distribution
of heterozygosities among polymorphic loci. This is because one group of
polymorphic loci tends to have a single allele in fairly high frequency with
a group of lesser alleles hovering around (the left mode) and a second group
has two or three alleles each of which is in fairly high frequency (the right
mode). This feature appears to be fairly general in Drosophila [189].

These few observations allow us to answer an aspect of the title question
of this section: for those loci that have been examined, roughly 20 to 50%
are polymorphic and the average heterozygosity ranges from about 0.04 to
0.15 when the data are averaged by major taxonomic groups. The issue

*A locus is arbitrarily called polymorphic if the frequency of the most frequent
allele is less than 99% [220].
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Figure 1.15. Histograms of heterozygosities for polymorphic loci from Droso-
phila melanogaster based on one- and two-dimensional electrophoresis. Data are
from [43,263].

that must now be faced is whether or not these figures are representative
of the genome as a whole.

This question has captured the imaginations of population geneticists
ever since electrophoretic surveys first appeared in the mid 1960s. Beyond
our perverse fascination with variation, the ability to assess levels of varia-
tion in the genome is critical to our understanding of the mechanisms that
maintain variation. Fifteen years ago, the general feeling was definitely in
favor of viewing electrophoretic data as being representative of the entire
genome [188]. In the past few years, however, a number of observations call
this into question. What makes this issue difficult is that there is evidence
for both upward and downward biases.

The downward bias is due to the inability of electrophoresis to detect all
of the protein variation in a sample. This effect has been carefully studied
and can be corrected. More difficult is a bias due to the particular loci be-
ing studied. There is convincing evidence for a strong locus-specific effect
on levels of variation. Certain groups of loci tend to be highly polymorphic
while others are almost always monomorphic. If the proteins used in sur-
veys were chosen at random from these groups there would be no problem.
Unfortunately, current evidence suggests that they may be chosen from a
group with above average variability.

The first suggestion that there was a locus-specific effect on variability
involved a comparison of one group of enzymes loosely defined as having
only a single intracellularly generated substrate (Group I enzymes) with
a second group with multiple—possibly extracellular in origin—substrates
(Group II enzymes) [98,173]. The Group I enzymes were mostly glycolytic
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Figure 1.16. A locus-by-locus comparison of heterozygosities for Drosophila and
other insects. Data are from [253].

and citric acid cycle enzymes. The Group II enzymes were nonspecific
esterases, phosphatases, dehydrogenases, and the like. In these studies, the
average heterozygosity of Drosophila Group II enzymes (0.23) was about 5
times larger than that of Group I enzymes (0.04). Subsequent observations
have generally supported this difference and extended the number of species
that exhibit it [102,253]. While the reason for the difference remains a
mystery, the grouping clearly points out that our genomic extrapolations
will vary considerably depending on our judgment about the appropriate
mix of Group I and II enzymes that best reflects the genome.

Selander strengthened the case for locus-specific effects on variation by
seeking a correlation of heterozygosity between species. He uncovered an
effect by comparing Drosophila to other species of insects as illustrated in
Figure 1.16. The correlation coefficient is 0.6, which is significant at the 1%
level. There was, however, no significant correlation between insects and
rodents.

A third source of evidence for locus-specific effects comes from studies
on the correlation between protein structure and variability. The first ev-
idence of this sort was a study by Harris and his colleagues showing that
monomeric enzymes in humans have higher heterozygosities (0.096) than do
dimeric (.071), trimeric (0.015), or tetrameric enzymes (0.050) [117]. There
is also a positive correlation between the molecular weight of monomers
and dimers and the number of alleles in a sample [170] although not with
heterozygosity. In Drosophila, primates, rodents, reptiles, and fishes, on
the other hand, there is a positive correlation between subunit molecular
weight and heterozygosity [26,170,217].

The final evidence for locus-specific effects is more far-reaching in its im-
plications, but is also more controversial. When abundant proteins are ex-
amined by two-dimensional (O'Farrell gel) electrophoresis, very little varia-
tion is detected as was first observed by Brown and Langley [25] in a study
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of 54 autosomal loci in Drosophila melanogaster. Of the 54, only 6 (11%)
were polymorphic. The average heterozygosity was a mere 0.04, essentially
the same as seen in Group I enzymes in melanogaster. A more recent study
of male reproductive-tract proteins reveled only 27 polymorphic loci out of
307 (8.7%) [43]. Drosophila are not the only creatures with this affliction;
mammals also show very low levels of variation when two-dimensional gels
are employed [265].

The controversy grows out of the lower resolving power of two-dimen-
sional gels when compared with the traditional one-dimensional techniques.
Attempts to compare the two have produced estimates that two-dimension-
al gels detect from 50 to 90% of the variation detected by one-dimensional
gels [43]. Even if the lower number is accepted, this is not sufficient to
account for the reduction in levels of variation in abundant proteins.

Coulthart and Singh have presented two other sorts of evidence that
two-dimensional gels are reasonably sensitive. The first concerns the dis-
tributions of heterozygosities among those loci that are polymorphic. As
shown in Figure 1.15, these are similar whether measured by one- or two-
dimensional techniques. The numbers of alleles per polymorphic locus are
also similar. (In both cases, it must be stressed that these are just impres-
sions.)

The second bit of evidence involves the results of sequential one-dimen-
sional electrophoretic techniques designed to uncover cryptic alleles. These
studies have generally shown that loci that are judged to be monomorphic
by standard one-dimensional techniques usually remain monomorphic when
examined under a variety of one-dimensional experimental conditions [189].
Polymorphic loci, on the other hand, often pour forth a cornucopia of new
alleles.

For example, xanthine dehydrogenase in D. pseudoobscura reveals 8 alle-
les by standard one-dimensional electrophoresis and 27 alleles by sequential
electrophoresis [262]. Esterase-5 jumps from 12 alleles to 41 alleles [150].
If the loci that are judged monomorphic by one-dimensional techniques re-
main so under the scrutiny of fancy electrophoresis, then the argument must
be that those seen to be monomorphic by two-dimensional techniques axe
likely to remain so as well. These three observations make a strong enough
case for two-dimensional techniques that we must seriously entertain the
possibility that abundant proteins are substantially less polymorphic than
are soluble enzymes.

Even within two-dimensional surveys there is evidence for locus-specific
effects. In yet another study from Singh's prolific laboratory, Coulthart
and Singh compared variation detected by two-dimensional electrophore-
sis in two different organs, testes and male accessory glands, in both D.
melanogaster and D. simulans [44]. In both species, the accessory gland
proteins are more polymorphic than are the testes specific proteins which
in turn are more polymorphic than the proteins found in both organs. For
melanogaster the percentages of polymorphic loci for the three classes of
proteins are 23.1%, 12.2%, and 7.3%, respectively. For D. simulans they are
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32.0%, 10.3%, and 4.6%. While not all of these differences are statistically
significant, the elevated levels for the accessory proteins are significant in
both species. This study is particularly interesting as some of the accessory
gland proteins are presumably part of the ejaculate and thus may affect
fertility in a way that is open to direct experimental investigation.

The evidence for locus-specific effects is compelling: levels of variation
depend on the size, abundance, tissue location, and functional role of pro-
teins. Given this, is there any evidence to suggest that those proteins most
commonly used in electrophoretic surveys are a random sample of all pro-
teins? The best evidence suggests the opposite. For example, Singh and
Rhomberg showed that there is a highly significant negative correlation be-
tween estimates of average heterozygosities and the number of loci used in
a study [263]. A tongue-in-cheek extrapolation of the straight line in their
Figure 8 shows that a Drosophila study using 165 loci should reveal no
variation at all. The important point is that electrophoretic studies have
favored proteins that tend to be polymorphic. While this is part of the
folklore of the field, there is yet to be a serious study to make amends. The
best way around the problem is to use modern DNA techniques to pick
the closest open reading frame to random positions in the genome and use
these reading frames for population surveys. Until this is done, it is diffi-
cult to assess the accuracy of the claim that electrophoretic surveys may
be extrapolated to the entire genome.

I would like to take this issue one step farther and claim that the entire
enterprise of estimating levels of variation for the entire genome is somewhat
misplaced. Consider, by way of analogy, the situation with rates of protein
evolution. A table in the Atlas of Protein Sequence and Structure lists the
rates of evolution of 60 proteins. As far as I am aware, no one has ever used
this table to estimate an "average rate of protein evolution." * The reason is
simple: when we look at the table what captures our attention is that rates
of evolution vary by more than two orders of magnitude. Moreover, a com-
parison of the slowest evolving proteins, histones and ubiquitin, with those
that evolve most rapidly, immunoglobulins, immediately suggests various
hypotheses to explain the variation in their rates. Explaining this varia-
tion is a fundamental and important biological problem. Explaining why
the average rate of evolution of these 60 proteins is 1.6 x 10~9 amino acid
substitutions per site per year seems much less important.

Similarly, an important problem is to explain why malic enzyme, for
example, is almost always monomorphic in Drosophila while some esterases
are almost always polymorphic. It seems much less important to explain
why the average heterozygosity of Drosophila melanogaster is 0.1 for the
proteins that happen to be used in a particular study.

* Naturally, this must have been done by someone. Let us say that this average
plays no role in general theories of protein evolution.
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Population size and ecological correlates

Grand taxonomic summaries of average heterozygosities are too crude to
provide significant insights into the mechanisms responsible for the mainte-
nance of protein variation. We might expect, however, that insights could
be gained by clever comparisons of groups of species that differ in some
aspects of their ecology. The groupings must necessarily be motivated by
a priori notions about the forces acting on genetic variation. Of the com-
parisons that come to mind, none is more important than that based on
population size.

Mechanisms that maintain genetic variation differ dramatically in their
dependency on the effective size of a population. They range from essen-
tially no dependence for models of strong balancing selection with constant
fitnesses, through weak dependency for models with mildly deleterious alle-
les, to strong dependency for strictly neutral models. We begin, therefore,
with an investigation of the correlation of population size with average
heterozygosity.

There are two sufficiently large studies that I am aware of that attempt
to correlate the total number of individuals in a species with the aver-
age heterozygosity. The first is the study by Nevo et al. [220] mentioned
earlier. The overall goal of their project was to find ecological and demo-
graphical correlates with heterozygosities. Most published surveys do not
report enough information in a sufficiently uniform fashion to allow such
a study, so Nevo et al. sent out questionaires to the authors asking for a
description of the life histories of their species. For population size, the
questionaire asked whether the size was small (thousands), medium (hun-
dreds of thousands), large (millions), or very large (billions). While this
is a very crude measure of the effective size of a population, the fact that
the categories span six orders of magnitude gives us some confidence that
a strong dependency on population size, at least, should be detectable.

When all species are considered, the effect of population size was sig-
nificant at the 1% level. Moreover, the differences were in the expected
direction: small with an average heterozygosity of 0.053, medium at 0.066,
large at 0.077, and very large at 0.090. What might not have been expected
is that the average difference between the two extremes is only 1.7-fold even
though the population sizes are judged to differ by six orders of magnitude!
Thus, our initial impression must be that the dependency of average het-
erozygosity on population size is very weak. The picture gets confusing
when the data are subdivided. For example, vertebrates as a group show
a significant dependency on population size while invertebrates do not.
Within vertebrates, mammals and fish show a highly significant effect but
birds, reptiles and amphibians show no effect.

The other study, by Nei and Graur [218], is based on 77 species, most of
which presumably appeared in the Nevo et al. study as well. For 20 species,
actual estimates of the population size were available. For the remainder,
a rough estimate was obtained by multiplying a guess of species density by
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Figure 1.17. The correlation of average heterozygosity with population size. Data
are from [218, Table 1].

its range. The relationship of average heterozygosity and population size
for 76 of the 77 species is shown in Figure 1.17. The 77th species, E. coli,
is just too different from the others to include. The figure shows that there
is a significant correlation. However, when the species that contribute to
the correlation are examined, an interesting pattern appears.

The six species with high heterozygosities and population sizes above
1011 are all Drosophila. As will be discussed below, high heterozygosities in
Drosophila appears to be characteristic of the genus for reasons other than
the large population sizes of its member species. The group of species with
population sizes less than 104 and very low heterozygosities are mostly
carnivores. (The species at the far left is the elephant seal.) The low
heterozygosity of carnivores is a main contributor to the population-size
effect seen in mammals in the Nevo et al. study as well. The group of
species that lie between these two extremes exhibit no significant correlation
of heterozygosity with population size.

Thus, the Nei and Graur study supports the impression that population
size and average heterozygosities are only weakly correlated at best. It also
points out the intriguing possibility that carnivores may have dramatically
reduced heterozygosities because of their comparatively small population
sizes.

The most celebrated evidence against a correlation between popula-
tion size and heterozygosity comes from the endemic Hawaiian Drosophila.
Most of these species are found on only one of the islands. Many are re-
stricted to a small region within an island. These species are rare even
within their ranges, although this impression comes in part from the dif-
ficulty of attracting them to baits (Alan Templeton, pers. com.). There
can be little question that the population sizes of these species are orders
of magnitude smaller than those of such widespread species as melanogas-
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ter, simulans, pseudoobscura, or willistoni. Yet, as a group, the Hawaiian
DrosophUa exhibit heterozygosities that are not very different from their
widespread counterparts (see examples in [218]). This is the evidence that
high heterozygosities are characteristic of the genus for reasons other than
population size effects.

If current population sizes are generally not indicative of the long-term
average population sizes of species, then population-size effects would be ob-
scured. For example, one could argue that population sizes of many species
were reduced during the last glaciation causing a reduction in levels of vari-
ability with a consequent restriction in the total range of heterozygosities.
It is easy to imagine that such events, superimposed on asynchronous pop-
ulation expansions as the glaciers receded, could play havoc with searches
for population-size effects.

Another approach to finding population-size effects is Coyne's [48] study
of the correlation between rates of chromosome evolution and heterozy-
gosity. A correlation might be expected if the fixation of chromosomal
mutations occurs most often in small populations as would be the case
if chromosomal mutations have deleterious effects when heterozygous. A
significant effect was, in fact, uncovered. If the generally held view that
deleterious effects of heterozygous chromosomal mutations are large, then
those species experiencing rapid rates of evolution would most likely have
very small effective populations sizes. Of course, we must consider the pos-
sibility that the reduction in heterozygosity may be for entirely different
reasons. For example, it could be that chromosomal substitutions are due
to meiotic drive and the reduction in heterozygosity to hitchhiking. This,
too, will lead to the correlation seen in Coyne's study.

Beyond these large-scale studies, there are anecdotal studies of species
with unusually small population sizes with greatly reduced variation. A
striking example is a comparison of cave fish in Mexico with their close
surface relatives [8]. The heterozygosity of the surface species, Astyanax
mexicanus, is 0.11, a relatively high figure. Three troglobitic populations
of Astyanax have average heterozygosities of 0.0, 0.032, and 0.077 for the
same set of loci. Unfortunately, we do not know the sizes of the cave pop-
ulations. Avise and Selander argue that they are currently very small, but
were possibly larger in the recent past. Such studies are important in that
they suggest that there are populations small enough to exhibit reduced
levels of variation. Were we in possession of estimates of the effective sizes
of these populations, we would be in a strong position to place bounds
on the mutation rate or strength of selection, depending on our preferred
mechanism for the maintenance of variation.

If the evidence is taken at face value, our conclusion must be that pro-
tein heterozygosity is essentially independent of population size for species
whose population sizes exceed about 104 individuals. Species with popu-
lation sizes in the thousands, on the other hand, exhibit markedly lower
heterozygosities.

The success rate for finding other ecological correlates with heterozy-
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gosity is not much better. An early paper that cast a pall on such studies
was a survey of deep sea creatures that were imagined to live in a simpler,
less variable environment than surface creatures [10]. The heterozygosities
of the deep sea creatures turned out to be not unlike those of other groups.

In their extensive statistical study, Nevo et al. were only able to account
for about 20% of the variation in heterozygosity by ecological factors. There
was a suggestion that species living in a "broader environmental spectra"
have higher heterozygosities but the effect was fairly small. While this find-
ing might be used as evidence that variable environments influence levels
of variation, the unexplained 80% of the variation in heterozygosities tells
us that a statistical approach that lumps loci is, in the end, uninformative.

Heterozygosity and substitution rates

An empirical question of considerable interest concerns the correlation be-
tween heterozygosity and rate of evolution among loci. While this would
seem like a rather straightforward question, it has received remarkably
little attention. The most important studies are two by Skibinski and
Ward [264,292]. These papers explore the correlation between heterozy-
gosity and genetic distance as determined by electrophoretic studies. In
the earlier paper, data from 31 loci in mammals were used to show that the
correlation of the average heterozygosity and the average genetic distance
was 0.759 (P < 0.001) [264].

The subsequent paper extended the analysis to more loci and to other
major taxonomic groups and obtained correlation coefficients ranging from
0.46 to 0.71. In all cases, the correlation coefficients were significantly
greater than zero. The conclusion that more polymorphic loci evolve more
rapidly seems inescapable.

There are some qualifications that must accompany our interpretation of
these papers. The most obvious concern is whether the more heterozygous
and diverged proteins are simply the ones that electrophoresis is best able
to detect amino acid changes in, thus leading to a spurious correlation.
Skibinski and Ward successfully defused this objection by examining the
correlation between heterozygosity and rate of amino acid substitution for
six loci for which substitution rates were available from amino acid sequence
studies. The results are illustrated in Figure 1.18.

We clearly need more work on this point. One aspect of the correlation
that should be investigated is the extent to which variation in the subunit
molecular weight can account for the correlation between the average het-
erozygosity and genetic distance. We already know that heterozygosity is
affected by molecular weight so it is reasonable to suppose that genetic dis-
tance is as well. Since Figure 1.18 uses the substitution rate per site rather
than per protein, it is clear that subunit molecular weight cannot account
for the entire correlation.
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Relative amino acid substitution rate

Figure 1.18. The relationship between average rate of amino acid substitution per
site and heterozygosity for six loci from mammals. The rates have been scaled such
that the most rapidly evolving locus has a rate of one. Data are from [264, Table 2].

Allele frequencies

In this section we will review some of the studies that use allele frequency
data directly without collapsing them into heterozygosities. The additional
information contained in allele frequencies might tell us considerably more
about the mechanisms responsible for maintaining variation. We will con-
sider three sorts of studies. The first examines samples from single popu-
lations, the second examines geographic patterns of allele frequencies, and
the third looks at null alleles.

When considering a sample from a single population, it is not at all
clear what properties of the sample are of interest. Without some guidance
from theory, we can do little of substance. The usual approach has been to
compare the frequencies of alleles to that expected under the neutral allele
theory, as provided by the celebrated Ewens sampling distribution (ESD).
To do that here might be viewed as a departure from our general aim of
divorcing descriptions of data from models. But our compromise is modest:
The Ewens sampling distribution applies not only to the neutral model but
to certain models of selection in a random environment as well. Thus, we
will hope to conclude only that data does or does not fit the distribution and
perhaps note the direction of its departure; we do not attempt to attribute
mechanism at this juncture.

Consider a sample of n haploid genomes that contains k electrophoret-
ically distinguishable alleles. As the labeling of alleles in the sample is
arbitrary, we consider only the configuration of the alleles. A configuration
is an unordered set of numbers representing the number of copies of each of
the k alleles. For example, if a sample of n = 5 genes contains fc = 3 alleles
there are two configurations, {1,1,3} and {1,2,2}. In the first instance,
the sample contains one copy of each of two alleles and three copies of one
allele. The second has one copy of one allele and two copies of each of the
other two. More generally, let the number of copies of the ith allele be rij
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Table 1.5. Tests for agreement with the Ewens sampling distribution for the esterase-2
locus in four species of Drosophila. The exact probability that the homozygosity is
more extreme than the expected value is given by P and the probability as determined
by simulation is given by Psim. Analysis is from [68, Tables 9.1 and 9.2].

Species
willistoni
tropicalis
equinoxalis
simulans

n
582
298
376
308

k
7
7
5
7

F
0.9230
0.6475
0.9222
0.2356

E{F | k}
0.4777
0.4434
0.5654
0.4452

P
0.007
0.130
0.036

Psim
0.009
0.134
0.044
0.044

so that

The Ewens sampling distribution tells us that the probability of observing
this configuration, given that there are k alleles in the sample, is

where 5« is a Stirling number of first kind,* defined as the coefficient of
xk in the product

It must be kept in mind that this distribution is defined over the space of
allelic configurations when using it for hypothesis testing.

A simple way to test for agreement of a sample with the ESD is to
calculate the sample homozygosity, F, and to compare it to the critical
values appropriate for the number of alleles in the sample using one of the
published tables [68,203]. This form of the test is due to Watterson [299]
and is called (inaccurately) the homozygosity test of neutrality. An exam-
ple of its use is given in Table 1.5 for the esterase-2 locus in four species
of Drosophila. This data has been analyzed many times, beginning with
Watterson [298]. Three of the four species show a significant departure
from the ESD null hypothesis. Of these, the sample homozygosity is too
large in two cases and too small in the third. A greater than expected
homozygosity may be due to the most frequent allele being more abundant
than expected or, equivalently, to the less frequent alleles being rarer than
expected. A common description of this situation is that there are "too
many rare alleles." In the case of simulans, the allele frequencies are more
uniform than expected.

The use of the homozygosity test for neutrality to infer mechanism is
compromised by the failure of electrophoresis to detect all of the mutations

'Abramowitz and Stegun [1, Table 24.3] has an extensive table of Stirling numbers.
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at a locus. Thus, with the introduction of sequential electrophoretic tech-
niques in the late 1970s to uncover previously hidden variation, the time
was ripe for an informative application of the method.

Watterson [300] analyzed allelic configurations from two published sur-
veys. In the first, Coyne found 18 alleles present in one copy each, one
allele present in 32 copies and 4 alleles with intermediate frequencies from
60 xanthine dehydrogenase genes sampled from three D. persimilis popu-
lations [47]. The probability of observing this or a more extreme config-
uration under the BSD null hypothesis was determined by Watterson to
be 5.9 x 10~7. Significant deviations in the same direction were obtained
when the samples were analyzed from the separate populations. Singh et
al. found 10 singletons and one allele present in 68 copies among 27 distinct
alleles in a sample of 146 genes [262]. Watterson showed that the proba-
bility associated with this configuration was 2.3 x 10~9. Keith's study of
esterase-5 in D. pseudoobscura also exhibited an F that was too large given
the observed number of alleles [150].

Ever since Ohta [227] first pointed out that there were too many rare
alleles, it has been commonly accepted that this is, indeed, the case. Our
observations thus far appear to support this phenomenon. Unfortunately,
the generality of the excess is open to question, not because of any obser-
vations to the contrary, but because of the lack of adequate tests.

As most polymorphic loci have only 2 or 3 alleles, the BSD lacks suffi-
cient power to detect significant deviations in the direction of too many rare
alleles. Most of the attempts to uncover excesses of rare alleles have exam-
ined the frequency spectrum of alleles combined from several loci within a
species. In Ohta's analysis, she assumed that the same parameter, 4Nu in
the case of the neutral model, applies to each locus. While the population
size for each locus is obviously the same, the neutral mutation rate clearly
is not, calling her conclusion into question.

Chakraborty et al. [38] attempted to circumvent the problem by assum-
ing that the mutation rate is gamma distributed (among loci). They also
claim to have found an excess of rare alleles in about one-quarter of the pop-
ulations. But we could equally well conclude that the gamma distribution
does not correctly capture the variation in 4,/Vu among loci.

We seem to be left with the conclusion that the three loci with vast
numbers of alleles, Xdh in D. pseudoobscura and D. persimilis and esterase-
5 in D. pseudoobscura exhibit an excess of rare alleles but for the remaining
loci we have no convincing evidence for an excess. Given the power limi-
tations, we cannot feel confident that there is not an excess for most loci,
not a happy situation.

Observations of allele frequencies are enriched considerably when they
come from distinct geographic localities. Unfortunately, it is impossible
to do justice to 25 years of electrophoretic studies reporting geographic
patterns in allele frequencies. I find the literature too daunting to even
attempt any sort of generalization. Here, I will only mention a few studies
that I find particularly provocative.
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M. peninsulae

Figure 1.19. The frequencies of phosphohexose isomerase-A alleles in two sympatric
species of Menidia. The frequencies for each dot were determined at the same
locality. Redrawn from [143, Fig. 5].

One of the problems that has plagued the use of geographic patterns
to help in our understanding of the forces maintaining variation is the fact
that most patterns may be accounted for by both neutral and selection
models. It is only when we see extraordinary coincidences that we begin to
think that forces in addition to drift and migration are at work. One such
coincidence is parallel clines of the same alleles in sibling species. One of the
first reported cases was in the closely related minnows, Menidia beryllina
and M. peninsulae which are sympatric from eastern Florida to southern
Texas. Johnson [143] examined several enzymes in the two species and
discovered one case where what was judged to be the same allele of phos-
phohexose isomerase-A in both species showed the parallel clines illustrated
in Figure 1.19. Other enzymes did not exhibit such a striking parallelism,
suggesting that the phenomenon cannot be attributed to gene flow through
local hybridization.

A similar parallelism was recently reported by Anderson and Oake-
shott [3] for esterase-6 in the sibling species Drosophila melanogaster and
D. simulans. Both species are cosmopolitan with almost identical ranges
and habitats. At least 10 alleles have been found in D. melanogaster, three
of which, Fjst6-100, -110, and -125, appear to be shared by D. simulans.
Est6-100 in both species increases with latitude in both the northern and
southern hemispheres. By contrast, shared alleles at the phosphoglucomu-
tase locus do not show any significant geographic clines. Whatever forces
are responsible for the Est6 clines, they appear to change systematically
with latitude in a manner that is shared by both species. Temperature is
an obvious, but unproven factor.

Borowsky [22] undertook a much larger study aimed at detecting parallel
clinal variation in sympatric species with shared alleles. He found 26 loci
with shared alleles scattered over four Drosophila and one butterfly species
pairs. A randomization test uncovered significant associations at only three
loci of the 26. It is difficult to assess the significance of this result. On one
hand it could indicate that parallel clines in shared alleles are rare and that
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either common modes of selection are not operating on the alleles or that
selection is dominated by drift and migration. Alternatively, it could be
that the alleles that appear to be the same really aren't due to the poor
resolving power of electrophoresis. In this regard, it should be noted that
the shared esterase-6 alleles in the Anderson and Oakeshott study were
examined by a variety of techniques to led credence to their assertion that
the shared alleles were really the same.

Oakeshott and his co-workers have documented a number of other world-
wide clines in D. melanogaster. Of particular interest is the number of
cases of parallel latitudinal clines in the northern and southern hemispheres.
Three of four Group II (variable-substrate) enzymes and three out of seven
Group I enzymes show parallel latitudinal clines in the two hemispheres
[223]. Faced with such data, it is tempting to suggest that clines in wide-
ranging species should generally be viewed as reflecting the action of some
force in addition to mutation and drift, although we cannot rule out the
possibility that the clines represent historical effects.

Null alleles represent a class of electrophoretically detectable variants
that provide unique insights into the strength of selection operating at en-
zyme loci because of the generally held view that they are maintained in
populations by mutation-selection balance. This assumption, coupled with
laboratory measurements of mutation rates and field estimates of the null
allele frequencies, should yield rough estimates of the strength of selec-
tion against null heterozygotes. Langley, Voelker and their colleagues have
gathered the appropriate data with some remarkable results [184,288].

In their first study they estimated the frequencies of null alleles at 25
enzyme loci from a North Carolina population of D. melanogaster. They
found 39 nulls among the 20 autosomal loci and no nulls from the five X-
linked loci. The average frequency of nulls for the autosomes was q = 0.0025
and unpublished results provided an average mutation rate to null alleles of
u — 3.86 x 10~6. Assuming that the frequency of nulls is roughly q — u/hs,
the average selection against heterozygotes is hs — 1.5 x 10~3. It is hard to
imagine that the strength of selection acting on two nonnull alleles would
be stronger than this, leading us to the conviction that if selection is re-
sponsible for the maintenance of enzyme variation, the strength of selection
is probably less than 10"3. For me, this is one of the most compelling con-
clusions to emerge from allozyme surveys.

Langley and his colleagues have made a number of other observations
related to their null study.

Thirteen of the 20 autosomal loci had at least one null allele. Of
these, only Pgi is lethal when homozygous even though most of the
loci are from intermediary metabolism. Presumably, the numerous
alternative pathways that characterize intermediary metabolism have
sufficient redundancy to overcome a blockage in some pathways.

There was no significant correlation between the heterozygosity and
null allele frequency among loci or between molecular weight and null



Electrophoretic surveys 61

allele frequency. Both are surprising if we hold the view that both
nulls and neutral mutations should be most abundant at those loci
experiencing the weakest selection or have the highest locus mutation
rate.

The failure to find any nulls at the 5 X-linked loci could be due to the
fact that selection is more effective at eliminating deleterious alleles
that appear in the hemizygous state.

Saturation mapping suggests that 80% of all loci are lethal mutable,
yet for autosomal enzyme loci no more than 8 of 20 (40%) are lethal
mutable. The enzyme loci used in electrophoretic studies may be more
weakly selected than most other loci, a conclusion that is concordant
with their higher heterozygosities relative to loci with abundant prod-
ucts as examined by two-dimensional electrophoretic surveys.

The average frequency of visible mutations in natural populations,
0.0028, is remarkably close to that of null mutations suggesting that
both sorts are under similar selective pressures.

The null allele frequencies from a sample from Great Britain are sim-
ilar to those from North Carolina. In both populations there was
significant interlocus variation in null frequencies yet there was no
heterogeneity between the populations. The same loci that tended
to harbor null alleles in North Carolina also harbored them in Great
Britain.

On being heterozygous

The most enigmatic phenomenon uncovered by electrophoretic studies is
the correlation between the number of heterozygous loci in an individual,
among those examined, and some property of its development, morphology
or fitness. Significant correlations have been observed in enough indepen-
dent systems that we cannot dismiss the phenomenon out of hand, even
though there are theoretical reasons why we might wish to do so.

A large proportion of the studies have focused on marine bivalves, a
group that seems to enjoy being heterozygous more than most. The results
of a typical study by Koehn et al. [169] based on 15 polymorphic enzymes
in the coot clam, Mulinia lateralis, is illustrated in Figure 1.20. The initial
shell lengths of 1906 recently settled clams were measured and regressed on
the number of heterozygous loci as determined by electrophoresis. The re-
gression (r = 0.255) is highly significant, although heterozygosity accounts
for only about 6% of the variation in shell length, a typical value for these
studies. Similar results were obtained for the initial growth rate measured
in the laboratory. The three enzymes making the greatest contribution to
the effect were enolase and two nonspecific aminopeptidases.

In a large study of 42 loci in three species of trout, Leary et al. [185]
discovered that more heterozygous individuals were less asymmetric for
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Number of heterozygous loci

Figure 1.20. Shell length as a function of the number of heterozygous loci in the coot
clam. The dashed lines are the 95% confident limits. Redrawn from [169, Fig. 1].

traits that appear on both sides of the body. They conclude, based on this
and previous studies, that the reduction of fluctuating asymmetry in more
heterozygous individuals is a general property of salmonid fishes.

These two studies are typical of many others; the reader is referred to
one of the many reviews of the phenomenon [316] for more information.

Our reaction to these studies cannot help but to be one of extreme
skepticism. Consider, for example, that a correlation of heterozygosity
with some trait is often recorded with as few as 5 loci. It stretches our
credulity that 5 loci chosen from tens to hundreds of thousands—not for
some a priori expectation that they will have a large effect, but because
histochemical stains for them happen to be available—could account for 5%
of the variation in a trait that is closely associated with fitness. One obvious
explanation is that the loci used in a particular study do not have any
direct effect on the measured trait but rather should be viewed as an index
of the genome-wide heterozygosity of the individual. If very homozygous
individuals suffer some sort of inbreeding depression, then the phenomenon
could be explained without having to attribute direct effects to the loci
under scrutiny. Unfortunately, Chakraborty [37] concluded that the number
of heterozygous loci among a handful is very weakly correlated with that
of the genome, assuming no linkage disequilibrium, thus ruling out this
explanation. No surprise here, it could hardly be otherwise. Smouse [266],
in a particularly insightful discussion, concluded that a likely explanation
is that the enzyme loci are in linkage disequilibrium with chunks of the
chromosome, making the phenomenon attributable to the direct effects of
many loci. This explanation is particularly attractive as it provides a ready
interpretation for the failure to observe the phenomena every time it is
looked for.

Koehn et al. [169] favor an entirely different explanation. They note that
the loci that contribute the bulk of the phenomenon are found in important
metabolic pathways or in protein catabolism and, as such, are likely to have
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a large direct effect. They back up their hypothesis with citations to a
number of studies showing physiological and metabolic correlates with the
number of heterozygous loci.

I find these studies to be both provocative and frustrating. Provoca-
tive because the repeated observations of phenotypic correlations with the
number of heterozygous loci suggests that some of the enzyme loci used in
electrophoretic studies may have a much larger effect than we have been
willing to accept in the past. If so, this could be related to our emerging
view that soluble enzymes are more polymorphic than other loci, such as
those for abundant proteins. Frustrating because the literature bearing on
this question is often contradictory. But this is what would be expected for
a phenomenon that accounts for, at best, 5% of the variation in a trait.

What have we learned?

It is stunning how little we have learned from statistical studies of elec-
trophoretically detectable protein variation after 25 years of work. Innu-
merable attempts to find patterns that give insights into the mechanisms
responsible for variation have been almost entirely uninformative. Why is
this so? One obvious factor is that electrophoresis itself is an imperfect
technique. Within an electrophoretic allele may lurk several cryptic alleles
whose patterns, could they be observed, might lead us to the truth.

But I feel that there is much more conspiring against us. The null allele
study argues that selection must be very weak, less than 10~3. With this
level of selection the time scale of allele frequency change is thousands to
tens of thousands of years. It is even longer if the alleles are neutral. If
the equilibrium models that we apply to our data are valid, we have to
assume that populations have been stable for periods of time that greatly
exceed the time scale of frequency change. Species must maintain their
population sizes, migration rates, mutation rates and, most distressingly,
not experience any strong selection events at loci linked to those used in
our enzyme studies. Otherwise, the populations will not be in equilibrium.
This is precisely what I feel is going on. The frequencies of polymorphic
alleles generally reflect the history of a population far from equilibrium.



2
DNA evolution

As we have seen, our interest in the evolution of protein sequences tends to
be focused on locus-specific examples. The evolution of insulin in the hys-
tricomorph rodents, for example, has little in common with the evolution
of hemoglobin in RiippelPs griffon. We can discuss one without making
reference to the other. By contrast, when discussing the evolution of DNA,
we tend to focus on properties that hold for much or all of the genome. The
distinction will be evident in the contrasting approaches of this chapter and
the previous one. Implicit in our new approach is a belief that most nu-
cleotide substitutions that do not change amino acids (silent substitutions)
are the product of similar evolutionary processes no matter which locus is
involved. Many workers believe, for example, that the evolution of silent
sites and noncoding DNA is driven solely by the interaction of drift and
mutation.

We begin by recording some basic observations on rates of silent sub-
stitutions. Two bits of information are required to estimate a rate: the
number of nucleotide substitutions separating a pair of species and the
time back to their common ancestor. The former is obtained by using one
of the many algorithms that correct for multiple substitutions. The latter
comes from the fossil record. For consistency, all of the rate estimates come
from Wen-Hsiung Li and his many collaborators who have worked at the
Center for Demographic and Population Genetics in Houston. They all use
the same correction algorithm [196] and the same interpretation of the fossil
evidence.

Figure 2.1 presents average rates of silent substitutions for exons from a
variety of taxa. "Fast" and "slow" for the Drosophila rates refer to a group
of loci that exhibit, respectively, low and high codon biases.

I do not want to leave the impression that these rate estimates are accu-
rate. They are subject to two sources of error of unknown magnitude. The
first involves the corrections for multiple substitutions. To make correc-
tions, one must have a stochastic model of molecular evolution that is com-
patible with the data. Most available models have obvious deficiencies [92].
For example, most assume that the frequencies of the four bases—A, G, C,
and T—are stationary through time. Within mammals the base frequencies
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Rate of silent substitution x 109 years

Figure 2.1. Average rates of silent substitutions. The superscripts refer the to sources
of the rates: a, [196]; b, [256]; c, [194].

are not, in fact, stationary [91,179,280] making the use of these correction
algorithms suspect.

Correction formulae also assume that the rate of substitution is homo-
geneous throughout the locus and that the substitutions at a particular site
are independent of those at other sites. Both assumptions are demonstrably
false. Little is known about the bias created by these violations.

The second source of bias comes from the interpretation of the fossil
record. In many cases, for example, within the genus Drosophila, the split
times are based on the slimmest of evidence. Even the mammalian fossil
record is far too sparse for our purposes. Although the rates presented here
appear to be generally accepted, prudence dictates that we keep in mind
that in 5 or 10 years we may be staring at very different numbers.

There is a weak correlation between silent and replacement rates as
illustated in Figure 2.2. The correlation has been observed in both mam-
mals [108,192] and prokaryotes [255]. The reason for the coupling is un-
known. It could be due to common mutation rates, epistatic selection
between sites, or some other factor.

Having seen some rates of silent substituton, we now turn to some of
the factors that determine the rates and to the nature of the substitutions.

Replacement substitutions

Figure 2.2. The relationship between silent and relacement substitution rates for 43
loci in mammals. Data are from [192, Table III].
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We begin by asking whether or not the mutation rate limits the rate of
substitution.

2.1 is mutation limiting?

A demonstration that the mutation rate limits the rate of molecular evolu-
tion must rely on a model to connect the two rates. The model need not be
very precise. In fact, the most commonly employed model is embodied in
the simple assumption that the rate of molecular evolution is proportional
to the mutation rate,

(2.1)

Here, k is the substitution rate and u is the mutation rate.
This model so permeates our thinking about molecular evolution that

many writers use the terms "mutation" and "substitution" interchangeably.
For example, one often reads about the rate of mutation when, in fact, it
is the rate of substitution that is being discussed. For some mechanistic
models of molecular evolution, the substitution rate is proportional to the
mutation rate. Among these are neutral models, models of mildly deleteri-
ous alleles and models where all of the substitutions are due to the fixation
of selectively favored alleles. This provides some justification for assuming
that k oc u. At the same time, it emphasizes that a demonstration that
the rate of substitution is proportional to the mutation rate may limit the
set of compatible mechanistic models, but cannot be used to choose among
them.

There is a conspicuous ambiguity in equation 2.1: should the rates
be expressed as events per year or per generation? When working with
sequence data, the convention is to express all rates as events per year,

This is forced on us as the generation times of the ancestors of extant species
cannot be known. By contrast, mechanistic models of molecular evolution,
such as neutral models, express the rates in units of events per generation,

If g is the generation time of a species measured in years, then the rates
per year and per generation are connected by

This immediately suggests a test of the assumption that mutation rates
are limiting: the rate of substitution should be higher in creatures with
shorter generation times; assuming, of course, that the mutation rate per
generation, u9, is the same for all of the creatures under study. Such a
relationship has been described, as will be seen very shortly, and is referred
to as the generation-time effect.
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Table 2.1. Rates of silent evolution. The silent rates are given relative to the average
artiodactyl rate, which is estimated to be 2.8 x 10~9 substitutions per site per year.
The time to origin column begins with the time used for the rate calculations followed
by a range of times that are compatible with the fossil record. Data are from [194].

Comparison or Taxon Silent Rate
Artiodactyls
Primates
Rodents
Human vs. chimpanzee
Human vs. orangutan
Human vs. OW monkeys
Cow vs. goat
Cow/sheep vs. pig
Mouse vs. rat

1.00
0.89
2.32
0.46
0.71
0.78
1.50
1.25
2.82

Time to Origin (my.)
80
75
75

7 (5-10)
12 (10-16)
25 (20-30)
17 (12-25)
55 (45-65)
15 (10-30)

The generation-time effect

At the time of this writing, the case for the generation-time effect is sug-
gestive, but not totally convincing. The main problem is the lack of diverse
taxa with different generation times, adequate fossil record, and a suffi-
cient number of sequences. With time, the appropriate data will become
available and the issue will be settled. For now, the case is as follows.

The first suggestions of a generation-time effect came from early ob-
servations of the apparent slowdown in the rate of DNA evolution in pri-
mates and the speed-up in rodents when compared with other groups of
mammals [172,178]. These comparisons were based on DNA hybridization
studies and as such were thought to apply mostly to noncoding regions of
the genome as these make up the bulk of mammalian DNA. By contrast,
the effect was generally absent or greatly reduced in proteins, although it
was detected in hemoglobins [105] at about the same time as in the hy-
bridization studies. These initial observations have withstood the test of
time remarkably well. The most complete reexaminations are those of Li,
Tanimura and Sharp [194] and Britten [24].

The Li et al. study [194] is the most satisfactory as it uses DNA se-
quences rather than DNA hybridization, thus avoiding the pitfalls of the
latter approach. The first half of their investigation compares the rates of
silent and replacement substitutions in 21 loci that have been sequenced in
representatives of primates, rodents, and artiodactyls. The rates were de-
termined by dividing the inferred number of substitutions separating pairs
of species by the time of separation as provided by paleontologists. The
number of substitutions are obtained via an algorithm, developed by Li et
al. [196], that corrects for multiple substitutions. The results are summa-
rized in Table 2.1 and Figure 2.1.
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Using artiodactyls as a point of reference, it appears that the silent rate
for rodents is accelerated about 2.3 fold while the primate rate is reduced
to 0.9 times the artiodactyl rate. By contrast, the replacement rate for
rodents was only 1.8 times that in the artiodactyls whereas the primate
rate was equal to the artiodactyl rate. These observations are consistent
with those of earlier studies. They are suggestive of a generation-time effect
if, as is commonly argued, the average generation times of these taxa over
their histories are in the order

primates > artiodactyls > rodents.

One concern with these comparisons is that they represent averages of
rates that extend over tens of millions of years. If the differences are due
to generation-time effects, they will be diluted by the similar generation
times that most likely occurred on the lineages during the time immediately
following their separation. Li et al. argued that the primate slowdown, in
particular, should be more pronounced in the apes, due to their longer
generation time, and most pronounced in humans. This prediction is born
out in the three comparisons of humans versus other primates shown in the
second section of Table 2.1. The rate for human-chimpanzee is the most
disparate, being one-half of the artiodactyl rate. The human-orangutan
and human-Old World monkey rates are each larger than the previous, in
line with the typical generation times of these groups. Within rodents, the
rate obtained from a comparison of mice and rats is seen to be faster than
for rodents as a whole.

Data from pseudogenes, as given in Table 2.2, also exhibit the primate
slowdown, but gives a different rank-ordering within the primates. The
fastest rate is still found in the Old World monkeys, but the slowest now
comes from the human-orangutan comparison.

One of the main criticisms of the use of these observations to support the
generation-time effect is their dependency on the accuracy of the paleonto-
logical data. In an effort to circumvent this limitation, Li et al. examined
the rate of divergence of paralogous loci: loci that duplicated before a pair
of lineages split. In four such comparisons, three /3-like globin gene pairs
and one aldolase pair, the average ratio of the silent rates for rodents com-
pared with humans was 1.4. (The equivalent replacement rate ratio was
1.2.) This is considerably less than the value (2.32/0.89 = 2.61) predicted
from Table 2.1. The discrepancy would be expected if the duplications oc-
curred well before the rodent-human split, if there were gene conversion,
or if the dates used in Table 2.1 were incorrect.

A second way around this problem is to use relative rate tests. Consider
a lineage made up of three species, numbered 1 to 3. Call species 3 the
outgroup, make humans species 2, and let species 1 be either a monkey or
an ape. The difference between the number of substitutions separating the
outgroup and species 2 and the outgroup and species 3, A"13 — Kys, is a
measure of the rate differences leading to the human and ape or monkey
lineages. If the difference is positive, then the evolution has proceeded more
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Table 2.2. Rates of substitution in pseudogenes. The rates are given relative to the
average artiodactyl rate as in Table 2.1. Data are from [194].

Comparison Substitution Rate
Human vs. chimpanzee
Human vs. orangutan
Human vs. rhesus
Human vs. owl monkey
Rhesus vs. owl monkey
Cow vs. goat

0.61
0.36
0.54
0.57
0.68
0.96

Time to Origin (my.)
7 (5-10)

12 (10-16)
25 (20-30)
35 (25-45)
35 (25-45)
17 (12-25)

slowly on the human lineage. Note that this conclusion does not depend
on any information about the times of separation.

Li et al. performed 44 of these relative rate tests; 36 (81%) of them
were positive indicating a slower silent rate on the human lineage than on
the ape, New World or Old World monkey lineages. Taken together, these
observations present a fairly consistent case for a generation-time effect.

There is more support for the primate slowdown and the rodent speedup.
Britten [24] reviewed both DNA hybridization and sequence data and con-
cluded that the two kinds of data were consistent and both support a fivefold
increase in the silent rates of rodents over those in higher primates. His
study included creatures other than mammals, which led to some similari-
ties that prove awkward for the generation-time hypothesis. For example,
rodents, Drosophila, and sea urchins all appear to evolve at about the same
rate even though the generation time of sea urchins is much longer than
that of Drosophila. Birds, including passerines, evolve at about the same
rate as the higher primates even though they have shorter generation times.

A more recent study by Catzeflis et al. [35] using DNA hybridization
suggests that the rodent rate may be as much as 10 times higher than
the primate rate. While these additional studies support the qualitative
pattern in rodents and primates, the fact that three separate studies give
ratios of 2.8, 5, and 10 for the rodent to human rates cannot help but make
us uncomfortable. The disparity is most likely due to differences between
DNA hybridization and sequence data, although Britten's arguments to the
contrary are difficult to refute.

There are some scattered counterexamples to the generation-time effect
as well. In a study of Phalangeriform marsupials, for example, Springer
and Kirsch [270] noted a slowdown in the burramyid lineage even though
this group has a short generation time relative to others in the study. A
note of caution has been expressed by Cockburn et al. [42] who question the
accuracy of the generation time determinations. It has also been suggested
that the lemurs have a lower rate of substitution than other primates with
similar generation times [20,118].

The real challenge to the generation-time effect has come not from the



Figure 2.3. The upper tree is the one used by Li et al. [194] for the rate calculations
given in Table 2.1. The lower tree eliminates the generation-time effect.

odd counterexample, but rather on two main fronts. The first, and most
persistent, has been to attack the topology and split times used in the rate
calculations [62,250]. Figure 2.3 shows the topology used by Li et al. to
calculate the rates given in Table 2.1. A large bite can be taken out of
the generation-time effect by simply changing the order of the three main
branches—allow the rodents to split off first—and adjusting the split times.

Assume, for example, that the primate-artiodactyl split occurred 75
million years ago. If the rodents split off from the primate-artiodactyl
lineage 122 million years ago, the generation-time effect disappears entirely
for these taxa. A further bit of fiddling places the human-ape split at 4
million years and the rat-mouse split at 42 million years. (See the tree
in the bottom half of Figure 2.3.) This removes the generation-time effect
from within the primate and rodent lineages as well.

Among these changes, those involving the rodents are in sharpest con-
flict with the conventional reading of the fossil record. Pushing the origins
of the rodent lineage back to 122 million years is difficult to justify [197],
although the fragmentary nature of the fossil record does not allow it to
be ruled out entirely. Placing the rat-mouse split at 42 million years goes
against recent interpretations of the record that support moving the split in
the other direction, to 10 million years [35]. Given the difficulty in working
with rodent fossils, it is quite possible to turn a blind eye to this evidence
and use our new tree to argue against the existence of a generation-time
effect.

A great deal has been written on both sides of this issue and it seems
unlikely to be resolved anytime soon. It is clear that the data are consistent
with the generation-time effect as there is no compelling reason to reject
the tree given in the top of Figure 2.3. Moreover, the paralogous gene
comparisons and the relative rate tests from the Li at al. paper support the

70 DNA evolution
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rodent speedup and primate slowdown by an argument that is independent
of the tree. At the same time, we must recognize that the fossil record
is not dependable, and may at some future time change our views on the
generation-time effect.

The second challenge involves an eclectic group of biological issues.
Foremost among these is the possibility that the variation in rates is not
due to a generation-time effect, but rather to different mutation rates in
different lineages. This is the explanation favored by Britten [24] who cites
as evidence the fact that the DNA repair system of primates differs in some
ways from that of rodents. Britten assumes, in effect, that ug/g is lineage
specific. By implication, each new observation—an average rate of sub-
stitution on a lineage—yields only an estimate of ug/g with no degrees of
freedom left over to test whether or not the fundamental model given by
equation 2.1 is correct. This is a very different situation than before when
we implicitly assumed that ug was similar between species (say, less than
twofold variation) and that we had independent estimates of the generation
times, g. As a result, we could look directly for a generation-time effect.
If we follow Britten's lead and assume that ug varies considerably, then we
must abandon any attempt to answer the title question of this section un-
til comparative information on the nucleotide mutation rates from different
mammals becomes available. Only then will we have independent estimates
of Ug/g to compare to substitution rates.

Variation in DNA repair mechanisms is but one of several mechanisms
that could lead to variation in per generation mutation rates. It is easy
to imagine, for example, that the mutation rate per cell generation is rel-
atively constant among mammals, but that the number of cell generations
preceding the production of gametes varies considerably. If creatures with
longer generation times had more cell generations, this would reduce the
magnitude of the generation time effect. If the average number of cell
generations preceding the production of a gamete is a, then the rate of
substitution becomes

This is the explanation that is most commonly employed to account for the
fact that the silent substitution rate in rodents is only 2.8 times that in pri-
mates, even though the average generation time in rodents is arguably much
greater than 2.8 times that in primates. In fact, this argument points out
the futility of becoming obsessed with a precise quantitative investigation
of the generation-time effect.
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Male-driven molecular evolution

Miyata and his colleagues [212,213] have made a simple but compelling ob-
servation that supports the hypothesis that the rate of silent substitution
is mutation limited. They exploited the fact that in mammals the number
of germ cell divisions in males is much larger than in females. As a con-
sequence, the rate of substitution should be higher in autosomal loci than
in those on the X chromosomes. The argument goes as follows. Let ug

be the per generation mutation rate in females. Suppose that males have
a times as many germ cell divisions as females. This implies that the per
generation mutation rate for males is aug (a > I ) . Consider, now, the
average mutation rate for a particular locus on an autosome. In a single
generation a randomly chosen autosome is equally likely to be found in a
male or a female. Thus, its average mutation rate is

The approximation applies if a is large, say 10 or greater. An X chromo-
some, on the other hand, is twice as likely to be found in a female as in a
male. The average mutation rate for an X chromosome is thus

If a is large, the ratio of the X chromosome mutation rate to the autosome
mutation rate is simply 2/3. A similar argument leads to the conclusion
that the rate of mutation on the Y chromosome should be twice that on an
autosome.

If mutation rates are limiting, we would predict that the rate of silent
substitution for X-linked loci should be two-thirds that of autosomal loci. In
the most complete study to date, Miyata et al. [213] compared the number
of silent substitutions separating rat or mouse and humans for 41 autosomal
loci and six X-linked loci and found the ratio to be 0.58. This is significantly
less than one but not significantly different than the predicted value, 0.67.

No Y-linked sequences from humans and rodents were available to Miy-
ata et al. so a similar comparison was not possible for this chromosome.
However, they argued that the human argininosuccinate synthetase (AS)
gene has spawned a pair of pseudogenes in a manner that does allow a
meaningful test of the Y chromosome prediction. One pseudogene, AS^-7,
is found on the seventh chromosome; the other, AS^i-Y, is on the Y chro-
mosome. Remarkably, one of these pseudogenes was apparently spawned
by the other as evidenced by a shared ALU sequence that is not found in
the original functional gene. A comparison of the corrected number of sub-
stitutions between the two pseudogenes and the functional genes allows a
calculation of the relative rate of substitution. The ratio of the Y-linked to
autosomal rates turns out to be 2.2, very close the predicted value of two.

Male-driven molecular evolution is clearly consistent with mutation-
limited evolution of silent sites and provides much cleaner evidence than
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does the generation-time effect. Some additional experimental observations
would shore up the case considerably. For example, it would be desirable
to have direct evidence that the per generation nucleotide mutation rate in
males is much higher than in females and that the per germ cell division
mutation rate is the same in the two sexes. Such evidence will be difficult
to obtain in the near future.

Miyata has made the more promising suggestion that an examination of
rates of substitution in a ZW female/ZZ male system, where the Z chromo-
somal loci should evolve at 4/3 the rate of the autosomal loci, may provide
the most convincing evidence and will also help to rule out the possibility
that the slower rate of evolution in X-linked loci is due to a form of selec-
tion that produces fewer substitutions at loci that find themselves in the
haploid state in one of the sexes.

Fast viruses

Certain RNA viruses evolve at a rate that has been estimated to be roughly
6 orders of magnitude faster than typical nuclear genes of the creatures
they infect. One explanation for this astonishing observation is that the
mutation rates in these viruses are 6 orders of magnitude higher as well [120,
249]. This would appear to add dramatic support for the model captured
in equation 2.1. The influenza and HIV-1 (AIDS) viruses, which have been
studied in the greatest detail, will be briefly examined in this subsection.

The influenza viruses are RNA viruses that have been classified into
three types: A, B, and C. The types are identified by the antigenic proper-
ties of their nucleo- and matrix proteins as determined by serological tests.
The A type is responsible for such major epidemics as the "swine" outbreak
of 1918, the "Asian" outbreak of 1956, and the "Hong Kong" outbreak of
1968 [233]. The viruses that cause each these epidemics differ antigenically
from one another leading to their classification into different subtypes. The
proteins used for this classification are the membrane proteins hemagglu-
tinin and neuraminidase.

The evolution leading to different subtypes is called Antigenic shift,
the evolution that produces variation within subtypes is called antigenic
drift. Rapid antigenic drift is apparently a major factor that allows A
type influenza viruses to reinfect individuals in the course of an epidemic.
Antigenic shift has led to the identification of at least 13 different subtypes
based on the antigenic properties of hemagglutinin and nine subtypes based
on neuraminidase [249]. Interestingly, the B and C types have not evolved
into subtypes. Thus, antigenic shifts appears to be a property that is unique
to the A type viruses. Antigenic drift occurs in the B strain, although more
slowly than in the A strain, and is slower still in the C strain [233].

The rate of nucleotide substitution within a particular subtype of A
viruses has been examined by Hayashida et al. [120] and by Saitou and
Nei [249]. The main technical problem in these studies is achieving a suit-
able time scale for evolution. The usual solution is to use the time at which
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Table 2.3. Rates of evolution of influenza virus type A loci. The rates are given for
the third site in units of substitutions per site per 100 years. Also given is the ratio of
the first plus second site rates to the third site rates. Data are from [249, Table 2],

Locus
Signal peptide
Hemagglutinin 1
Neuraminidase
Nonstructural protein 1
Matrix protein

3rd Rate
1.18
1.02
0.63
0.44
0.37

(lst+2nd Rate)/3rd Rate
0.58
0.40
0.48
0.39
0.14

subtypes first appear in collections as the time of their origin. With this
approach, it is a simple matter to obtain rates of substitution. Saitou and
Nei refined this method by using parsimony to construct the phylogeny of
strains and to assign substitutions to each branch. In this way, they were
able to calculate a rate for each branch.

A plot of branch length versus number of substitutions reveals that sub-
stitutions accumulate approximately linearly with time. The rates of accu-
mulation are summarized in Table 2.3. Of immediate interest in this table
is the fact that the rate of substitution at the third position of codons—
a measure of the silent rate—is about one substitution per 100 to 1000
years. This is roughly 6 orders of magnitude higher than the typical silent
substitution rate for mammalian nuclear genes! The second important ob-
servation is that the rate of replacement substitution is about one-half the
silent rate, as measured by a comparison of the rate of substitution at the
first two positions with that at the third position. The results of Hayashida
et al. [120] are similar.

The fact that the replacement rate is smaller than the silent rate suggests
that molecular evolution in these viruses may be mechanistically similar
to that in more conventional organisms. They just seem to be doing it
faster. A simple explanation for the speedup is the generation-time effect
since viruses clearly have much shorter generation times than mammals.
Accordingly, we might ask: what generation time would be required to
account for the rapid evolution if the virus mutation rate per generation
were the same as humans? Assuming that the generation time of humans
is 20 years (or 2.63 x 10r seconds), the virus generation time would have to
be one-millionth of this, or about 26 seconds. This is unrealistically short,
so we must entertain the possibility that the mutation rate is higher in type
A viruses than in humans.

In fact, the mutation rate in the nonstructural gene has been estimated
to be about 1.5 x 10~~5 per nucleotide per generation [235] or roughly 3
to 4 orders of magnitude higher than the oft-quoted but never measured
rate in mammals. With this estimate in hand, the generation-time effect
is now needed to account for only two or three orders of magnitude out of
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the six that separate the human and virus substitution rates. To bring the
two rates into line, the generation time for the virus would have to be from
roughly 7 to 70 hours long. While we cannot know the true generation
time, these figures do not appear to be too outrageous. An important
lesson in this numerology is that under the mutation-limited view, a proper
assessment of relative rates of evolution needs to take into account both
the variation in mutation rates and generation times.

A second biological issues that needs to be better understood concerns
the lower rates of evolution of type B and C viruses. If the rapid evolution of
A type is attributed to a higher mutation rate, then we must accept a lower
mutation rate for types B and C. As an alternative, it may be that the high
rate of evolution of type A viruses is due to Darwinian selection constantly
changing the antigenic properties of surface proteins, hemagglutinin and
neuraminidase, to avoid being neutralized by the immune system of an
infected host. This is supported by the observation that antigenic drift
allows recurring infections. To complete this model, we need to postulate
that the fast evolution of other proteins is a coevolutionary response to the
changes in the surface proteins and that the silent changes are needed to
adjust codon usage and the secondary structure and nucleoprotein binding
properties of RNA that are disrupted by the replacement changes.

The rate of evolution of the AIDS virus, human immunodeficiency virus
type 1 (HIV1), is also very fast. In a study of 10 loci, or parts thereof,
in two strains of HIV1, Li et al. [195] found the average silent rate to be
10.3 x 10~3 substitutions per site per year and the average replacement rate
to be 3.9 x 10~3. The fastest silent rate is about 2.4 times the slowest; the
fastest replacement rate is about 8.2 times the slowest. There is nothing
in these features, other than the fast overall rate, that is at variance with
the evolutionary pattern that would be expected for 10 nuclear loci drawn
at random from a mammal. Thus, as with the influenza virus, there is
nothing to suggest that the mechanism of molecular evolution is different
from that in other organisms. Mutation rates have been estimated in several
retroviruses. The rate of mutation is similar to that of the influenza virus,
about 2 x 10~5. The high rate appears to be due, in the main, to the
infidelity of reverse transcriptase and RNA polymerase [246].

Redundancy

The redundancy of the genetic code is structured such that there is variation
in the number of codons assigned to each amino acid. Some amino acids
have fourfold degenerate third sites. For these, changing the base at the
third site does not alter the amino acid specified by the codon. Other amino
acids have twofold degenerate third sites. For these, transversions—purine
to pyrimidine or pyrimidine to purine—do alter the amino acid. If the
nucleotide mutation rate is u and if the probability of mutating to each of
the other bases is equal, then the mutation rate to codons that do not alter
the amino acid is u for fourfold degenerate sites but only w/3 for twofold
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degenerate sites. If silent evolution were mutation limited and evolution
were such that most replacement substitutions are not allowed, then we
would predict that the rate of silent substitution at fourfold degenerate
sites should be three times faster than that at twofold degenerate sites.

In their survey of rates of molecular evolution, Li et al. [192] esti-
mated that the average rate of substitution at fourfold degenerate sites
was 4.18 x 10~9 while the twofold degenerate rate was 2.26 x 10~9. Thus,
the fourfold rate is larger than the twofold rate, but only by about 1.8
times rather than three times as predicted. However, the real situation is
more complex than this simple comparison suggests. Within the fourfold
degenerate sites, the rate of transition substitutions (2.5 x 10~9) is higher
than the rate of transversion substitutions (1.7 x 10~9) despite the fact that
there are two opportunities for a transversion to only one opportunity for
a transition. The standard explanation for this difference is that substi-
tutions mirror a mutational bias favoring transitions. Thus, the failure to
achieve the predicted threefold increase in rates at the fourfold degenerate
sites is attributed to the low rate of transversion mutations. That the rate
of substitution at twofold degenerate sites is indistinguishable from the rate
of transition substitutions at fourfold degenerate sites lends credence to this
explanation.

The use of redundancy to argue for mutation-limited evolution is more
suspect than some of the other cases. Had the result been negative—equal
rates for twofold and fourfold degenerate sites—we could have used that
to argue against the hypothesis. Our positive result, on the other hand,
could be due to the greater opportunity for evolution provided by fourfold
degenerate sites in a model that is not mutation limited.

2.2 The substitutiona! sieve

Molecular evolution may be thought of as a sieve. New variants pumped
into the population each generation by the genetic machinery are the input
to the sieve; those that ultimately attain a substantial frequency in the
population are the output. In principle, the sieve may be characterized
experimentally by determining its input and its output without any knowl-
edge of the evolutionary mechanisms that determine the sieve's behavior.
Currently, we know much more about the output of the sieve than about
its input. Studies of variation within and between populations are much
farther along than are studies of, for example, the spontaneous mutational
spectrum.

If a region of the genome were under no selective forces whatsoever,
each variant would be equally likely to pass through the sieve. We will
call this the transparent substitutional sieve. There is a tendency to postu-
late this sieve when examining, for example, the evolution of pseudogenes.
For the transparent sieve, the output—fixations in the context of species
comparisons—will reflect the input. Thus, the problem may be turned
on its head and fixed variants may be used to make inferences about the
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Figure 2.4. A fanciful representation of the substitutional sieve.

mutational process.
In this section, we will review some of the efforts in this area. Such

studies are particularly valuable in a comparative sense. A comparison
of the output for the substitutional sieve operating in a coding region to
one operating in a noncoding region will give insights into the underlying
mechanisms of evolution. As a trivial example, fixations of small deletions
are fairly common in pseudogenes. On the other hand, they are relatively
rare in coding regions. The reason is easy to understand in a mechanistic
sense: deletions cause frame shifts that inactivate proteins leading to strong
selection against them. Other differences in the sieves for pseudogenes and
coding regions are less easily understood. For many of the differences we
must be content at this point to provide only the characterization and defer
the underlying mechanistic explanation for the future.

Pseudogenes

Because, with few exceptions, all pseudogenes lack function, one can
assume that all mutations occurring in pseudogenes are free from se-
lective constraints, and thus, may be randomly fixed in populations.
Therefore, the pattern and rate of substitution in pseudogenes should
reflect the pattern and rate of spontaneous mutation [109, Page 279].

This quote is a clear statement of the assumption that pseudogenes evolve
through a completely transparent sieve. The evidence in support of this
assumption is suggestive, but not complete enough at this time to be totally
convincing. We will begin our discussion with some background information
on the rates of evolution of pseudogenes followed by an examination of the
output and inputs to the sieve.
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Published estimates of the average rate of nucleotide substitution in
pseudogenes have changed over the years. Earlier studies suggested that
pseudogenes evolved faster than silent sites within coding regions. For ex-
ample, Li et al. [192] found the average rate to be 4.85 x 10~9. This is about
twice the average rate for twofold degenerate sites (2.26 x 10~9) obtained in
the same study, but only slightly higher than the fourfold degenerate rate
(4.18 x 10~9). These early studies included pseudogenes produced by du-
plications of their parent genes. Thus, part of the procedure for estimating
rates involved finding the time at which the duplicate gene is disabled by
a frameshift or stop codon.

More recent work has focused on processed pseudogenes since they are
almost never functional at the time of insertion. In a recent study, Wolfe
et al. [311] failed to find any significant difference in the rate of evolution
of processed pseudogenes and the fourfold degenerate rate in comparisons
of humans and Old World monkeys. Thus, at the present time there is no
compelling evidence to suggest that pseudogene rates of evolution are any
different from silent rates. This is somewhat surprising since silent sites
do play a role in codon usage, transcription rates, the secondary structure
of mRNA, and other functions that are not relevant to the evolution of
pseudogenes.

While the rates of substitution in pseudogenes may not differ apprecia-
bly from those of fourfold degenerate silent sites, the nature of the substi-
tutions do. The most striking difference involves the substitutions of small
deletions and insertions. Figure 2.5 gives histograms of the sizes of deletions
and insertions for 22 human and 30 rodent processed pseudogenes from a
study by Graur et al. [109]. About half of the insertions and deletions in-
volve single bases; the overwhelming majority are smaller than four bases.
Note the unexpected mode at three bases for both deletions and insertions.
Deletions outnumber insertions by 7:1 in humans and 3:1 in rodents.

On average, human processed-pseudogenes have had 1.2% of their length
deleted and 0.1% inserted. The figures for rodents are 2.3% and 1.1%. Thus,
the evolution of pseudogenes is characterized by a gradual shortening, this
process being farther along in rodents than in humans. This may reflect
the nature of a mutational process that favors deletions over insertions, as
Wolfe et al. claim. Alternatively, it may reflect the action of weak selec-
tion counterbalancing the lengthening of the genome that accompanies the
propagation of pseudogenes.

A rough estimate of the relative rates of nucleotide substitutions to
indel (insertion and deletion) substitutions for processed pseudogenes may
be obtained even though the time of origin of each pseudogene is unknown.
In the Graur et al. study there were about 1747 base-pair substitutions
separating all of the processed pseudogenes from their functional parental
genes. This number is obtained by applying the Jukes-Cantor correction
formula to the fraction of sites that differ between the pseudogene and its
parent. As such, it is only a crude estimate since the assumption of equal
substitution rates to all bases is not met by pseudogenes. Assuming that
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Length of deletion or insertion

Figure 2.5. A histogram of the lengths of deletions and insertions in 22 human and
30 rodent processed pseudogenes. Data are from [109].

1/4 of the sites in the functional parent gene are silent, and that silent sites
and pseudogenes evolve at the same rate, we infer that (4/5)1747 = 1397.6
base-pair substitutions have occurred in the pseudogenes, the remaining
substitutions having occurred in the parental gene. We can assume that
all of the 86 indel substitutions that separate the pseudogenes from their
parents occurred in the pseudogenes, since indels are rare in coding regions.
Thus, indels make up about 5.6% of the substitutions recorded in the Graur
et al. study. The remainder are base-pair substitutions. For the mouse,
there were about 915 total base-pair substitutions and 70 indels, implying
that about 8.7% of the substitutions are indels.

An intriguing aspect of these results concerns the differences between
rodents and humans. Humans experience about twice as many deletions
per insertion (7:1) as do rodents (3:1), yet the total fraction of rodent
pseudogenes that have been deleted is higher. Does this reflect a difference
in the input to the sieve or to the output?

There have been a number of studies describing patterns of base sub-
stitutions in pseudogenes [27,103,198]. Since these studies are based on
a common pool of pseudogene sequences, their conclusions are in general
agreement. The discussion here is based mainly on Bulmer's work as it,
being the most recent, uses the largest number of pseudogenes.

Table 2.4 gives the relative frequencies of base substitutions averaged
over 14 pseudogenes. From this table and from other observations in these
papers we are led to the following generalizations:

 No strand effects: The patterns and numbers of substitutions appear
to be the same for both (original) sense, and antisense strands. Tests
designed to detect differences have failed to identify any [27,198]. This
could not be predicted a priori since the leading and lagging strands
are replicated and repaired by slightly different mechanisms, which
could cause different mutational spectra. Some studies, including

The substitutional sieve
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Table 2.4. Base substitutions in 14 pseudogenes. The numbers are the percent of
the total number of substitutions that occurred in each category. Data are from [27,
Table 2].

Base in
functional gene

A
C
G
T

Total

Base in pseudogene
A
—
6.4
22.8
2.9
32.1

C
3.8
—
5.6
8.5
17.9

G
8.5
5.6
—
3.8
17.9

T
2.9
22.8
6.4
—

32.1

Total
15.2
34.8
34.8
15.2

Bulmer's, use the absence of a strand effect to collapse the data into
equivalent substitutional classes. For example, A—>C substitutions
are combined with T—>G substitutions. This leads to the symmetries
evident in Table 2.4.

 Homogeneity: There is, at present, no evidence that the substitutional
process is different in different pseudogenes. Li et al. [198] conjectured
that there is no significant heterogeneity between eight pseudogenes.
Bulmer checked for heterogeneity in his data and also failed to find
any. Further work may uncover differences. This is particularly likely
if a pseudogene is studied that has been inserted into a GC-rich iso-
chore. Such pseudogenes may not exhibit the evolution toward higher
AT seen in pseudogenes studied to date.

Transitions outnumber transversions: Of all of the substitutions re-
corded in Table 2.4, 62.6% are transitions. This is twice what would
be expected (33%) were the probabilities of substitutions to all three
bases equal. Note that a big contributor to this effect are the two
substitutions C—>T and G—>A. The reason for this will be discussed
below.

AT content increases: The right hand column in Table 2.4 shows that
C and G are about twice as likely to experience a substitution as are A
and T. The bottom row shows that A and T are twice as likely to be
the bases that replace the original base when a substitution does oc-
cur. Together, this implies that the AT content of pseudogenes should
be increasing. This may be examined quantitatively by comparing the
AT% in the functional genes, 0.47, to that of the pseudogenes, 0.51.
(Both figures may be obtained from Table 2.4.) The comparison may
be continued to the AT% predicted by an equilibrium analysis of
the substitutional pattern. The equilibrium calculation that Bulmer
provides [27, Table 4] goes beyond what is possible using Table 2.4
alone in that it uses dinucleotide substitution patterns. He concludes
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that the equilibrium AT% will be 0.624, or about 50% higher than
in functional genes. As with the previous item, the C—>T and G—»A
substitutions are big contributors to the increase in AT.

Deficiency of CpG: Since at least 1961 we have known that species
with heavily methylated DNA exhibit a deficiency in CpG doublets
over that expected in the absence of neighbor effects [17]. In hu-
mans, for example, there are about one-fifth as many CpG doublets
as expected. The deficiency is attributed to the fact that cytosine in
CpG doublets is often methylated, which, in turn, elevates the mu-
tation rate from cytosine to thymidine. Thus, the deficiency of CpG
is accompanied by an excess in the frequency of TG and CA. Part of
the evidence in support of this explanation is the striking correlation
between the level of methylation of a genome and the extent of its defi-
ciency of CpG [17]. Bulmer's analysis of substitutions in pseudogenes
shows that a large fraction of C—>T and G—»A substitutions evident
in Table 2.4 are due to substitutions in CpG doublets. His equilibrium
projection based on dinucleotide substitution patterns predicts that
the frequency of CpG in noncoding DNA should be about one-fifth
that predicted in the absence of neighbor effects, in remarkable agree-
ment with the observed deficiency. Bulmer detected other neighbor
effects in his study, but none are as striking as the CpG pattern.

Our view of pseudogene evolution will undoubtedly change over the next
few years. The observations summarized here are mostly from papers that
were written before the isochore structure of the mammalian genome was
understood. (Isochores will be covered in a later section.) Both GC% and
levels of methylation vary throughout the mammalian genome; presumably,
the evolutionary dynamics of pseudogenes vary as well. Future work should
focus on the variation in dynamics rather than average properties.

The mutational spectrum

To judge whether or not the substitutional sieve for pseudogenes is trans-
parent we need to compare its output, the substitutions summarized in
the previous section, to its input, the mutational spectrum for mammalian
gametes. Work on mutagenesis in mammals is in its infancy, making the
appropriate comparison impossible at the present time. There are, how-
ever, some aspects of mutagenesis that are remarkably concordant with the
substitutional pattern.

The extraordinarily low spontaneous mutation rates in eukaryotes—
10~10 to 10~12 errors per base pair per cell generation [289]-—suggests that
DNA replication, repair, and recombination all conspire to assure the fi-
delity of DNA transmission. Our understanding of these processes in mam-
mals comes mainly from two approaches. The first examines replication
in vitro using purified polymerases or replication complexes. The second
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Table 2.5. Fidelity of mammalian polymerases. Data are from [175, Table II].

Error rate
Error Category
Base substitutions
Frameshifts

Overall average
Plus-one-base
Minus-one-base

Human Pol a
3.23 x 10~4

1.28 x 10~4

9.09 x 10-6

1.18 x 10-4

Rat Pol /3
7.69 x 10~4

9.09 x 10~4

1.11 x 10-5

9.09 x 10~4

examines spontaneous mutations in mammalian cell cultures using various
selection schemes.

In mammals, it is thought that a polymerase is the primary enzyme
for DNA replication and /3 polymerase is used mainly for repair. Neither
of these polymerases have any proofreading activity. The results of an in
vitro study of purified polymerases by Kunkel and Bebenek [175] is given in
Table 2.5. The error ratesattributable to polymerization is obviously quite
high, indicating that fidelity is due to proofreading and other processes that
occur on elements of the replicative complex that are not purified along with
the polymerase. Note, however, that the rank ordering of relative error rates
mirrors that of substitutions in processed pseudogenes. Base changes* occur
more frequently than indels; within indels, deletions occur more often than
insertions. However, the quantitative relationships between these classes of
mutations do not agree very well with the substitution patterns. If the sieve
is transparent, then proofreading and repair must operate differentially on
the three types of mutations.

Recent work on replication complexes using HeLa cell extracts and
simian virus 40 (SV40) have lowered the in vitro mutation rate to 1 er-
ror per 150,000 nucleotides incorporated [245]. (Compare this to 1 per
5000 in the purified a polymerase system.) The a polymerase replication
complexes from HeLa cells have been shown to have 3' -* 5' exonuclease
activity, which is thought to contribute to the increased fidelity. However,
these studies are not advanced enough to allow a direct comparison with
the polymerase results in Table 2.5.

Studies using the polymerase chain reaction technique and DNA se-
quencing for in vivo estimates of mutation rates in mammalian cell cultures
are just beginning, but hold promise as a valuable source of information on
mutational spectra. A recent study [281] using the bacterial gpt gene in
Chinese hamster ovary cells produced results that are at variance with
both the substitution pattern in pseudogenes and the in vitro studies. Of
62 spontaneous mutations, 49 (79%) were deletions. This high percent-

*Substitution is used in mutagenesis studies to refer to mutational rather than
populational events.
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age may reflect a selection scheme that is not sufficiently sensitive to point
mutations. Nineteen of the 49 deletions were 3-base deletions. Again, this
fraction is high relative to the other studies, yet is intriguing when measured
against the 3-base mode seen in Figure 2.5 for substitutions.

The 3-base deletions were not scattered randomly over the gpi gene, but
were concentrated in a small 6-base region. This same region was removed
by a single 7-base deletion. The occurrences of such mutational hot spots
is a constant feature of all mutagenesis studies. They are due to contextual
effects, local properties of the DNA that cause dramatic alterations in the
mutation frequency. The high rate of transition from methylated CpG dou-
blets is another example of a contextual effect. Kunkel and his colleagues,
among others, have found contextual effects from in vitro studies that ele-
vate mutation rates by as much as 2 orders of magnitude at specific sites.
His explanation, based on a mechanism called transient misalignment [176],
rests heavily on local sequence patterns in DNA.

If contextual effects can alter local mutation rates by 1 or 2 orders of
magnitude, then we should probably be rethinking our general approach to
the study of the evolution of pseudogenes. Rather than aiming toward sum-
mary statistics that average events across several pseudogenes, we should
be trying to identify specific "substitutional hot spots" by comparing site
by site processed pseudogenes from a single parent gene. Once a substitu-
tional hot spot is identified, its local sequence may be used in an in vitro
study to determine if it is a mutational hot spot. Should this be so, then
we will have yet more evidence for the transparence of the pseudogene sub-
stitutional sieve.

2.3 CG% and codon usage

The previous sections dealt with rates and patterns of substitutions with-
out paying attention to their biological significance. In this section we turn
to the evolution of two aspects of the genome whose biological significance
cannot be ignored: the GC content and codon usage. These aspects are so
intertwined that they are most profitably considered together even though
they are frequently uncoupled in the literature. The presentation has been
constructed to support the unorthodox view that the GC% of the genome
is molded by a force—perhaps natural selection—whose strength is suffi-
cient to be a major determinant of codon usage in many organisms. The
argument in support of this view will coalesce as the relevant observations
are described.

The GC/AT pressure

Among the eubacteria, there is remarkable variation in the genomic GC
content. The GC% varies from about 25%, as in some Mycoplasm, to 75%,
as in Micrococcus luteus [230]. The genomic GC% is correlated with the GC
content of the four major classes of DNA: coding regions, tRNA loci, rRNA
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Genome G+C % Genome G+C %

Figure 2.6. The dependency of various regions of DNA on the genomic percent of G
plus C. Redrawn from [230, Figs. 1 and 2].

loci, and spacer as illustrated in Figure 2.6. The correlation is weakest for
tRNA and rRNA loci, which make up less than 1% of the total DNA,
somewhat stronger for coding regions (70-80% of the DNA), and strongest
for spacer DNA (20-30%) [230]. This is as would be expected were there
some force—call it the GC/AT pressure [230]—that pushes the GC% to a
particular value.

The GC/AT pressure is opposed by selection for the functions performed
by the products of the various loci. Transfer and ribosomal loci are pre-
sumably under direct sequence selection and as such oppose the GC/AT
pressure to the greatest extent. In coding regions selection acts, in part, on
the proteins and thus not directly on properties of DNA. The redundancy
of the code allows some flexibility for DNA sequence evolution in response
to the GC/AT pressure. This leads to a stronger correlation with genomic
GC% than seen in the RNA loci. Finally, spacer DNA is generally consid-
ered to be under the fewest constraints and as such is most susceptible to
the GC/AT pressure.

The variation in GC% among bacteria suggests that a nontrivial fraction
of molecular evolution may be in response to the GC/AT pressure. The
fact that even relatively closely related bacteria can have very different GC
percentages (e.g., within Mycoplasma or Clostridium [310]) suggests that
the rate of evolution under the GC/AT pressure may be high. What, then,
is the nature of the GC/AT pressure?

Many years ago, Sueoka proposed that the GC/AT pressure is due al-
most entirely to mutational bias [274,275]. That is, in some species the
spontaneous mutational spectrum favors A and T over G and C, whereas
in others it is the opposite. If the majority of mutations were nearly neu-
tral, then this explanation would nicely account for the observed patterns.
In fact, this is the only explanation for the GC/AT pressure that appears
to be seriously entertained in the literature [230].
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As an historical sidelight, Sueoka's theory appears to be one of the first
neutral theories of DNA evolution. It explicitly assumes that natural selec-
tion plays no role in the dynamics of allele frequencies. However, as it does
not incorporate genetic drift, it cannot describe the fixation of nucleotides.
This aspect of the theory had to wait six more years for the publication of
the papers by Kimura [155] and King and Jukes [164].

There is, of course, another explanation for the GC/AT pressure: The
GC content of DNA might be under direct natural selection toward an
optimal value. If selection toward this optimum were stronger than the
mutational bias, then the genomic GC% should be essentially independent
of the mutational bias.

Although these two mechanistic explanations for the GC/AT pressure
are very different, they make essentially the same predictions about the cor-
relations between the GC% of the genome and that of the various loci. It is
impossible to choose one over the other based only on the observations pre-
sented thus far. There is, however, a new observation that seems to provide
one argument in favor of the selection-based hypothesis. This is illustrated
in the right-hand graph in Figure 2.6 showing the relationship between the
GC% of the entire genome and that of the three positions of codons. As
expected, the second position is only weakly dependent on genomic GC%
whereas the third position is strongly dependent. Note, however, that the
slope for the third position is even steeper than that of spacer DNA. We
would imagine that spacer DNA, being the least constrained, reflects most
faithfully the value toward which the GC/AT pressure is pushing. If the
GC/AT pressure were due to a mutational bias, we would expect the slope
for the third position to lie between that of the second position and the
spacer. On the other hand, if the pressure were due to selection for an op-
timum, then constraints on selection at the first and second positions that
generally weaken the correspondence between the optimum and local GC%
can be compensated by making the GC% at the third position even more
extreme. This provides a very natural explanation for the patterns seen in
the graph.

The explanation for the steeper slope of third positions given by Osawa
et al. [230] involves the influence of tRNA abundances. They argue that the
GC% should be viewed as the sum of two pressures: the mutational bias and
the influence of tRNA abundances. Thus, bacteria with very high (low) GC
percentages also have tRNAs that favor codons with an even higher (lower)
GC%. What remains obscure in this explanation is the reason why the
particular tRNAs that cause this pattern are the most abundant. This
point will be taken up again after we explore codon usage in more detail.

Unicellular codon usage

The degenerate genetic code provides more than one codon for most amino
acids. Leucine, serine, and arginine lead the pack with six codons each.
Five other amino acids (pro, ala, val, gly, and thr) have four codons each.
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The four in each case differ only in the third position. For example, valine
is encoded by GUU, GUC, GUA, and GUG. In general, these eight amino
acids require more than one tRNA to handle all of their codons. Nine amino
acids (phe, tyr, his, gin, asn, lys, asp, glu and cys) have two codons each
with twofold degenerate third positions. The two bases in the third position
are always either purines (A or G) or pyrimidines (U or C) for each amino
acid. These amino acids require only a single tRNA each. Tryptophan and
methionine have only one codon each while isoleucine is unique in having
three codons and two isoaccepting tRNAs (in E. coli, at least).

It has been known for some time that the codons for each amino acid
are not used with equal frequencies. This raises the important issue as to
whether the departures from equality are due to mutational biases acting on
mostly neutral traits (the different codons of each amino acid) or whether
natural selection is somehow involved. There can be no simple answer
since the patterns of codon usage vary dramatically between taxonomic
groups. To further complicate the picture, codon usage is confounded with
the evolution of GC% in the genome.

In unicellular organisms with extreme GC contents, where there is little
latitude for codon usage, we would expect the usage to be dictated almost
entirely by the GC%. This appears to be true in the few cases that have
been reported. Winkler and Wood [310], for example, examined a number
of AT-rich bacteria and discovered that they used A or U almost exclusively
in the two- and fourfold degenerate third positions of codons. Moreover,
in the sextets (amino acids with six codons), the codons with the maximal
number of U and A were used most often. For example, UUA is used for
leucine much more frequently than is UUG or any of the codons of the form
CUN. Among the latter group, CUA and CUU are used more frequently
than CUG or CUC. Winkler and Wood conclude from their study of five
clostridial genes, five mycoplasmal genes and three rickettsial genes that
the use of A and U in these AT-rich bacteria is very close to the maximum
possible.

Unicellular organisms with intermediate GC%, on the other hand, are
free to evolve more complex patterns of codon usage. The yeast Saccha-
romyces cerevisiae and the bacterium Escherichia coli are remarkable in
that they share a simple pattern of codon usage that lends itself to a
straightforward evolutionary interpretation. The main features of the E,
coli-yeast pattern are as follows.

• The direction of the codon bias is species specific rather than locus
specific. Thus, all E. coli loci exhibit a bias in a direction that differs
from all loci of yeast. Grantham et al. [107] were among the first to
note the species-specific bias and referred to it as the genome hypoth-
esis. Figure 2.7 illustrates the bias for proline and alanine for two
loci in the two species. A more complete comparison may be found
in Ikemura's review [139, Table 1].

• The degree of codon bias varies among loci with the most highly ex-
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Figure 2.7. Pie diagrams illustrating the codon bias for praline in E. coli on the left
and yeast on the right The inner pies are for highly expressed genes, the outer are
for lowly expressed genes. Data are from [139].

pressed loci showing the greatest bias. Ikemura [138] and Grantham et
al. [106] are the names associated with the first description of this cor-
relation although many others noted it at about the same time [139].
Figure 2.7 illustrates this property for proline for the highly expressed
trp and CYC 1,7 loci and the lowly expressed tuf and G3PDH loci in
E. coli and yeast, respectively. The correlation between the frequency
of use of the "optimal codon" (see below) and the number of protein
molecules per cell for E. coli is shown in Figure 2.8

The direction of the bias in coli and yeast is determined by four empirical
"rules." The first of these applies to the nine amino acids with three or
more codons and more than one isoaccepting tRNA. The three remaining
rules apply only to the twofold degenerate amino acids with a single tRNA
each.

 Rule 1\ The frequency of use of a particular codon is correlated with
the abundance of its isoaccepting tRNA for the nine amino acids with
three or more codons [138]. (The abundances of isoaccepting tRNAs
differ between coli and yeast, contributing to the genome effect.)

 Rule 2: If the wobble U (the first position in the anticodon) is modified
to thiolated or 5-carboxymethyl uridine, then A-terminated codons
(the proper Watson-Crick partner) are preferred over G-terminated
codons. (Modifications of the wobble U often differ between E. coli
and yeast contributing to the genome effect.)

 Rule 3: Inosine—a close chemical relative of adenine—at the wob-
ble position prefers U- and C-terminated codons over A-terminated
codons.

 Rule 4- A codon of the form A/U-A/U-pyrimidine favors a C in the
third position over U. Since the A-U pairing is weaker than the G-C
pairing, the feeling is that C is needed to raise the bond energy for
these codons. Conversely, codons of the form G/C-G/C-pyrimidine
prefer U to C in the third position.

These rules lead to unambiguous choices of "optimal" codons for most
amino acids [139, Table 1]. For certain amino acids, the rules imply that

CC% and codon usage



88

Protein molecules per genome (x 1000)

Figure 2.8. The relationship between the frequency of use of the "optimal" codon
and the concentration of the protein for loci from E. coli. Data are from [139, Table
4].

there will be more than one optimal codon. The frequency of use of optimal
codons, Fop in Ikemura's terminology [139], is strongly correlated with the
level of expression of a locus. This striking phenomenon is illustrated in
Figure 2.8.

Bulmer [30] has reexamined the validity of these rules by using a much
larger number of loci than was available when the rules were originally
stated. He concluded that Rule 1 fits the data quite well. The remaining
rules, which apply to codon sets that use only a single tRNA, are more
variable in their success. Yeast conform reasonably well to Rules 2, 3, and
4 while E. coli follows only Rule 3 with convincing fidelity.

The match between frequently used codons and the abundance of the
corresponding isoacceptor tRNAs, particularly for highly expressed loci, im-
mediately suggests that this is an adaptation for efficient protein synthesis.
In fact, it has been demonstrated experimentally that if a codon corre-
sponding to a rare tRNA is substituted in a highly expressed gene, the
rate of translation is lowered [287]. What remains enigmatic is the driving
force behind the correlation. Are tRNA abundances set by some—as yet
uncovered—strong evolutionary force with codon frequencies weakly evolv-
ing to match? Or is the converse true: some strong force, also unknown,
dictates codon usage with tRNA abundances evolving to match? Michael
Bulmer [28] views the problem as coevolutionary, with both codon usage
and tRNA abundances evolving to maximize the rate of protein synthesis.

The degree of codon bias in E. coli is inversely correlated with the rate
of silent evolution [139,255]. The effect can be impressive. For example, the
rate of silent substitution for the highly expressed and biased rpsU locus is
44 times less than that of the lowly expressed trpA locus [255, Table 1]. The
rates in this case are determined by comparing E. coli to its close relative,
Salmonella typhimurium. More typically, highly biased loci evolve about
four times more slowly than less biased ones.

DNA evolution
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Not all unicellular organisms with intermediate GC percentages have
such extreme biases in codon usage. The first major study of codon bias
in the bacterium Bacillus subtilis, for example, resulted in a paper entitled
"Markedly unbiased codon usage in Bacillus subtilis" [225]. There is little
doubt when examining the codon usage table for the 21 loci examined in
this paper that the striking biases observed in E. coli and yeast are not
evident. In fact, the average usage across all 21 loci looks remarkably even.

Shields and Sharp [258] followed this original study with a second that
involved more loci, 56, and a more sophisticated statistical quest for evi-
dence of a bias of the sort seen in E. coli and yeast. They used a multi-
variate statistical technique called correspondence analysis that had been
used successfully in the past to uncover hidden patterns of codon usage.
The technique is similar to principle component analysis in that it finds a
transformation that maximizes the dispersion of codon usage between loci.

When applied to Bacillus, correspondence analysis produced an axis
along which a group of six loci emerged as having a shared pattern of codon
bias that differed substantially from the others. Three of these turned out
to be ribosomal protein loci and three were for small, acid-soluble spore
proteins. All six are thought to be highly expressed. Moreover, at the
opposite end of the first axis were a number of sporulation loci that are
thought not to be highly expressed. Thus, there is some similarity with the
E. coli-yeast pattern in that the degree of bias appears to be correlated with
the degree of expression. Unfortunately, there is not sufficient information
on the abundances of isoaccepting tRNAs to check whether or not Rule 1
applies. The agreement with Rule 4, however, increases with the level of
expression.

Among unicellular organisms, we have seen evidence for two different
forces that operate directly on the DNA sequence. One affects the GC% of
the entire genome, the other affects codon usage within coding regions. Of
the two, the GC/AT pressure appears to be the stronger. Two observations
support this. One is the maximal use of A and U in the third positions of
AT-rich bacteria. The other is the steeper slope for the third position GC%
versus the genomic GC% than the spacer GC%. In the case of E. coli, the
fact that the adherence to Rule 1 increased with the level of expression led
us to conclude that selection was responsible for codon usage. Thus, the
GC/AT pressure is generally stronger than the force of natural selection
acting on codon bias.

Drosophila

Codon usage in multicellular organisms is likely to be more complex than
that in unicellular organisms due to that added complication of adapting to
various differentiated cell types with different tRNA populations [139]. The
experience with unicellular organisms suggests that progress will only come
from studies that include three critical observations: codon bias, level of
expression, and rate of substitution. I have been unable to find any studies
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of "lower" multicellular organisms with all three except for the Shields
at al. [259] examination of Drosophila. The Drosophila story has many
elements in common with the unicellulars. Mammals, on the other hand,
exhibit a strikingly different pattern. They will be relegated to the next
section.

Shields at al. [259] tabulated codon usage for 91 loci in D. melanogaster
and made the following observations:

Codon usage varies between loci mainly due to variation in the fre-
quency of GC in the third position. The variation exceeds that at-
tributable to binomial sampling.

The first axis in a correspondence analysis ranked the loci in such a
way that the most highly biased loci were at one extreme and the
least biased at the other. The most highly biased loci tend to have G
or C in the third position. The increase in GC is due almost entirely
to an increase in C rather than G.

The average GC content for loci with little bias is about 60%, that for
highly biased loci is about 80%. These are higher than the average
for introns (« 37%) or the entire genome (« 40%).

There is no correlation among loci in the GC content of silent and
replacement sites or in the GC content of introns and silent sites as
there is in mammals (as we will document in the next section).

For those few loci for which it could be examined, it appears that
the more highly expressed loci have a greater codon bias than lowly
expressed loci.

The rate of silent substitution at highly biased loci is lower than at
less biased loci as illustrated in Figure 2.9.

There is a very tenuous suggestion that the tRNAs may mirror codon
usage.

In broad outline, this pattern is remarkably similar to that for E. coli and
yeast. The conspicuous difference being that the highly biased loci all share
the same pattern of bias: an increase in the use of C in the third position.
One explanation for the difference is that the bias does not represent an
interaction with tRNA pools, but reflects some property of mRNA, such
as secondary structure, that is relevant to translation or message stability.
Unfortunately, not enough is known about the tRNA population to discover
whether or not the favored codons match the most abundant tRNA species.

As was pointed out by Shields et al., it seems extraordinarily unlikely
that a bias in codon usage due to an increase in the C content could be due
to a local mutation effect. Were this so, we would expect to see a correlation
of silent site GC% and intron GC%. They suggest that some as yet unknown
evolutionary force favors higher GC% for coding regions generally, and that
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Figure 2.9. The relationship between the degree of codon bias and the number of
silent substitutions for loci from D. melanogaster and D. pseudoobscura. The
names of the loci are given next to each point Data are from [259, Table 3].

the force is stronger in more highly expressed loci. Whatever this force is,
it must run counter to the genome-wide GC/AT pressure. It is suggestive,
but not statistically significant, that the intron GC% is lower than that of
the entire genome, as if it is compensating for the elevated GC% of the
exons.

Riley [244] compared the DNA sequences of Xdh (xanthine dehydroge-
nase) from D. melanogaster and D. pseudoobscura and observed that the
codons used at this locus, whose bias is at the low end for Drosophila, are
significantly different between the two species. By contrast, the same sta-
tistical procedure failed to find a significant difference in the codon usage
in Adh, a highly biased locus. Were this pattern repeatable across loci, it
would suggest that there is a temporally fluctuating force altering the usage
of codons and that the force is opposed by the codon-usage rules. The rules
themselves also appear to change. Starmer and Sullivan [271] noted that
there are significant differences in codon usage in Adh when species from
the two subgenera, Drosophila and Sophophora are compared.

Isochores

The genomes of mammals and birds are compartmentalized into isochores,
stretches of DNA several hundred kilobases in length that are relatively ho-
mogeneous in their GC content. The GC% of different isochores are often
quite disparate, but within an isochore there is remarkably little variation.
Three different lines of research pointed to the existence of isochores: CsCl
density gradient centrifugation, chromosome banding, and replication-time
fractionation. Although many workers have contributed to our understand-
ing of isochores, Giorgio Bernardi, who coined the term, was among the first
to realize their importance and has been a major force in isochore research.
Bernardi's [13] and Holmquist's [132] reviews are excellent sources for in-

CC% and codon usage
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Table 2.6. Properties of isochores.

GC-Rich Isochores
GC% > 50%
In R bands

Early replicating
CPG rich islands

Codon usage favors G and C
Genes relatively common

Housekeeping genes

AT-Rich Isochores
GC% < 50%
In G bands

Late replicating
Few CPG rich islands

Codon usage favors A and T
Depauperate in genes

Mostly tissue-specific genes

formation about isochores.
Our interest in isochores is tied up with their influence on codon usage.

As we shall see, the bases used in the third position of most mammalian
codons are chosen to bring the GC% of the coding regions into agreement
with that of their local isochore. Before documenting this, it is important
that we spend some time describing more about isochores since our final
judgment about the mechanisms responsible for the patterns of codon usage
depend on our understanding of the forces maintaining the homogeneous
base composition of isochores.

Mammalian isochores may be lumped into two major classes: GC-rich
(GC content greater than 50%) and AT-rich (GC less than 50%). The
AT-rich isochores may often be seen under the light microscope in G-bands
(Giemsa dark) and GC-rich isochores as R-bands (reverse bands). The AT-
rich isochores are associated with late-replicating regions of the genome,
the GC-rich isochores with early replicating regions. These and other facts
about isochores are summarized in Table 2.6.

Genes are not placed randomly in isochores. GC-rich isochores, which
are a minor fraction of the total DNA, appear to have a much higher den-
sity of genes than do AT-rich isochores. In fact, the majority of loci that
have been sequenced fall into GC-rich isochores. The current interpretation
of the data is that housekeeping genes, genes that are expressed in most
tissues, tend to be found in GC-rich isochores whereas tissue-specific genes
tend to occur more often in AT-rich isochores.

A peculiarity of GC-rich isochores is the presence of CpG islands. Re-
call that CpG doublets are generally under-represented in creatures with
methylated cytosine because the methylated cytosines in CpG doublets
have an elevated mutation rate to T. Surprisingly, while CpG doublets are
under-represented in AT-rich isochores, they occur at about the expected
frequency in GC-rich isochores. Moreover, they often occur in short regions
of DNA with very high GC%, clustered unmethylated CpG doublets, G/C
boxes, and a number of other high-GC motifs. Such stretches are called
CpG islands. As might be expected, the levels of methylation in GC-rich
isochores is very low.
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As the first evidence for isochores appeared, it was immediately ap-
parent that codon usage in mammals is strongly correlated with the local
isochore GC%. A particularly easy way to document this is by plotting, say,
intron GC% against third-position GC%. Alternatively, one could use 3' or
5' flanking DNA in place of intron DNA. Whichever is used, a highly signif-
icant correlation inevitably results [4,14,29]. An example from humans is
illustrated in Figure 2.10. This pattern of codon usage differs from that of
unicellular organisms and Drosophila in that there are marked differences in
the codons preferred by different loci (depending on the isochore they find
themselves in). It is not clear at this time whether there is any correlation
in the level of expression of a gene and its bias.

Superimposed on this gross pattern of codon usage are various refine-
ments. The most striking of these is the tendency for the GC% of third
positions to be higher than that of the surrounding isochore [74,140]. The
effect is particularly dramatic in the two a-globin loci in humans as illus-
trated on the right-hand side of Figure 2.11 which was redrawn (with some
smoothing) from a paper by Ikemura and Aota [140]. The effect is less
striking, but still present, for most of the /3-globin loci as illustrated on the
left side of the figure. The figures were prepared by sliding a 2001 base-pair
window along a DNA sequence and plotting the GC% for the window as a
function of its position.

A rough indication of the amount of fluctuation that would be expected
from binomial sampling in the absence of any systematic effects is given
by the standard deviation of GC%. Were the nucleotides thrown down at
random with 50% GC, the standard deviation would be about 1%. Given
that the fluctuations in Figure 2.11 are much larger than that, it is apparent
that there is a great deal of statistically significant fluctuation around the
mean of the isochore, at least some of which is due to the presence of
coding regions. In the high GC content regions, this is reminiscent of a
similar phenomena in bacteria as we illustrated on the right-hand side of
Figure 2.6. Whether there is a common mechanism operating is, of course,

Figure 2.10. The correlation of exon GC% and intron CC% for 56 human loci.
Redrawn from [29, Fig. 1].
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Figure 2.11. The CC% as calculated from a 2001-base window moved along the
human a- and /3-globin complexes. Redrawn from [140, Fig. 3}.

a complete mystery. Note that the a-globin loci are located in a GC-
rich isochore whereas the /3-globin loci are in an AT-rich isochore. Such
a distribution would not be expected were codon usage keyed to tRNA
populations.

Bernardi et al. [15] have made a number of interesting observations
about the evolution of isochores. They begin by pointing out some of the
differences in isochores among vertebrates. Generally, isochores are limited
to the warm-blooded vertebrates, birds and mammals. Within mammals,
there appears to be two compositional patterns: the "murid" pattern found
in three families of rodents—murids (rats and mice), cricetids (hamsters),
spalacids (mole rats)—and the "general" pattern found in most of the re-
maining mammals. If one looks only at third positions within coding re-
gions, murids have a lower average and a narrower distribution of GC%.
The distribution of GC% in fractionated DNA is narrower as well, but the
mean is slightly higher than that of other mammals. These differences
do not involve changes in the gross GC content of homologous isochores;
loci in GC-rich isochores in humans are also found in GC-rich isochores
in rodents. By contrast, since GC-rich isochores are not found in most
cold-blooded vertebrates, the emergence of GC-rich isochores in mammals
and birds is accompanied by dramatic increases in the GC content of third
positions and, less so, in first and second positions.

Bernardi et al. recognize two modes of isochore evolution: the "con-
servative" mode whereby evolution proceeds without major shifts in GC
content and the "compositional shift" mode such as occurred in the evolu-
tion of warm-blooded vertebrates. Wolfe et al. [311] have shown that silent
substitution rates in the conservative mode (they used rats and mice) are
highest in isochores with an intermediate GC content and drops off as the
GC% approaches zero or one. Such a pattern would be expected under
almost any mechanistic model since a highly skewed GC% reduces by one-
half the number of nucleotides that can occupy a site when compared with
a site with 50% GC.

There is little agreement as to the forces responsible for isochores.

Position (kb)
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Table 2.7. Properties of codon biases in three groups of organisms.

Bias
Direction locus-specific
Matches tRNA abundances
Matches local GC%
Inverse of substitution rate

E. co/i/yeast
no
yes
NA
yes

Drosophila
yes
?

no
yes

mammals
yes
?

yes
no

Bernard! et al. [15] argue that the compositional shift to GC-rich isochores
may well have been in response to the increase in body temperature in
birds and mammals. If so, this parallels similar increases seen in bacte-
ria that live in hot environments. In the conservative mode, they argue
that stabilizing selection is acting on GC% much as it would on any other
quantitative trait. They recognize that selection on individual nucleotides
could be extraordinarily weak, yet the GC% of an isochore could be held
within fairly narrow limits. Such a model allows for essentially neutral
substitutions to occur even if the phenotype is under strong selection.

The opposite view is that the high GC content of GC-rich isochores
is a neutral by-product of the differences in replication times of the two
types of isochores. Wolfe et al. [311] argue that the early-replicating GC-
rich isochores deplete the nucleotide pools of G and C and thus alter the
mutational bias of late-replicating isochores to favor A and T. Filipski [73],
on the other hand, has argued that different polymerases with different
mutational biases may be used in early and late replication and this may
lead to different GC contents in the two classes of isochores. Both of these
hypotheses attach no special biological significance to the GC content of
isochores. Rather, the GC% is a neutral phenotype.

It is worth pointing out that it is possible for a large region of DNA to
be under fairly strong stabilizing selection for its GC%, yet the dynamics of
individual nucleotides be nearly neutral. Thus, the question of whether or
not the GC% viewed as a phenotype is neutral may be partially decoupled
from the question of whether or not the silent substitutions are neutral.

A summary of some of the major features of codon usage is given in
Table 2.7. But this table does not capture what I find the most intriguing
aspects of the interaction of codon usage and GC%. Patterns such as the
increase in GC% in exons seen in both mammals and Drosophila suggest
that either mutational processes vary on a small scale, or that other forces
are molding the genome for reasons that are, at this point, completely
obscure.

2.4 DNA polymorphisms

Two techniques are commonly employed to measure variation in DNA. The
older of the two uses restriction enzymes to cut DNA at specific four or
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six base sequences. Variation in the occurrence of these sequences among
chromosomes is measured by variation in the length of cut fragments as
determined by electrophoresis. Such studies are called restriction fragment
length polymorphism (RFLP) studies or, if the DNA sequence of the region
is available, restriction map variation studies. The second technique uses
DNA sequencing. Historically, the amount of labor required for cloning
and sequencing has prohibited its widespread use for population studies.
Fortunately, a radical change is underway with the advent of the polymerase
chain reaction (PCR) which removes the cloning step. Unfortunately, at
the time of this writing, the anticipated explosion of sequence studies has
yet to appear.

There is a marked disparity in the usefulness of restriction map and
sequence data for understanding the mechanisms of molecular evolution and
polymorphism. One of the threads winding through this book, for example,
is the contrast in the dynamics of silent and replacement mutations. Since
restriction map studies cannot distinguish these two types of mutations,
they cannot contribute to our description of the contrast. Similarly, they
offer nothing to nourish our interest in codon usage or GC%. For this
reason, our emphasis will be on sequencing studies.

Statistics

There are some interesting—and largely unresolved—problems that appear
when we try to provide summary statistics for DNA polymorphism data.
If we have a set of sequences, each several kilobases in length, then it
is entirely possible that no two sequences are exactly the same. If this
occurs in a sample of n sequences, for example, the allelic heterozygosity is
1 — 1/n ~ 1, a rather uninspiring statistic for such rich data. Clearly, we
must abandon this venerable measure that carried us through many years
of electrophoretic studies.

The obvious replacement for the allelic heterozygosity is the nucleotide
site heterozygosity. Let the frequency of each of the four bases at the ith out
of m sites in the population in the tth generation be Pij(t),j = A,C,G,T.
The heterozygosity at this site is

and the sum of the heterozygosities across all sites is

Finally, the average heterozygosity per site, site heterozygosity for short, is

Note that ESh(t) has the interpretation of being the average number of
nucleotide differences between a randomly drawn pair of alleles. This has
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prompted the use of the average number of nucleotide differences between
alleles in a sample, k, as an estimator of Sh(t).

On the surface, everything looks fairly standard: we imagine a popu-
lation parameter called the mean site heterozygosity, Ehi(t), and expect
that, as m —> oo, Sh(t)/m will converge to it. We might also expect that
we would be able to calculate the sampling variance of 5/i(t)/m and use it
to place confidence limits on our estimate of the site heterozygosity. Unfor-
tunately, things are not quite this simple. Two factors cloud the picture.

The site heterozygosities, hi(t), are stochastic processes that are not,
in general, independent across sites even for the neutral allele model.
For that model, the covariance of site heterozygosities is known only
under the very restrictive condition that the population is in equilib-
rium.

The expected values of the site heterozygosities, Ehi(t), will, in gen-
eral, vary from site to site. For example, silent and replacement sites
tend to have different heterozygosities. Even within each of these cat-
egories there will, in general, be regions with different mean site het-
erozygosities. For example, under the neutral model it is frequently
claimed that the mutation rates vary in different regions of a locus.

Were it known that separate loci are independent replicates of each other
with respect to Sh, we could circumvent these problems by averaging across
loci. Unfortunately, there are ample theoretical and empirical reasons for
not treating separate loci as independent replicates.

There is a second summary statistic in common usage:

where S3 is the number of segregating sites in a sample of size n. The
statistic is called 9 because EO = 6 under the equilibrium neutral model,
where 6 is four times the effective population size times the neutral mutation
rate. The popularity of this statistic is unfortunate. We have no guarantee
that 0 converges as n —> oo except under the neutral model. Should it
converge, it is not at all clear what property of the population is captured
by its limiting value (except, again, under the equilibrium neutral model).

It is easy to illustrate the problems with 0 with an extreme example.
Consider a locus without recombination with m — 1 neutral sites and one
site that is held polymorphic by balancing selection that is so strong as to
keep the frequency of the two selected nucleotides fixed at one-half. As-
sume, in addition, that there is no further mutation at the selected site.
If the population has been evolving for a very long time, then a reason-
ably sized sample will contain at least one chromosome with one of the
two selected nucleotides and one with the other. The expected number of
segregating sites, assuming that each nucleotide mutates to the other with
equal frequency, will be greater than 3m/4 and 0 will be greater than about



98 DNA evolution

3/(41og(n - 1)). This value has nothing to do with 9 or anything else of
much biological interest. While this example may seem extreme, it is not
out of line with what might be expected were, say, 1 out of every 10 nu-
cleotide polymorphisms selected. The important point is that the example
bares the extreme model-dependence of 0 and should caution us against its
use.

There is an interesting contrast in the asymptotic properties of TT and
0 under the neutral model as the sample size increases. Note first that the
expected values of both of these estimators is 0. Curiously, the average
site heterozygosity, n, approaches the random quantity Sh(t)/m as n —> oo
while 0 approaches the constant (nonrandom) 6. Were we absolutely cer-
tain that all of the variation at a site is neutral and that the population is
in equilibrium (ruling out recent linked substitutions, balancing selection
and bottlenecks), then 6 would be the preferred estimator of 0. However,
equilibrium neutrality may seldom occur at any locus, making TC more at-
tractive as we know what biological quantity it is estimating irrespective of
the underlying model.

I belabor this point to emphasize that we really have no satisfactory way
to place any confidence in our estimates of nucleotide diversity. I could fol-
low convention and use the neutral confidence limits around 0 and TT, but I
feel strongly that this is wholly unjustified and terribly misleading for the
reasons mentioned above. Beyond this, there is a problem with many of
the published studies that use samples from widely spaced locations, quite
possibly in violation of the panmixia assumptions used to place confidence
limits on estimates within the framework of neutral models. To be con-
sistent with my skepticism, I will refer to my summary of the nucleotide
diversity as quantitative natural history, a phrase coined by Monty Slatkin
when faced with an equally untenable statistical setting. I will, however,
quote the statistical conclusions of others who have felt comfortable enough
with the equilibrium neutral model to use it as a basis for hypothesis test-
ing.

Drosophila

The alcohol dehydrogenase (ADH) locus in Drosophila melanogaster has
probably been the subject of more variation studies than any other locus
in any species. It is fitting that our discussion begins with ADH. From
earlier protein studies we know that there are at least two ADH alleles
with different electrophoretic mobilities: the F (fast) and S (slow) alleles.
The gross pattern of sequence variation around the locus was first described
in 1982 by Langley et al. [183] using six-cutter restriction enzymes. This
study was expanded in 1986 by Aquadro et al. [6]. The latter paper will
form the basis of our initial observations on the ADH locus.

The Aquadro et al. study examined a 13-kb region around the ADH
locus in 48 second chromosome lines from four eastern U. S. populations
and one Japanese population. Extensive variation was discovered in both
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restriction sites and sequence length. The locations of the variants are
illustrated in Figure 2.12.

Sequence length variation was determined to be due to small deletions
(21 to 200 base pairs in length) and two categories of insertions: transpos-
able elements and small insertions (31 to 34 base pairs) of apparently unique
DNA. Eighty percent of the lines had at least one insertion or deletion, the
large insertions (all transposable elements) occurring at a density of 0.018
per kilobase. The figure clearly shows that the insertion sites of transpos-
able elements are not uniform throughout the region but are concentrated
in a region 3' to the ADH locus.

The frequency of a particular transposable element at a particular site is
so low that in a sample one seldom finds the same element in the same site
in multiple chromosomes. Charlesworth and Langley [40] have reviewed the
various explanations for this and other patterns. As this topic is tangential
to the main theme of the book, I refer the readers to their review for more
details on the fascinating topic.

Restriction site variation allows a crude estimate to made of the nu-
cleotide diversity. For the ADH study, the average site heterozygosity was
estimated to be TT = 0.006; 0 = 0.006 as well. This implies that about
1 nucleotide out of every 166 will differ between randomly drawn chromo-
somes. Since this estimate comes from restriction site data, we have no way
of knowing the biological role of the nucleotides that vary.

The frequency distribution for the ADH region is illustrated in Fig-
ure 2.13. A frequency distribution is obtained by first rank-ordering each
variant by frequency, from highest to lowest, on the horizontal axis and
then raising a bar to its frequency on the vertical axis. The distribution
suggests that there is a tendency for restriction site variation to dominate
the left or most abundant part of the spectrum and for transposable ele-
ments to dominate the right part. This pattern tends to repeat itself for
other loci in Drosophila [180].

Figure 2.12. Variation in a 13-kb region around the ADH locus in D. melanogaster
as uncovered by restriction enzyme analysis. Downward-pointing polygons indicate
insertions; those shaped grey are transposable elements, those that are black are
unique copy DNA. Upward-pointing polygons are deletions. The letters above the
lines are variable restriction sites. The blocks indicate the location of the ADH gene.
Redrawn from [6].
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Figure 2.13. Frequency spectrum for variation in a 13-kb region around the ADH lo-
cus in D. melanogasteras uncovered by restriction map analysis. Redrawn from [6].

The 26 different variants were distributed over only 29 different hap-
lotypes among the 48 sampled chromosomes, suggesting that significant
nonrandom associations between variants must occur. A complete pair-
wise disequilibrium analysis showed that within the F-bearing chromosomes
there were much higher levels of disequilibrium than within the S-bearing
chromosomes. A haplotype genealogy suggested that the F- and S-bearing
chromosomes fall on opposite sides of a deep split within the genealogy.
The F-bearing chromosomes were also shown to have a lower haplotype
diversity* (0.419) than S-bearing chromosomes (0.819) for restriction sites
although not when all variation was considered. These and other observa-
tions have led to the suggestion that the F mutation entered Drosophila
populations relatively recently [174].

Four- and six-cutter analyses from other D. melanogaster loci exhibit
patterns of variation that are remarkably similar to that of ADH as is evi-
dent in Table 2.8 which is reproduced from Langley's recent review [180] of
molecular variation in Drosophila. The one anomaly is the apparent reduc-
tion in variability in regions of low recombination. Should this observation
hold up as more loci are examined under higher resolution, it may provide
evidence that variation is reduced by "hitchhiiking" on linked positively
selected mutations on their way to fixation [180].

There has been much less work on other species of Drosophila. In a
recent survey Aquadro [5] used all of the available resticiton enzyme data
from loci that have been examined in two or more of the four species:
D. melanogaster, D. simulans, D. ananassae, and D. pseudoobscura. His
Table 3 is reproduced in Table 2.9. The most striking pattern in the table
is the fact that D, melanogaster is distinctly less polymorphic than the
other three species. Its site heterozygosity is only about 20% that of D.
pseudoobscura and 28% that of its sibling species, D. simulans. Aquadro has
called attention to the latter comparison because it stands in sharp contrast
to an older observation that allozyme heterozygosity is significantly lower

*Haplotype diversity is defined as n(l — £]z?)/(n — 1) where xt is the frequency
of the ith haplotype.
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Table 2.8. Molecular variation found in natural populations of Drosophila melan-
ogaster as summarized by Langley [180, Table 5-1].

Restriction sites
Locus
X chromosome

forked
vermilion
white
zeste-tko

Autosomes
Amy
Adh
Ddc
rosy

Low recombination
su(f)
Zw
y-ac-sc

kb

25
24
45
20

15
13
65
40

24
13
104

n

64
64
64
64

85
48
46
60

64
64
64

0

0.004
0.006
0.007
0.004

0.006
0.006
0.004
0.003

0.000
0.002
0.001

7T

0.002
0.003
0.009
0.004

0.008
0.006
0.005
0.003

0.000
0.001
0.0003

Large insertions
density

0.002
0.002
0.011
0.006

0.001
0.018
0.003
0.002

0.004
0.007
0.003

freq.

0.02
0.02
0.03
0.02

0.01
0.02
0.02
0.02

0.02
0.19
0.01

in D. simulans than in D. melanogaster. The possible explanations for this
disparity will be taken up in the Chapter 6. Here we will point out that this
is one of several instances where there is a contrast between the dynamics
of silent (assuming that most of the restriction site variants lie in noncoding
regions) and replacement mutations.

The first published study of DNA variation based on sequencing is Kre-
itman's survey of the ADH locus in Drosophila melanogaster [174]. In that
study, he sequenced 2721 base pairs in the ADH region of 11 chromosomes
sampled from 5 geographic regions. The ADH locus is composed of four
exons, the first two of which participate in an alternative splicing scheme
that uses exon 1 as the leader sequence in the adult and the first portion
of exon 2 as the leader sequence in the larva. The translated portions of
the gene are found in exons 2 through 4. The fourth exon also contains
a sizeable 3' untranslated region. The average site heterozygosities for the
translated portions of exons 2 through 4 are illustrated in Figure 2.14. The
average site heterozygosity for the all of the exons, both the translated
and untranslated regions, is 0.006 in agreement with the earlier six-cutter
study [183].

Figure 2.14 also presents the separate site heterozygosities for the F-
and S-bearing chromosomes. The reduction in variation within the F chro-
mosomes is seen here, just as it was in the restriction-site data. Of perhaps
more interest is the elevated F+S site heterozygosity in the 4th exon, indi-
cating that there is extensive disequilibrium within the exon with certain
mutations being restricted to F-chromosomes and others to S-chromosomes.
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Table 2.9. Site heterozygosities (?r) for four species of Drosophila as determined by
restriction enzyme analyses. The vermilion locus in D. ananassae was not used in
the averages because it is in a region of reduced recombination. The table is from
Aquadro [5]

X chromosome
per
forked
Om(lD)
vermilion

Autosome
Adh
Amy
rosy

Average

D. melan.

0.001
0.004

0.006

0.006
0.008
0.005
0.004

D. sim.

0.007

0.015

0.018
0.014

D. anan.

0.010
0.009
0.003

0.010

D. pseudo.

0.026
0.019
0.013
0.022

From this it seems likely that the F/S variation is probably not maintained
by the same mechanism that is maintaining the remainder of the variation.
Were it otherwise, the pattern of variation in the F- and S-bearing chromo-
somes would be similar. More evidence comes from Kreitman's observation
that there is more silent variation (6.7% of silent sites are polymorphic)
than amino acid variation (0.17% of replacement sites are polymorphic).
These figures would be more similar if both sorts of mutations were fol-
lowing similar dynamics. We will include both of these contrasts among
those suggesting that the dynamics of replacement and silent mutations
are different.

Very recently, McDonald and Kreitman (unpublished) have extended
the sequencing of ADH to the D. melanogaster sibling species D. simulans
and D. yakuba. They discovered that, among replacement sites, 7 are fixed
between species but only 2 are polymorphic within the three species. By
contrast, 17 silent sites have fixed differences between the species and 42 are
polymorphic within the species. Said another way, there are 3.5 times more
fixed than polymorphic replacement sites compared with 0.4 times more
fixed than polymorphic silent sites. Within these species, is appears that
protein evolution is proceeding in a mode that emphasizes substitutions
over polymorphisms, while silent DNA evolution is the reverse.

In Chapter 1 we reviewed work of Skibinski and Ward showing that
the protein heterozygosity at a locus is correlated with its genetic distance
between species. It would be of considerable interest to know if the same re-
lationship holds for silent variation. Aquadro [5] examined a 100-kb region
around the rosy locus in D. melanogaster and D. simulans by restriction
map analysis and plotted the ratio of the heterozygosity within a species
over the divergence between the two species in a 5-kb sliding window. Al-
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Figure 2.14. Average site heterozygosities for the translated portions of three exons of
the ADH locus in D. melanogaster. The site heterozygosities for the S- and F-bearing
chromosomes are also displayed. Data are from [174].

though no statistical tests were performed, the wild fluctuations in the
ratio suggest that there is no simple relationship between polymorphism
and substitutions between species.

Hudson et al. [135] used the equilibrium neutral allele theory as a null
hypothesis to test for compatability in the level of polymorphism and di-
veregence between two regions of the Adh locus in D. melanogaster and D.
sechellia. They were able to reject the null hypothesis due to the extraor-
dinary divergence between the two species in the relatively monomorphic
5' flanking region compared with the low level of divergence and exten-
sive polymorphism in the Adh locus itself. These two studies are the first
hints that patterns of polymorphism and divergence may be very complex,
perhaps reflecting historical factors more than anything else.

Humans

The only other organism for which sequence data on DNA polymorphisms
are available is humans. Although there do not appear to be any studies
designed specifically to measure variation, there are instances of multiple
sequences in the GenBank database that were collected for other purposes.
There is a danger in using such sequences for estimates of DNA variation
because there are no guarantees that the sequencing was performed with
the level of precision required of polymorphism studies. Li and Sadler [193]
has recently used this data to estimate TT, but only after a check to assure
that each variable nucleotide had been carefully verified by the laboratory
reporting it. He was able to find 49 loci with more than one published allele
that passed his criteria of rigor. His results are illustrated in Figure 2.15.

It is clear that the average site heterozygosities are low, roughly one-
twentieth those in Drosophila. As pointed out by Li and Sadler, such a large
difference is in striking contrast to the figures for protein heterozygosities,
which differ by no more than a factor of two. This contrast is reminis-
cent of the D. simulans-D. melanogaster comparison made by Aquadro
and presents yet another instance where silent and replacement mutations

DNA polymorphisms



Figure 2.15. Average site heterozygosities for 49 human loci reported separately for
the 5' and 3' untranslated regions of the coding sequence, the replacement sites, and
2- and 4-fold degenerate silent sites. Data are from Li [193].

behave differently. The higher heterozygosities for silent vs. replacement
sites observed in Drosophila are also apparent in the human data. Li has
placed the silent variation into two categories: twofold and fourfold redun-
dant sites with the latter exhibiting greater diversity. This mirrors the
higher rate of substitution seen in fourfold degenerate sites.

This ends our short description of DNA polymorphism. Hopefully, the
story will become much clearer in the next few years as sequencing studies
appear in the literature.
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3
The molecular clock

The molecular clock is an abstraction of the common observation that the
number of amino acid or nucleotide substitutions separating a pair of species
is roughly proportional to the time back to their common ancestor. For
example, Figure 3.1 shows the number of amino acid substitutions in a
globin that have occurred on the lineages separating humans from a variety
of other species. The figure illustrates two important aspects of the clock.
The first is the linear increase in the number of substitutions with time;
the second is the variation around the line: the clock is erratic.

The "ticks" of the molecular clock correspond to substitutions of mu-
tations. They do not occur at regular intervals as do the ticks of more
conventional clocks, but rather at random points in time. As a conse-
quence, characterizations of the clock must use point processes, statistical
models that describe events occurring at random times. One goal of this
chapter is to obtain point processes that are compatible with data like that
illustrated in Figure 3.1.

The molecular clock has generated controversy since it was first de-
scribed in 1962 by Zuckerkandl and Pauling [317]. The original clock was
embodied in the simplest of point processes, the Poisson process. Let A/"(£)
be the total number of amino acid substitutions at a particular locus over
a period of t years. The original clock assumes that N(t) is Poisson dis-
tributed with mean At. That is,

The parameter A is the mean rate of substitution for the locus under study
in units of substitutions per locus per year.

The average rate of substitution under the Zuckerkandl and Pauling
clock is constant per unit time—no matter what. The constancy has been
the center of the controversy. Were it generally true, then the molecu-
lar clock would provide a time scale for evolution. It would also provide
direction in our choice of mechanistic models of nucleotide substitutions.
Thus, there are both practical and scientific reasons to look closely at the
stochastic behavior of the clock.



106 The molecular clock

Figure 3.1. The molecular clock for a globin. Each point represents the number
of amino acid substitutions separating the indicated animal from humans. Time is
measured in units of millions of years. Data are from [54, Table 3.3].

The molecular clock violates the assumptions of a Poisson process in
two fundamental ways. The first, called lineage effects, involves variation
in average rates across lineages. The generation-time effect is an example.
The second involves the possibility that average rates are constant, say
within a restricted set of lineages, but that the substitutions do not follow
a Poisson process. A simple measure of departure from a Poisson process
is the index of dispersion,

where E means "expectation of" and Var, "variance of." As the mean and
variance of a Poisson process are equal, the index of dispersion for the Zuck-
erkandl and Pauling clock is exactly one. For more general point processes,
the index of dispersion can range from zero to infinity.

There is ample evidence for both lineage effects and indices of dispersion
that are not equal to one as will be described in the following sections. The
development begins with some of my favorite examples of rate variation.
These will motivate and make real some of the more abstract statistical
work that follows.

3.1 Examples of rate variation

We have already encountered several examples of variation in the rate of
substitution. The most dramatic was the speedup in the rate of replace-
ment substitution in the insulin gene of hystricomorph rodents. As we saw,
the rates varied by as much as 30-fold. The acceleration was apparently due
to adaptive changes as part of a general evolution of the gastroenteropan-
creatic hormonal system. Less dramatic was the 2.5-fold acceleration in the

Time to commonm ancestor
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Table 3.1. The ratio of the number of replacement to silent substitutions in a
hemoglobins from various pairs of species. Data are from [257, Table 2]

Comparison

Hum an-orangutan
Human-rhesus
Human-mouse
Human-baboon
Rhesus-baboon

Replacement
silent
0.43
1.00
0.47
2.54
25.0

rate of replacement substitution in the lysozyme of langurs that was asso-
ciated with the recruitment of lysozyme to digest bacteria in the stomach.

Both of these examples show clearly that the accelerations were due
to adaptive changes. The temptation is to generalize and to suggest that
whenever we observe an acceleration we attribute it to a greater environ-
mental challenge. However, in general we cannot make this leap as the
causes of most of the accelerations described in this section are unknown.

Baboon hemoglobin

The baboons separated from the rhesus macaques 5 to 7 million years ago.
During the subsequent evolution of a globin in the baboons there was a
burst of amino acid substitutions approximately 10 times greater than that
in the rhesus lineage [257]. Significantly, there was no accompanying accel-
eration in the rate of silent substitution. The data supporting this conclu-
sion are presented, in part, in Table 3.1. The table gives only the ratio of
replacement to silent substitutions as this is the best index of the strange
events in the baboon lineage.

The substitutions do not appear to be random in any sense. For exam-
ple, there axe 13 nucleotide differences in the coding regions between the
baboon and the rhesus monkey. In 10 of these, a C or G in the rhesus corre-
sponds to an A in the baboon. These 10 are concentrated in only 6 codons.
In one instance, GGC (gly) in the rhesus monkey corresponds to AAA (lys)
in the baboon. The occurrence of three substitutions in one codon is highly
nonrandom and could be due to the fixation of a single complex mutational
event or to a burst of two or three sequential substitutions. In the latter
case, each of the substitutions will be a replacement substitution.

The amino acid substitutions in the baboon lineage are not chemically
conservative. The substitution of lysine for glycine just mentioned would
have to be called chemically radical. In two cases, alanine is replaced by as-
partic acid; in another case, glycine is replaced by glutamic acid. Although
we do not know the forces responsible for this evolution, the nonconserva-
tive nature of the amino acid substitutions suggests that baboon and rhesus
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Figure 3.2. The phylogeny of the visual pigments. Redrawn from [314, Fig. 19.1].

globins are functionally different.

Visual pigment genes

There are four major visual pigments in humans: rhodopsin along with the
red-, green-, and blue-sensitive pigments. They are members of a family
of receptors that includes the G-protein-coupled receptors. Yokoyama and
Yokoyama [314] have reconstructed the phylogeny of these receptors, the
visual pigment portion being reproduced in Figure 3.2. The substitutions
generally follow the familiar pattern of replacement rates being lower than
silent rates.

In the evolution preceding the emergence of the three color pigments,
some interesting anomalies occur. In two branches the rate of replacement
substitution exceeds the silent rate. One is on the branch labeled B-C in
Figure 3.2, the other is on the short branch from D to the red-sensitive
pigment. The former difference is statistically significant, the latter is not.
Assuming that the silent rate has been relatively constant throughout the
evolution of pigment genes, the Yokoyamas interpret this as an acceleration
in the replacement rate leading to a shift in the absorption spectrum.

The pattern of substitutions in the color pigments themselves also sug-
gests evolution for absorption characteristics, although these are not ac-
companied by a measurable acceleration in the rate of substitution.

Human cytochromes

There is an remarkable story of a coordinated acceleration in two of the
electron transport enzymes, cytochrome c and cytochrome oxidase II. The
former is a nuclear-encoded locus; the latter is coded in the mitochondria.
It has been known for a number of years that cytochrome c, usually a
slowly evolving enzyme, experienced a burst of amino acid substitutions in
the primate lineage. More recently, it was discovered that the replacement
rate of cytochrome oxidase II accelerated in the primate lineage as well [34].
A summary of these events is given in Figure 3.3.

The burst of evolution in the primate cytochrome c has left a trail in the
human genome. Cytochrome c seems to enjoy spawning processed pseudo-
genes. In some mammals, as many as 35 copies have been identified [65].
In humans, the processed pseudogenes fall into two groups. One group
(HS) was spawned before the burst of substitutions, the other (HC) af-
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Figure 3.3. The numbers of amino acid substitutions on the lineages leading to four
species of mammals in cytochrome c and cytochrome oxidase II. Redrawn from [34,
Fig. 19.1].

ter. The amino acid sequence that would be produced by the first group,
were they functional, is nearly identical to the nonprimate cytochrome c.
That produced by the latter group is nearly identical to the sequence of the
functional human enzyme.

Using these pseudogenes, Evans and Scarpulla have arrived at the fol-
lowing reconstruction. Assuming that the nucleotide substitution rate in
the pseudogenes is 1.3 x 10~9 per site per year, they calculated that the HC
pseudogenes appeared about 15 million years ago and the youngest of the
HS pseudogenes appeared about 30 million years ago. This implies that the
nine amino acid replacements occurred in the relatively short span of 15
million years. By contrast, the rodent lineage accumulated two amino acid
substitutions in 85 million years. Thus, the burst of substitutions within
the primates yields a rate that is about 25 times higher than that in the
rodent lineage.

In fact, the rate differential may have been even higher. As the rhesus
and human functional cytochrome c's are nearly identical, and the common
ancestor of these two primates occurred about 30 million years ago (recall
that this is the age of the youngest HS pseudogene), all of the substitutions
may have been concentrated in an interval that is instantaneous on a time
scale of millions of years.

The coevolution of cytochrome c and cytochrome oxidase in primates
has produced enzymes that function more efficiently with each other than
with those from other nonprimate mammals [231] suggesting that this
episodic evolution was adaptive.

3.2 Statistical analyses

Ohta and Kimura [229], in 1971, were the first to examine the constancy of
evolutionary rates in a proper statistical setting. Their null hypothesis was
the Zuckerkandl and Pauling clock: the rate of substitution, A, is constant
across lineages and the number of substitutions on a given lineage of length
t years is Poisson distributed with mean At.

They examined three loci for which a sufficient number of protein se-
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Table 3.2. Ohta and Kimura's [229] analysis of rate variation in three proteins.

Comparison
/? globin
a globin
Cytochrome c

kx 109

1.526
0.973
0.281

sx 10s

0.610
0.409
0.208

o x 109

0.298
0.299
0.114

s/cr
2.05
1.37
1.82

quences were available, a globin, /? globin, and cytochrome c. For each pair
of species within a locus they estimated fcaa, the mean number of amino acid
substitutions per site per year. For example, in a globin &ao = 0.699 x 10~9

when human and dog are compared (the hat indicates that this is an esti-
mator of kaa), 0.290 x 10~9 when kangaroo and horse are compared, and
so forth.

The variance of the estimators under the Poisson assumption had been
derived several times by 1971, so it was a simple matter to compare the
standard deviations of the estimates, s, to the expected standard devia-
tions, a. The results are given in Table 3.2 where k is the average rate of
substitution, s is the observed standard deviation in the estimates of kaa,
and a is the expected standard deviation under the Poisson clock. An F~
test (based on F = s2/<r2) indicates that the variance in rates for /3 globin
and cytochrome c are significantly greater than expected under the Poisson
clock.

Ohta and Kimura concluded "that the variations in evolutionary rates
among highly evolved animals are larger than expected by chance." Al-
though their analysis has some rough edges, their conclusion remains valid.
Most subsequent studies have also identified /3 globin and cytochrome c
as proteins that deviate from the Poisson clock and a globin as one that
exhibits a remarkably constant rate.

Two years later, Langley and Fitch [181,182] completed a much larger
study that addressed some of the weaknesses of the Ohta and Kimura pa-
per. Rather than using rate estimates for species considered two at a time,
they reconstructed the entire substitutional history of each locus using par-
simony techniques. In so doing, they avoided the correlations between
pair-wise rate estimates induced by shared phylogenies that weakened the
Ohta and Kimura study.

The inputs to the Langley and Fitch analysis were sequences of four
proteins (a and f) globins, cytochrome c, and fibrinopeptide A) from a va-
riety of species and the phylogenetic tree for these same species as inferred
from the fossil record. The null hypothesis was the Poisson clock with con-
stant rates for each protein. In the first step of the analysis, substitutions
were assigned to each branch of the tree using the maximum parsimony
technique developed earlier by Fitch [77]. In the second step, maximum
likelihood was used to estimate the average rate of substitution for each of
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Table 3.3. Langley and Fitch's [229] analysis of rate variation in four proteins.

Unconnected
Comparison
Lineage effects
Residual effects
Total

X*
63.0
102.7
165.7

df
26
62
88

Prob.
<10~4

<10~3

<10~5

Corrected
X1

48.7
102.7
151.4

df
24
62
86

Prob.
< 0.002
<10~3

< 10~4

the four proteins and the length of each branch on the tree. Finally, the
null hypothesis was examined by a likelihood ratio test.

The model that forms the basis of the likelihood analysis assumes that
the number of substitutions (as determined by parsimony) at the mth locus
on the zth branch is Poisson distributed with mean AmTj. These parameters
were defined such that Am is the relative rather than the absolute rate of
substitution at the mth locus, £] Am = 1. The length of the ith branch,
TJ, is measured in units of substitutions rather than in units of real time.
Together, these assumptions imply that the likelihood (or probability) of
observing a;m|i substitutions is

From here to the final likelihood ratio test is a well-trodden path. Lan-
gley and Fitch did add a few twists to end up with the tests that are
summarized in Table 3.3. Note first that the probability of observing the
data if the Poisson clock applies is less than 10~5, a severe blow to the
Poisson clock. It was not unexpected given that two of the four proteins
had already been shown by Ohta and Kimura to be incompatible with the
Poisson clock.

The other tests in Table 3.3 come from a partitioning of the likelihood
ratio into lineage effects and residual effects. The test for lineage effects
assumes that the relative rates of substitution are constant and looks for
variation in the total number of substitutions on different branches beyond
that predicted by the Poisson clock. The generation-time effect, for exam-
ple, could lead to significant lineage effects. From Table 3.3 we see that
these effects are significant.

Residual effects occur when the relative rates of substitution vary across
branches. For example, /? globin might evolve more rapidly relative to cy-
tochrome c on certain branches than would be expected given their average
rates over all branches. This effect is also significant. As there is only one
observation per protein per branch, the residual effects are analogous to
locus-by-lineage interactions or to the error variance.

A third test for locus effects could have been performed, but the differ-
ences in average substitution rates between loci are so large that statistical
evidence is superfluous.
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The partitioning into two effects represents a major advance over the
Ohta and Kimura study since it, uncovers a new source of variability in
rates. The variation seen by Ohta and Kimura could be dismissed as being
due entirely to generation-time effects and/or inaccurate dating of lineages.
Both of these contributions are incorporated into lineage effects in the Lan-
gley and Fitch study. The residual effects, on the other hand, are a new
phenomenon that demands a mechanistic explanation.

There are some problems with the Langley and Fitch study. Perhaps
the most enigmatic is the error introduced by the parsimonious assignment
of substitutions to branches. Parsimony assigns the fewest possible substi-
tutions, and thus is at variance with the Poisson clock. Langley and Fitch
made some attempt to correct this by augmenting the number of substitu-
tions on long branches by an empirically derived procedure. The results are
given on the right half of Table 3.3. The levels of significance are lowered
somewhat, as would be expected.

The second problem concerns the tree. From a statistical point of view,
the tree was not part of the analysis. No effort was made to find another
tree that might make the data compatible with the Poisson clock. The
branching pattern is generally accepted today except for the placement of
the lagomorph branch. Langley and Fitch made rodents and lagomorphs
sister groups whereas today the lagomorphs are more commonly placed as
a sister group to the primates. It is impossible to say how the results would
change with another tree without repeating the entire analysis.

Wilson et al. [308] summarized a number of other studies of rate vari-
ation from the early and mid-seventies. Their general conclusion about
the stochastic nature of the molecular clock is nicely summarized in the
following quote.

Whereas the expected standard deviation for radioactive decay equals
(counts)1''2, the standard deviation for the evolutionary clock appears
to be approximately (2 x number of substitutions)1/2. [308, p. 608]

Said another way, the variance in the number of substitutions is about two
times the Poisson expectation. This quote represents a subtle but important
shift in the description of the molecular clock. My reading of the literature
prior to the Wilson et al. paper suggested that the most common alternative
to the Poisson clock is a model with a fixed parameter for each rate on each
branch but with the number of substitutions on a particular branch still
Poisson distributed. This view is similar to a fixed-effect model in the
analysis of variance. Lineage effects fall naturally into this framework but
residual effects do not.

By contrast, Wilson et al. seem to be gravitating toward a stochastic
clock that is more complex than the Poisson clock yet preserves the overall
constancy of rates. This is well suited to residual effects, but not for lineage
effects. This distinction will become clear in the next two sections when we
look at the properties of more general point processes.
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Figure 3.4. The star phylogeny for /3 globin. The numbers of substitutions on each
lineage are from Kimura's least squares method [160].

Kimura returned to the problem in his 1983 book on the neutral the-
ory [159]. Here he made an important shift from hypothesis testing, the
focus of his earlier paper with Ohta, to estimation. His method exploits
star phytogenies, radiations that occur in a relatively short span of time
relative to the time back to the time of the radiation. Kimura used the late
Mesozoic radiation leading to the modern orders of mammals most often.
Figure 3.4 illustrates this phylogeny for 0 globin. The numbers of substi-
tutions on the n lineages are viewed as a set of independent, identically
distributed random variables, {MOO}- The mean, variance and index of
dispersion,

of these random variables are the quantities to be estimated.
Kimura's procedure begins with a matrix of amino acid differences be-

tween pairs of species from a star phylogeny. The first step corrects for
multiple substitutions. The fraction of amino acids that differs between
typical proteins from different orders of mammals is so small that this step
has only a minor effect on the final answer.

The next step entails a simple calculation of the mean and variance of
all of the corrected pair-wise distances. Kimura calls these estimators ~D
and VD- The estimate for the mean of A/i(£) is just

the estimator for the variance is

Both of these estimators are unbiased as is easily seen once the hidden
assumption that the corrected number of substitutions separating species i
and j is equal to MM + A/}(i) is recognized.
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Table 3.4. Estimates of R(t) from Kimura's book [159]. The starred estimates are
incompatible with a Poisson clock.

Locus
a globin
j3 globin
Myoglobin
Cytochrome c
Ribonuclease

Radiation
Eutherian
Eutherian
Eutherian
Reptilian
Eutherian

M
12.67
14.95
12.35
8.26

20.57

S2

15.97
46.33
20.97
27.25
48.45

R
1.3
3.1*
1.7
3.3*
2.4

Finally, the estimator for I(t) is

Unlike the others, this is not an unbiased estimator as it is a ratio of random
quantitities. It tends to underestimate the true value of I(t) by about
10% [94].

There is an additional complication in using R—or as we will often call
it, R(t)—as an estimator for the index of dispersion of Mi(t). Because of
polymorphism, the relationship between R(t) and I ( t ) is model dependent.
If t is very large, the error is insignificant so we will ignore this for now.
We will return to it in Chapter 6.

Kimura used these estimators to examine five proteins. The results are
listed in Table 3.4. The indices of dispersion for two of the five proteins
are incompatible with a Poisson distribution of substitutions. The average
value for R is 2.36. Kimura concluded that:

These results suggest that although the strict constancy may not hold,
yet a rough constancy of the evolutionary rate for each molecule among
the various lineages is a rule rather than an exception. [159, p. 79j

Kimura makes the important point, that hypothesis testing may not be the
whole story. Even though protein evolution is statistically incompatible
with the Poisson clock, the magnitude of the deviation may be small and
unimportant. Recall that Kimura was using the Poisson clock as an ar-
gument in favor of the neutral allele theory for which R(t) KS 1. He is, in
effect, claiming that the observed values of R(t) are so close to one—they
are not equal to 1000, for example—that we may assume that 2.36 w 1.
This view will be challenged in the next two sections.

The estimation of R(t) via star phytogenies compounds a number of
problems that we have seen before. Foremost among these is the possibility
that the fossil record was read improperly and that the true phylogeny is
not at all star-like. While this cannot be ruled out, it should be noted that
the heterogeneity of estimates of R(t) suggests that no one phylogeny can
make all five estimates of R(t) compatible with the Poisson clock. By using
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Figure 3.5. The three-species unrooted tree used in estimating the index of dispersion
complete with the appropriate notation.

the correct phylogeny we can hope to learn which loci have erratic clocks,
but we should not be able to change our view that the clock is erratic for
some loci.

The other problem with star phylogenies, or more correctly with Ki-
mura's analysis of them, is that lineage and residual effects are compounded.
In this sense, Kimura's analysis is a step backward from that of Langley
and Fitch. The biological interpretation of the high values of R(t) depends
critically on the relative contributions of residual and lineage effects. With-
out some effort to partition R, we are limited in what we can conclude from
the analysis.

Despite these problems, a number of studies have used star phylogenies
to estimate R(t) (see [92] for a summary). Rather than reviewing these
here, we will end this section with an approach based on only three species
that seems to provide a more satisfying method for estimating the index of
dispersion.

There is only one unrooted tree when three species are used. This frees
us, at last, from the tyranny of the fossil record. Moreover, with three
species, the number of substitutions on each branch can, in principle, be
known exactly from the number of substitutions separating each pair of
species. Let Dy be the number of substitutions separating species i and j
and let A/i be the number of substitutions on the ith branch as illustrated
in Figure 3.5. As

it is easy to see that the numbers of substitutions on each branch, as a
function of the observables £)„, are

(3.2)
(3.3)
(3.4)

In what follows, the A/"» will be viewed as primary observations that
may be used to estimate parameters. We are turning a blind eye to the
fact that the real observables are the £)„• and that the A/i are obtained only
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after correcting the D^ for multiple substitutions. The errors introduced
by these corrections will be discussed later.

The main goal of the procedure that we are about to describe is to
remove lineage effects and to focus on residual effects. Lineage effects will
be viewed as fixed constants reflecting the length of the lineage and/or
the species-specific average rate of evolution. They will be estimated by
combining data from a large number of loci. The variation in rates that is
left over after removing lineage effects will be attributed to residual effects.

Let the number of substitutions at the mth locus on the zth lineage
be Mn,«- Assuming that the jVTO,i are independent random variables—the
sample—we will write their moments in a form that allows the removal of
lineage effects. For the mean, write

With this notation, we are capturing the lineage effects in the weighting
factor Wi. The average value of the weighting factors will be constrained to
equal one,

As will been seen shortly, this guarantees that the adjustments for lineage
effects do not alter the estimates of the average rate of substitution for a
locus, /xm. Note also that if there are no lineage effects, then Wi = 1.

The variance of Afm,i will be written

With this notation, the mean and variance of A/"m,j will depend on the
lineage effects but their ratio,

will not. The index of dispersion is no longer written as a function of
time because we cannot know whether lineage effects reflect variation in
the average rate of substitution for a species or the length of the branches.

With these moment definitions, the natural estimator for the locus-
specific mean number of substitutions is

This is unbiased as
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An unbiased estimator for the variance is

A biased estimator for I ( t ) is

The bias is not serious for typical proteins from different orders of mammals.
One could correct the bias analytically, but the effort is hardly worth while
because the sampling error far exceeds the bias.

To apply these estimators we require three species for which sequences
are available from a fairly large number of loci. Human, mouse, and cow
are obvious choices. The number of loci is increased somewhat if we use
instead human, rodent (mouse or rat), and artiodactyl. In doing this, we
are assuming that the lineage effects are homogeneous within the latter two
orders. Our job is made considerably easier because the £)„, corrected for
multiple substitutions by the method of Li, Wu, and Luo [196], for 21 loci
from these three orders have been published by Li et al. [194, Table 1]. It
is a simple matter to adapt this table to our purposes.

There are two distinct stages in the analysis: the determination of the
weights and the estimation of R for individual loci. The first may be done
in a variety of ways. We will use three:

• Equal weights: For this trivial case we set each of the weights equal
to one,

The subscripts p, r, and a refer to primate, rodent, and artiodactyl.
This case corresponds to the assumption of a star phylogeny without
lineage effects as used in previous studies.

Silent weights: In the Li et al. study, the average numbers of silent
substitutions per 100 silent sites are 19.75 for primates, 50.77 for
rodents, and 24.05 for artiodactyls, yielding the weights

• Replacement weights: The numbers of replacement substitutions per
100 replacement sites are 5.50 for primates, 8.42 for rodents, and 5.83
for artiodactyls, yielding the weights
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Figure 3.6. The weighting factors for three orders of mammals for silent and replace-
ment substitutions.

These weights are viewed as constants rather than as estimates of parame-
ters. In particular, variation in these numbers will play no role in hypothesis
testing.

Figure 3.6 shows that the spread in the Wi is larger for silent substi-
tutions than for replacement substitutions. This agrees with our previous
discussion of the generation-time effect.

In the second stage of the analysis, the corrected distances are used to
calculate the numbers of substitutions and the sample index of dispersion.
As an example, the first entry in Table 1 of the Li et al. study is prolactin
for which

for replacement substitutions. From these we obtain, using equation 3.2,

These figures are scaled to units of numbers of substitutions per 100 re-
placement sites. Prolactin has, on average, 462 replacement sites, implying
that the inferred total number of substitutions on the three lineages are

To estimate the parameters we must decide on which weights to use.
For purposes of illustration, we will use the silent weights. The estimate
for the mean number of substitutions is now

The estimate for the variance in the number of substitutions is a2 = 220.14,
and for Rmt (220.14/51) = 4.32.

This procedure must be repeated for each locus and each set of weights.
The results are given in Table 3.5 for 20 of the 21 loci. The anomalous locus,
endozepine, was not included because it gave a negative estimate for one



Statistical analyses 119

Table 3.5. Estimates of the index of dispersion for 20 loci. The subscripts e, r, and s
refer to equal, replacement, and silent weights. One star represents rejection of the
Poisson clock at the 5% level, two stars at the 1 % level. Data are from [94, Table 1 ].

Replacement
Locus
Prolactin
Parathyroid
Proenkephalin
Proglucagon
a globin
/3 globin
Thyrotropin, B
POMC
Growth hormone
GPHA
Luteinizing, B
Relaxin
Interleukin-2
Signal peptides
CCK
ACHRG
UPA
ANF
/? crystallin
Na,K-ATPase
Average

«.(«)
26.94
8.03
8.57
1.58
0.23
7.30
2.80
15.10
32.22
22.43
3.21
3.38
12.80
9.98
2.36
1.52
0.01
1.94
1.38
3.49
8.26

Rr(t)
12.21**
3.47*
3.73*
2.13
0.32
3.41*
2.26
6.44**
43.82**
27.74**
6.55**
0.13
8.85**
3.25*
0.31
0.61
5.11**
1.64
2.50
4.46*
6.95

R.(t)
4.32
1.04
2.18
2.82
1.62
1.78
2.31
2.14
60.25
34.67
12.85
3.29
8.84
0.82
0.21
2.20
19.64
2.53
4.39
5.50
8.67

Silent
Re(t)
10.33
16.96
30.34
16.99
18.21
4.72
6.77
9.84
3.45
1.00
11.74
13.08
57.45
18.11
5.00
13.40
21.38
10.05
5.40
13.95
14.41

«.(*)
1.02
4.58
9.05*
9.39*
4.68
0.73
4.89
1.46
17.10**
2.52
2.16
0.28
17.19**
7.52*
1.20
3.71
0.25
2.17
0.36
2.48
4.64

of the A/i, presumably because of an error in sequencing or reporting. The
table also indicates which values of R are significantly above the Poisson
expectation. The details for these tests will be given after our discussion of
the results.

Table 3.5 shows that the correction for lineage effects does not have
a particularly large effect on the estimation of R for replacement substi-
tutions, but does have a large effect for silent substitutions. The average
value of R for replacement substitutions is lowered from 8.26 to 6.95 when
replacement weights are used, but is raised to 8.67 with silent weights. In
either case, we are faced with an average value of R that is considerably
higher than those from previous studies. This is remarkable when one con-
siders that in those other studies lineage effects were compounded into the
estimates of R. The higher average is due to the increased number of loci
with high Rs. Interestingly, most of these are hormones.

The average value of R for silent substitutions is lowered dramatically
when silent weights are used: from 14.4 to 4.6. It is lowered even more
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Figure 3.7. The results of a simulation study of the biases in the estimation of 12.
Redrawn from [94].

when an adjustment is made for the upward bias that accompanies the
correction for multiple substitutions [31]. Figure 3.7 presents the results of
a computer simulation designed to mimic the entire estimation procedure
for R. The simulation differs from the procedure used to produce Table 3.5
in that substitutions to different bases are assumed to be equally likely and
that the Jukes-Cantor formula is used to correct for multiple substitutions.
This simulation was also used for the significance measures in Table 3.5.
The tests were only performed on replacement Us with replacement weights
and silent Rs with silent weights as these are the most conservative tests.

There are two opposing biases that effect the estimation of R, The first
is a downward bias that comes from the fact that the estimator for R is a
ratio of the estimators for the variance and mean numbers of substitutions.
The expected value of a ratio of two random quantities does not equal
the ratio of expectations; therefore, the estimator for R must necessarily
be biased. As it happens, this bias is downward as seen in the line for
replacement substitutions in Figure 3.7.

The second bias, that due to corrections for multiple substitutions, has
little effect on the estimation of R for replacement substitutions since the
frequency of these is so low. We can use Figure 3.7 to conclude that the
average R for replacement substitutions is about 7.8.

Silent substitutions, on the other hand, are much more frequent and do
lead to a significant upward bias. Note that were the true R equal to one,
then the estimated R would be about 2.5. Thus, correcting for multiple
substitutions raises the value of R by about 1.5 for silent sites.

The temptation is to conclude from Figure 3.7 that the average R for
silent sites is about 3.3. However, since this average is based on a correction
formula that posits an incorrect model of molecular evolution (one, for
example, that assumes that the frequencies of the four bases do not change),
we should view it with great skepticism. In particular, we can have no
confidence in the statistical tests that lead to the rejection of the Poisson
clock.
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There are two important conclusions from our brief history of the esti-
mation of R. The first is that any effort to estimate R must first remove
lineage effects. In saying this, I am adopting the view that if we are to
understand the mechanisms of molecular evolution we must study lineage
effects and residual effects separately. I am also taking the somewhat ar-
rogant position that past efforts to estimate R have often mistakenly com-
pounded the two effects and I am usurping the latter for residual effects
alone.

The second conclusion is that the average R(t) for replacement sub-
stitutions is 7.8 and that there is ample evidence that the Poisson clock
is incompatible with protein evolution. By contrast, the average R(t) for
silent substitutions is probably much lower, perhaps around 3.3, and we
have no compelling reason to reject the Poisson clock for silent substitu-
tions. The contrast between silent and replacement substitutions is very
important as it suggests that the two processes may be driven by different
mechanisms.

3.3 Point processes

To understand the biological significance of the high values of R(t), we re-
quire some results from the theory of point processes. These play such a key
role in our unfolding view of molecular evolution that they will be incorpo-
rated into the flow of the book rather than banished to an appendix. The
presentation will be intuitive rather than rigorous, with ample references
to the secondary literature where more details may be found. The books
by Cox and Isham [46] and Daley and Vere-Jones [50] are excellent sources
for additional information.

Basic definitions

A point processes may be described in three ways, as illustrated in Fig-
ure 3.8:

As a collection of the times when events occur. The times are written
as a random sequence, {... ,T_1,To,Ti,T2,...}, where one event is
arbitrarily chosen to be the zeroth event. In our discussion this will
be the last event before time zero.

As the intervals of time between events. If X± = Tj — Ti^, the se-
quence of intervals {..., X_i, X0,Xi,X2,...} provides an alternative
description of the process.

As the cumulative number of events. Suppose we begin observing the
process at time zero and let N(t) be the total number of events in
the interval (0,t). N(t) will equal kifTi...Tk are less than t and
Tk+i > t.
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Figure 3.8. The three methods of describing point processes.

The most important class of point processes for our purposes are station-
ary point processes. These may be thought of as processes with properties
that are the same no matter when we begin observing the process. Our
interest in stationary processes reflects the common view that molecular
evolution is homogeneous over large blocks of time.

The technical definition of stationarity involves the idea of invariance
with translation in time. For example, the distribution of the number of
events in the interval (0, t) is the same as in the translated interval (r,r+t).
More generally, the joint distribution of the number of events in a set of
nonoverlapping intervals will remain the same if all of the intervals are
translated by the same amount.

The most important parameters of stationary point processes are those
reflecting the rate of occurrence of events. The simplest of these is called
the intensity or rate of the process, p.* It is defined as

where S —> 0+ means that 6 approaches zero from the positive direction.
If the process is such that no more than one event will occur in a small
interval of time, p8 is an approximation to the probability that an event
will occur in an interval of length S.

There are measures of the intensity of a process that depend on local
events. The most informative of these is the intensity given that an event
occurred at a specified time in the past. This rate is called the conditional
intensity function. It is defined as

*The notation in this section will follow Cox and Isham [46].
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When the deltas are small, this definition implies that the probability that
an event will occur in an interval of length S, separated from a previous
event by a period of time t, is h(t)S. If events tend to be clustered, h(t)
will be larger than p for small values of t.

These two definitions suggest that a point process can have a constant
rate yet appear to be clumped. There is no reason to suppose that a
clumped process needs to have a variable rate. A measure of the clumped-
ness of a process is the index of dispersion,

This is closely related to R(t). The distinction is meaningful only in the
context of the neutral allele theory where the method of observation does
not allow a direct measurement of the index of dispersion.

Examples of point processes

The Poisson process is both the simplest and most important point process.
Its role in the theory of point processes is analogous to that of the normal
distribution in the theory of random variables. It is called a Poisson process
because the cumulative number of events in an interval of length t is Poisson
distributed with mean pt,

The intensity and the conditional intensity of the process are both equal to
p. Thus, the occurrence of an event at one point in time has no influence
on the occurrences at other times. As the mean and variance of the Poisson
distribution are both equal to pt, the index of dispersion is equal to one for
all t. Note also that both moments increase linearly with time.

The intervals between events, the Xi, are independent exponentially
distributed random variables with density pexp(-px) and moments

Renewal processes are a class of point processes that generalize the Pois-
son process by dropping the assumption that the times between events are
exponentially distributed. Instead, assume that the set of intervals, {X^},
are independent, identically distributed, positive random variables. They
might be, for example, gamma or negative-binomially distributed. This
seemingly innocuous change wreaks havoc with the mathematics. For ex-
ample, the distribution of A/"(t) can only be written as a messy sum of
convolutions of the distribution of X^.

There is an ambiguity in our description of renewal processes that is
relevant to their use for modeling molecular evolution. We could imagine
two ways to start the process. We could start at t = 0 with an event and
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follow the evolution of the process using the intervals Xi,Xy,.... This
means setting TO = 0 in Figure 3.8. Alternatively, we could assume that
the process has been renewing for an infinite period of time before t = 0.
In this case, the time until the first event, Xf, will have a distribution
that is different from that of the remaining X±. This process is called an
equilibrium renewal process and is the appropriate starting scheme for a
stationary point process.

Another casualty of the generalization to renewal processes is the ability
to write down simple expressions for the moments of Af(t). For large t, it
is known that M(t) approaches a normal distribution with mean

and variance

where fix — EXi is the mean time between events and d^ is the variance
in the time [46, p. 53]. The index of dispersion for large t is

The index of dispersion can be greater or less than one, depending on the
magnitude of the variance relative to the square of the mean. In the former
case we say that the process is underdispersed; in the latter, over-dispersed.
Note that as the variance of an exponential distribution is equal to the
square of the mean, we have a second way to show that the index of dis-
persion of the Poisson process is one.

The intensity or rate of an equilibrium renewal process is just the re-
ciprocal of the mean time between events, p = l//zx- If t is small enough
to ignore multiple events, the probability of an event in the interval (0, t)
is approximately t / f i x . The mean number of events in (0, t) is t//xx while
the variance is

Thus, for small t, the index of dispersion approaches one as illustrated
in Figure 3.9. Should a large number of replicate renewal processes be
watched for a short period of time, they will be judged to be close to a
Poisson process.

As models of molecular evolution, renewal processes introduce a new
wrinkle. They show that there is no single number that reflects the index of
dispersion as there is for a Poisson process. Rather, the index of dispersion
will be close to one for studies of closely related species and will grow as
more distantly related species are examined. They are also the first instance
of a recurring theme: there are many aspects of point processes as applied
to molecular evolution that make them appear more Poisson-like than they
should.

The next process, the compound Poisson process, is one that pops up
frequently in molecular evolution. Like renewal processes, it is a simple
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Figure 3.9. The index of dispersion, I(t), for three point processes.

extension of the Poisson process. A compound Poisson process is con-
structed by starting with a Poisson process, called the generating process,
and allowing a random number of events at each event of the generating
process. Such a process is used to model rapid bursts of substitutions or
substitutions of mutational events that change more than one nucleotide.

There is a particularly simple representation for compound Poisson pro-
cesses. Call the generating process M(i) and let its rate be p. Let Z\, Z-^,...
be a sequence of independent, positive, integer-valued random variables.
The total number of events may now be written as

As Af(t) is a random sum of random variables, it is said to have a compound
distribution.

The moments of N(t) may be derived using generating functions as
explained in Feller's book [70, page 286]. They are

and

As with the Poisson process, both the mean and the variance increase lin-
early with time. As a consequence, the index of dispersion,

will be independent of time. If Zj is always greater than one, as when
these processes are used to model molecular evolution, then the index of
dispersion is always greater than one.
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The final process is called the doubly stochastic Poisson process—Cox
process for short. This process is yet another generalization of the Poisson
process obtained in this instance by allowing the rate of the process to
change at random through time. The key observation that allows the Cox
process to be analyzed is that the distribution of A/"(t), given a particular
trajectory of the rate, is Poisson with mean

where A(t) is the random process representing the rate as a function of
time. That is,

If we knew the distribution of the integral Z(i), it would be a simple
matter to write down the full (unconditional) distribution of AT(i). Unfor-
tunately, there are very few nonnegative stochastic processes for which the
distribution of the integral is known. The moments of J\f(t), on the other
hand, are simple functions of the moments of A(t).

For TV"(t) to be a stationary point process, the rate process A(£) must be
a stationary process as well. Stationarity of A(f), like that of A/"(t), means
that the process is invariant with translations in time. As a consequence,
the moments of A(f) do not depend on time. For the mean, let

The second order moments of A(t) are described by the autocovariance
function

The autocovariance is a measure of the similarity of the process when ob-
served at two points separated by a lag of x units of time. The variance of
A(t) is the autocovariance function with lag zero, r\(0).

With the moments of A(t) in hand, we can obtain those for Z(t) and
M(t) in short order. The mean of Z(t) is just

The variance is
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Figure 3.10. A realization of the doubly stochastic Poisson process.

The last step comes through a change of variables setting, say, u = x — y
and v = x.

We are finally in a position to write down the moments of A/"(<). For a
given Z(t), A/"(t) is Poisson distributed; thus, we can obtain the moments
of A/"(£) by using the standard partitioning of moments. For the mean we
have

The variance is obtained from the following steps:

The index of dispersion for the Cox process,

is always greater than one.
In applications we will often be interested in the asymptotic value of

the index of dispersion as t —* oo. Notice in equation 3.8 that the value
of x/t will approach zero as t grows and x remains fixed, while r,\(z) will
approach zero as x gets large. Together, these observations show that

Figure 3.10 illustrates the essential features of the Cox process. The
high index of dispersion reflects the tendency for points to cluster during
those times when the rate of the process is higher than average.
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3.4 Biological significance

Having documented the existence of significant residual effects and laid a
foundation in point process theory, we must now combine the two for a
discussion of the biological significance of residual effects. This is the first
of two places that this discussion will take place. Here we will be concerned
only with the implications of residual effects on the dynamics of molecular
evolution. In Chapters 6 and 7 we will discuss their impact on our views
of the mechanisms of molecular evolution.

The distinction between dynamics and mechanism is important and fol-
lows the general effort in this book to separate the description of variation
from its mechanistic interpretation. In this case, we will be mirroring an ex-
tensive literature that provides empirically motivated stochastic models of
molecular evolution without addressing the evolutionary mechanisms that
lead to substitutions.

I hope to make two main points in this section. The first is that residual
effects imply that the substitutions at individual sites within loci are not
independent. As the vast majority of models of molecular evolution assume
independence between sites, this conclusion has profound effects on our view
of molecular evolution. The second point is that if we adopt a model of
variable rates of evolution, then we are almost surely led to the view that
molecular evolution is episodic, with bursts of substitutions separated by
periods of quiescence. This is a significant departure from the conventional
view of molecular evolution as well.

Independence of sites

In the 1940s, studies of the times at which connections were made or broken
at large telephone switchboards were shown to look very much like a Poisson
process. This was a strange observation as the switching times should be
Poisson only if the times between the arrival of new calls and the durations
of individual calls are exponentially distributed. It was known that neither
property held. (Few of us use an exponential random number generator
to govern the length of our phone calls.) Thus, there is something about
the way this point process was observed that made it appear Poisson-like
when, in fact, it wasn't.

There are two key conspirators in this deception: the independence of
calls and the short period of observation. Essentially no one regulates the
length of their conversation by events on other phone lines. Thus it is
natural to assume that calls are independent. At a large switchboard there
are so many lines that by watching for only a short time relative to the
length of a typical call it is possible to accumulate enough data to test for
agreement with a Poisson process. These are the two ingredients that lead
to the Poisson character of the observations. Figure 3.11 illustrates the
structure of the problem.

What does this have to do with molecular evolution? The physical
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Figure 3.11. An illustration of the superposition of k processes to form a single process.

analogy is as follows: amino acid or nucleotide sites are like telephone lines
and substitutions are the same as made or broken connections. A typical
site experiences a substitution about once every billion years, yet a typical
study examines species that have been separated for only tens of millions
of years. Thus, the observation time is short relative to the time scale of
events at individual sites just as for the telephone switchboard. Finally,
if the sites are independent, the substitution process for the entire protein
should appear to be a Poisson process.

In fact, amino acid substitutions for the entire protein are not Poisson
distributed. The obvious conclusion is that the substitutions at different
sites are not independent. To make this more rigorous, we need to spend
some time examining the quantitative aspects of this problem.

The adding together of point processes is called superpositioning. The
summed process is called the superposition. Imagine that we have A; inde-
pendent point processes, A/i(t). The superposition is written

The claim is that the superposition will appear Poisson-like if observed for
a short period of time relative to the time scale of substitution for single
amino acid sites. If we do what comes naturally and look at the index of
dispersion for the superposition we get

where I(t) is the index of dispersion for the component processes. Clearly,
this is of no help as the index of dispersion for the superposition is the same
as for the individual processes.

We could look at the problem another way. Suppose we increase the
number of component processes while lowering their intensities in such a
way that the intensity of the superposition remains constant. That is, let
the intensity of the superposition be p and that of each of the component
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processes be p/k. Now let k increase. The rate for each of the component
processes will decrease until the probability of an event occurring at a spec-
ified process during the period of observation, time 0 to t, is approximately
pt/k. We now find ourselves in a setting that is often used to define the
Poisson distribution. There are a large number of independent trials with
the probability of success at any one trial low, but the average number of
successes fixed. In particular, we must conclude that

for any fixed t. On the surface, this conflicts with our previous conclusion
that/ t(t) = /(t)^l.

The difference between these two approaches rests with the assumptions
about the change of the intensity of the individual processes as k increases.
In the first case the intensity was kept fixed, in the second case it ap-
proached zero. This suggests that to understand the Poisson character of
the superposition we must understand the significance of the low intensities
of the component processes in the second case.

Any point process that is orderly, that is, has no more than one event
at a single point in time, will "look" like a Poisson process if watched for
a short enough period of time. If the intensity is p and if pi is very small,
then only two outcomes during the fixed period of time t are likely to occur:
zero or one events. They occur with approximate probabilities 1 — pi and
pt, respectively. Likewise, if the mean of a Poisson distribution is very small
only two outcomes are likely: zero or one. If the mean of the Poisson is
written pt, then the probabilities of these two outcomes are approximately
the same as for the point process. Thus, the point process is approximately
Poisson when observed for a short enough period of time.

One consequence of the Poisson nature of orderly point processes over
short periods of time is that

Thus, the index of dispersion illustrated in Figure 3.9 for a renewal process
applies more generally with regard to its behavior near t = 0. Note that
the compound Poisson process illustrated in the same figure is not orderly
since more than one event can occur at a single instant in time. This is
why it fails to approach one at t —> 0.

Our discussion of the convergence to a Poisson process at k increases
has been casual. I have attempted to motivate rather than prove the result
that is often called the Palm-Khintchine theorem. A very readable proof
may be found in Cox and Isham's book [46, Section 4.5]. They also provide
a useful approximation for the index of dispersion of the superposition,



Figure 3.12. Simulation results illustrating the Palm-Khintchine effect. Simulation
results are from [87, Table 2].

where hg and hi are the leading terms of the Taylor series expansion of the
conditional intensity,

and O means "of the same order of magnitude as." This approximation
shows that the convergence to the Poisson process goes as 1/fc.

Figure 3.12 illustrates the Palm-Khintchine effect as it might apply to
a protein with evolutionary properties similar those of ft globin. It is based
on a simulation of a protein composed of 150 independently evolving amino
acids sites in six species from a star phylogeny. Each site is governed by a
renewal process with log-normally distributed intervals and an asymptotic
index of dispersion of 10 (I(oo) = 10). The intensity of the process was
chosen so that a pair of species will be separated by 15 substitutions on
average. R(t) was estimated by Kimura's method as given in equation 3.1.

The simulation concentrated all of the substitutions—the average num-
ber is held fixed—onto 1, 15, 50, or 150 amino acid sites. As is evident,
the estimated index of dispersion drops rapidly toward one as the number
of amino acid sites experiencing substitutions increases. Note also that
even when all of the substitutions are concentrated at a single site, the
asymptotic index of dispersion is still substantially underestimated. For
this renewal process, more than 15 events are required, on average, before
the estimated index of dispersion will be close to the asymptotic value.

To further illustrate the dramatic consequences of the Palm-Khintchine
effect we could ask: how large would the true index of dispersion have to be
to observe the value of 3.4 estimated by Kimura for /3 globin? The answer,
again obtained from a simulation, is /(oo) « 1000 [87].

These simulations clearly illustrated that, if sites evolve independently,
the true index of dispersion for replacement substitutions must be very large
indeed. Observing an average index of dispersion of seven, for example,
would indicate that the dynamics of substitutions at individual sites are
not at all like a Poisson process. They also should warn us that our failure
to find convincing evidence for an elevated index of dispersion for silent
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Number of evolving amino acids out of 150



132 The molecular clock

sites may not necessarily be evidence for a more Poisson-like dynamic at
individual sites, but rather that the evolution of silent sites are more nearly
independent of one another than are replacement sites.

My own conclusion from these simulations is that amino acid sites do
not evolve independently. Rather, the occurrence of a substitution at one
site increases the likelihood of substitutions at other sites. If the average
index of dispersion for silent sites remains significant upon further analysis,
then the same conclusion must hold for them as well.

This view is in sharp contrast to the prevailing one. Most models of
sequence evolution postulate independent Markov chains for each site. All
such models are incompatible with high values of the index of dispersion
and thus do not provide faithful mimics of molecular evolution.

Once this conclusion is accepted, it becomes necessary to construct mod-
els for the evolution of the entire sequence rather than for individual sites.
One such model will be described in the next subsection.

Episodic evolution

The usual conclusion from studies that reject the Poisson clock is that
rates of substitution are variable. The simplest model that incorporates
fluctuating rates is the doubly stochastic Poisson process or, as we will
refer to it here, the Cox process. However, before the Cox process can
be used we need to choose a stochastic process for the rate, call it A(£).
Since the set of possible processes is unbounded, there is no obvious way
to proceed.

One way out of this impasse is to recognize that there is a time scale
problem that must be addressed along with the choice of rate processes:
how fast does the rate of evolution itself change? That question is not tied
down very well. A better question is: how fast does the rate of evolution
change relative to the mean rate of substitution? It is this relative form of
the question that is most informative.

Many proteins, like the globins, experience a substitution about once ev-
ery 10 million years. Thus, the time scale of protein evolution is frequently
on the order of tens of millions of years. Should we also assume that this
is the natural time scale of change of the rate of evolution? This depends
on our view about the causes of the changes in the rate of evolution. If we
feel that the changes are due to fluctuations in the environment, then it
seems extraordinarily unlikely that environmental changes would occur on
a time scale as long as tens of millions of years. Recall that the ice ages, for
example, occur on a time scale of tens of thousands of years or about three
orders of magnitude faster than the time scale of molecular evolution. Ice
ages occur on a rather long time scale for climatic processes. Others occur
on scales of tens (sun spot driven) or hundreds (e.g., the "little ice ages")
of years.

If we accept that the time scale of change of the rate of molecular
evolution is very fast relative to the time scale of molecular evolution itself,
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and if we use the Cox process to model evolution, then we must conclude
that evolution is episodic, with bursts of substitutions separated by periods
of quiescence. The route to this conclusion will concern us for much of this
section.

As we saw in the previous section, the number of substitutions under
the Cox process depends on the integral of the rate, / A(s)ds. Integration
is a smoothing operation, so we should expect that variations in the rate
will be hidden to some extent. The faster that the rate changes, the greater
will be the smoothing effect. To see this, look at the variance in the number
of substitutions,

In rewriting this from equation 3.8 we have brought the variance in the
rate, r\(0), outside the integral and replaced the autocovariance function
of the integrand with the autocorrelation function, r^(x)/r\(Q).

A rapidly changing environment is one with a low autocorrelation. As
the autocorrelation gets smaller, so does the integral in equation 3.11. If
the environment changes very fast, the autocorrelation becomes vanishingly
small and the variance of jV(t) approaches its mean, /x\t. At the same time,
the index of dispersion approaches one. We argued above that environmen-
tally driven changes in the rate might be occurring on time scales that are
at least three orders of magnitude faster than the time scale of molecular
evolution. If this were so, how can we account for a high index of dispersion?

The only viable answer is that the variance in the rate, rA(0), is large.
This, in turn, leads to an interesting problem. The distribution of the rate,
A(t), for a fixed t must have three properties:

1. The rate must be greater than or equal to zero, A(i) > 0.

2. The mean of the rate must be very small, EA(t) &i 10~7 for typical
proteins.

3. The variance in the rate must be large enough to elevate the variance
of M(t) sufficiently to account for a high index of dispersion.

To accommodate all three, the distribution of A(t) must be such that most
of the probability mass is very close to zero to preserve the small mean, yet
there must be a very long tail to elevate the variance. The process, A(t),
will spend most of its time near zero where it prevents substitutions from
occurring, yet will make rare excursions to high values that will lead to a
burst of substitutions.

If our intuition is correct, we should be able to write the substitution
process as the compound Poisson process
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where the Xi are independent, positive, random variables and M(t) is a
Poisson process. The process, M(£) represents the times when bursts of
substitutions occur. The random variable Xi represents the number of
substitutions that occurred on the rth burst.

Let the mean burst size be EX^ = p,b and the episodic rate be pe. Using
equation 3,5 we can write the mean number of substitutions as

That is, the mean rate of substitution is just the episodic rate times the
mean number of substitutions per episode. From equation 3.6 we see that
the variance is

We have reached an impasse: the equations for the mean and variance of
N(t) use three parameters—pet, fj.b, and /x2 = E(X2)—while we currently
have only two estimates, those for the mean and the index of dispersion of
A/"(t). There are two obvious ways to proceed. We could estimate a higher
order moment of Af(t) giving us three estimators and three parameters or
we could specialize the model in such a way as to reduce the number of
parameters by one. Of the two, the latter appears to hold more promise.

A suggestive observation that moves us in the right direction is that the
index of dispersion depends only on the properties of the bursts,

If we use a one-parameter distribution for Xi, say a geometric distribution,
we could estimate that parameter using an estimate of I(t) and have, as a
consequence, an estimate of the mean burst size, /if,. This could be used,
in turn, to estimate the mean number of episodes, pet.

There is nothing wrong with this approach from a statistical point of
view. From a scientific perspective there is something unsatisfying about
pulling a one-parameter distribution out of the air without connecting it
in any way with a fluctuating rate of evolution. In what follows we will
make the connection, although via an equally ad hoc assumption about the
nature of the clock. However, the approach that we will use does generalize,
which allows us to conclude that, in general, a rapidly changing clock leads
to an episodic pattern of substitutions.

Figure 3.13 illustrates the stochastic rate function, A(i), that will be
used for the clock. We will call this rate function the gamma clock. The
rate spends an exponentially distributed time at zero before jumping to a
gamma distributed value where it stays for a fixed time, e2, before returning
to zero. This alternation is repeated with independently chosen exponential
and gamma random variables. The mean of the exponential distribution is
€/pc, so pc/e is also the rate of change of the clock. The gamma distribution
has mean 1/e and variance v/e3.
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Figure 3.13. The gamma clock.

This form of the clock was chosen for its behavior as e —> 0. As e gets
smaller, several important things happen. Note first that the relative time
spent in the intervals where A(£) > 0 approaches zero. As a consequence,
the times that the rate jumps from zero to a positive value approaches a
Poisson process with rate pc/e.

Substitutions can only occur when A(<) > 0. Let A(f) = Vi in the zth
interval where this condition holds (see Fig. 3.13). The Vi are independent
identically distributed gamma random variables. Given Vi, the number of
substitutions within the ith interval will be Poisson distributed with mean
Ui = Vie2. Thus, the unconditional mean number of substitutions is

As e —> 0, the mean number of substitutions that occurs in any particular
interval where A(i) > 0 goes to zero. Note that, since a constant times a
gamma random variable is also gamma distributed, the Ui are independent
gamma random variables as well.

Consider the full distribution of the number of substitutions in the ith
interval. We have seen that, given Ui, the number of substitutions is Poisson
distributed. Thus, to find the full distribution we need only randomize a
Poisson distribution by a gamma distribution with mean e and variance

This particular randomized Poisson is known to have a negative binomial
distribution.* The mean of the resulting negative binomial is e and the
variance is e(l + v).

"One source for this result is the book on discrete distributions by Johnson and
Kotz [145, Section 5.4]. Their book will be the source for all of the results from
probability theory needed in this section.
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As expected, the mean and variance get small as e —» 0. Our interest
naturally turns to those intervals where there are one or more substitutions.
The negative binomial distribution, conditioned on at least one event oc-
curring, approaches a logarithmic series distribution as f. —» 0 [145, Section
7.2]. That is, if k has the negative binomial distribution just described,
then

Call the log-series distributed random variable for the ith interval for which
at least one substitution occurs X^. The mean of Xi is the mean burst size,

This completes the description of the positive random variables describing
the number of substitutions in each burst, Xi in equation 3.12.

The only remaining task is to find the rate of occurrence of episodes.
This is given by the rate of occurrence of positive values of A(<), pc/e, times
the fraction of positive values that produce at least one substitution. The
latter may be found from the negative binomial probability

From this we get the episodic rate

Thus, the number of episodes in a period of time t is Poisson distributed
with mean pet.

We are now back to our representation of the total number of substitu-
tions,

from equation 3.12. As Af(t) is a Poisson sum of log-series random variables,
it has a negative binomial distribution [145, Section 5.4] with mean

and, using equation 3.14, variance

Although this looks like a three-parameter distribution, /i& and v are related
through equation 3.15.

To estimate the mean burst size and the episodic rate we need relation-
ships between these quantities and the index of dispersion
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Figure 3.14. The burst size for the gamma and two-state clocks as a function of the
index of dispersion. The dotted line shows the median index of dispersion for the
replacement substitutions in Table 3.5.

Prom this and equation 3.15 we have

which shows that the mean burst size is a function of the index of dispersion
alone and that p,b —> 1 as /(£) —> 1. Figure 3.14 illustrates the dependency
of the burst size on the index of dispersion. The median Rr from Table 3.5
is about three, which corresponds to a mean burst size of 1.8.

The mean number of episodes is given by

which is the mean number of substitutions divided by the burst size, as we
saw before. Thus, if we have estimates of I(t) and EM(t), we can estimate
the mean burst size and the mean number of episodes.

There is a second example of a clock that also allows a direct calculation.
This is called the two-state clock because A(t) jumps back and forth between
zero and a fixed positive value, remaining at each state for an exponentially
distributed length of time. A limiting argument similar to that for the
gamma clock shows that the Xt are geometrically distributed,

with mean /zj, and E(X?) = 2/z£ - nb [94]. Using these moments and
equation 3.14 we can express the mean burst size as a function of the index
of dispersion,

and the mean number of episodes as
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Table 3.6. Estimates of the mean burst size and the mean number of episodes for two
clocks based on the data from Table 3.5.

Gamma clock
Locus
Prolactin
/3 globin
Thyrotropin, B
Relaxin
Interlukin-2
|9 crystallin
Na,K-ATPase

Hs(t)
4.32
1.78
2.31
3.29
8.84
4.39
5.50

n
51.00

1.78
8.77

64.14
54.35
7.64

15.13

Mfc
2.27
1.35
1.56
1.92
3.60
2.29
2.64

M
22.49
14.94
5.61

33.36
15.11
3.34
5.73

Two-state clock
M6

2.66
1.39
1.65
2.14
4.92
2.69
3.25

M

19.18
14.54
5.30

29.91
11.05
2.84
4.66

Figure 3.14 compares the dependence of the mean burst size on the index
of dispersion to that of the gamma clock. As is apparent, the two clocks
have similar properties in the region of the data.

Table 3.6 presents some estimates of the mean burst size and the mean
number of episodes for some representative loci from Table 3.5. It is in-
teresting that the estimated mean burst sizes are generally fairly small,
typically smaller than three. This implies that evolution does not, in gen-
eral, go on long excursions with copious substitutions. Mechanistic models
must somehow account for this fact. A second point of interest is that the
two clocks give very similar estimates of the parameters suggesting that the
two representative clocks may reflect the properties of a much broader class
of clocks.

We have accomplished our two main goals: we have shown how to obtain
the representation for J\f(t) given by equation 3.10 and how to estimate the
mean burst size and episodic rate for two clocks. These results rely explicitly
on the details of the two clocks. It is natural to worry about their generality,
particularly as both clocks are "episodic": they jump between zero and
positive values. In fact, it has been shown that the representation as a
Poisson sum of positive random variables (equation 3.12) holds generally*
when the autocorrelation of the clock approaches zero and the variance
goes to infinity [94]. In particular, there is no requirement that a clock
spend time at zero to yield episodic dynamics. The details of the general
argument are technical and will not be repeated here. The essential obstacle
to a simple demonstration is that there is no satisfactory way to describe
the distribution of the integral of the rate function, / A(s)ds. The two
clocks were chosen as simple cases where the distribution could be found,
at least approximately. This allowed us to proceed using a direct argument.

The general approach also shows that there is no restriction on the

*There is, in fact, a gap in the proof of the general result [94, p. 146]. I was unable
to find conditions on A(t) that made the limiting form of its integral a process
with independent rather than orthogonal increments.
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distribution of burst sizes. Any positive random variable may be used,
including ones with two or more parameters. At the present time, there
have been no attempts to choose between various burst size distributions.
It is unlikely that there would be enough power for such a test.

3.5 Is there a clock?

There are two distinct reasons why one might be concerned with the molec-
ular clock: as a device to estimate the times of divergence of lineages and
for its implications about the mechanisms of molecular evolution. They
differ dramatically in the importance that we attach to the acceptance of a
clock.

The first concern is for the establishment of a "time scale for evolu-
tion." For this, we only care that the clock's intrinsic error be known and
incorporated into the confidence limits placed around the estimates. There
are some difficulties even with this seemly straightforward program. If,
for example, the variability in the clock is due to lineage effects, and if
lineage effects are set for each lineage by some deterministic mechanism,
then knowledge of the variability of the clock for one set of lineages will
not help to assess its variability on another. Had we calibrated the insulin
clock using primates, artiodactyls, and carnivores and used it to estimate
the split times for hystricomorph rodents, we would have been off by an
order of magnitude. There is no obvious way around this problem. We
could base estimates of split times on a large number of loci, but even here
such phenomena as the general slowdown of primate evolution will cause
problems.

For the second concern, we must be much more suspicious than we
are when judging the clock's utility as a time scale for evolution. A bit
of erraticism in the clock may inject only a small error in estimates of
split times. It may, by contrast, alter dramatically our choice of models of
molecular evolution.

The contrast between these two concerns is brought into focus by a
defense of the clock's use as a time scale of evolution by Allan Wilson and
his colleagues:

Biochemists can agree with naturalists that every nucleotide position
has a unique history, as does every atom of a gas. But, they also
recognize that the universal gas law (PV = nRT) was not discovered by
detailed analysis of the behavior of individual atoms. Bringing together
molecular biology and natural history in the search for general laws of
evolution requires, as many naturalists now recognize, a willingness to
transcend 'microscopic' analysis. [309]

Two points should be made at the risk of belaboring the obvious. The
first is that the clock is not as easily verified as were Boyle's and Charles'
laws. We cannot be sure at this time that we even have a "law." The
second is that PV = nRT may be derived from the laws of statistical
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mechanics of large numbers of molecules. The molecular clock—in its strict
incarnation with a constant rate over all lineages—cannot be derived from a
mechanistic model of evolution. Thus, while the quote is wistful, it deflects
the important scientific problems presented by the molecular clock.

Since our interest here is entirely with the scientific implications of
the clock, I will take the stronger position that the clock does not ex-
ist. That is, there is adequate evidence that there is variation in the rate of
substitution—lineage effects—beyond that attributable to residual effects.

There appear to be at least two different dynamics of allele substitutions,
neither of which is strictly clock-like:

Silent dynamics: Within coding regions silent substitutions show
strong lineage effects and weak residual effects. The lineage effects
appear to be due, in the main, to the generation-time effect.

Replacement dynamics: These are the opposite: weak lineage effects
and large residual effects. The weak lineage effects are in the same
direction as those for silent substitutions, suggesting that they too
are due to the generation-time effect, although a considerably weaker
one.

The simplest explanation for this pattern is that silent substitutions are
mostly mutation limited while replacement substitutions are not.

In an effort to find clock-like behavior, it may be profitable to consider
substitutions as a stationary point process within a set of lineages where
lineage effects have been removed. In our study of residual effects with
three species this is precisely what we did. Even though the existence of
lineage effects rules out a clock, there may still exist a substitution process
that is common to all lineages once mean effects are removed.

This is treacherous ground. We seem to be giving special meaning to the
lineages that appear in our studies even though they were chosen simply
because sequences from them happen to be available in the GenBank or
EMBL databases. They were not chosen because they were thought to be
somehow homogeneous with respect to molecular evolution. In our analysis
of sequences from orders of mammals, we implicitly assume that lineage
effects are constant within each of the orders. Yet, we have seen that within
primates at least, there is a progressive slowdown in the silent substitution
rate as we move toward the apes.

In light of this, it is tempting to suggest that the rate of substitution
evolves along lineages. Daughter lineages might inherit their initial rate
from their parental lineage and evolve new rates independently. The evo-
lution of rates is conceptually similar to that of morphological traits. Can
such a model account for both lineage effects and residual effects?

The answer is a highly qualified yes [87]. The qualification is that the
rate of evolution of rates must be similar to the time scale of molecular
evolution. If it were much faster, we would require an episodic model to
account for the high values of R(t), thus moving us back to a model with
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stationary residual effects. Were the rate much slower, it would induce a
correlation of rates between lineages that would make it very difficult to
account for the high values of R(t) [87].

If we were to entertain the idea that the rate of evolution of the rate of
molecular evolution were similar to the time scale of evolution, we would
need a biologically plausible reason why this extraordinary coincidence
should hold. An obvious explanation is that the substitutions themselves
alter the rate of evolution. This assumption is the basis of Takahata's
"fluctuating neutral space" model [277]. We will examine the underlying
assumptions of this model in Chapter 6.

Much remains to be done to sort out these issues. For the remainder of
this book, I will adhere closely to the view that both lineage and residual
effects are commonplace for replacement substitutions, but only lineage ef-
fects are established for silent substitutions. When present, residual effects
may be adequately modeled by a stationary compound Poisson process.
This view may well change as more data become available.
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Selection in a fluctuating environment

In this chapter we will explore some mathematical aspects of natural se-
lection in a temporally and spatially fluctuating environment. This is an
area of population genetics that has received relatively little attention over
the years. The reasons for this are complex, but a lack of relevance is cer-
tainly not one of them. Population genetics theory is concerned with the
evolutionary consequences of fitness differences between genotypes. The
fitness of a genotype is a measure of its success in the natural environment.
It is clear to even the most casual observer that the environment is in a
constant state of flux. It must be the case that fitness differences between
genotypes are also in a constant state of flux. Thus, models of selection
in a fluctuating environment should be central to that part of population
genetics theory that is concerned with natural selection.

There are two formidable obstacles to the development of a satisfactory
mathematical theory of selection in a fluctuating environment. The first is
the problem of specification: there are simply too many models. Consider,
by way of contrast, the simple world of the one-locus k-allele diploid model
of selection in a constant environment. This model is completely specified
by k(k + l)/2 parameters reflecting the fitnesses of the distinct genotypes.
There is no disagreement on the merit of the model and any new results on
its dynamics are welcomed.

When we move the constant fitness model into a fluctuating environ-
ment, we are immediately faced with a plethora of questions. Should the
environment fluctuate in time or space or both? If there are temporal fluc-
tuations, should they be stochastic or periodic? If stochastic, what sort of
stochastic process should be used for the fitness of a particular genotype?
Should it be autocorrelated, stationary, Markovian, or something less or-
thodox? If there are spatial fluctuations, how many subdivisions should
there be? Should there be restricted or free migration? Should selection
be hard, soft, or something in between? What should be the relationships
between the fitnesses of the different genotypes? Unlike the constant fit-
ness case, there is no consensus about the merits of any particular choice
among the many that present themselves. We quickly find ourselves in
the strange position of feeling that work on constant fitness models is very
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general, whereas work on selection in a fluctuating environment is very spe-
cific, and somehow less worthy. This is the stifling effect of the problem of
specification.

The second obstacle is the mathematical difficulties presented by the
models themselves; they are extraordinarily difficult to analyze. This has
unquestionably, and unjustifiably, steered them away from the central po-
sition they should occupy in population genetics theory.

Given these problems, how should we proceed to develop a compelling
mathematical theory? The first step must be to consider the goal of the the-
ory: what biological phenomena will the theory help us to understand? As
this book is primarily concerned with molecular evolution and polymorph-
ism, the mathematics to be developed will be geared to our understanding
of molecular phenomenon. This immediately suggests that the fitness differ-
ences between genotypes should be very small. There are three important
consequences of this assumption. The first, a purely technical consequence,
is that we will be able to make use of diffusion approximations. The second
is that very small primary effects make the use of nearly additive models
of gene action biologically reasonable. The third is that the details of the
environmental variations often don't matter; many different situations give
rise to the same diffusion model. Thus, the problems of specification are,
to some extent, resolved. The technical difficulties remain, although they
are lessened considerably by the ability to use diffusion theory.

Diploid models of nearly additive gene action are based on an underlying
additive scale which is mapped into fitness by a continuous function called
the fitness function. They are very similar to haploid models. The similarity
is so important that our development of the theory we will begin with an
examination of haploid models, which are relatively simple, before moving
on the the more complicated diploid models. In fact, we will introduce a
fiction, the c-haploid model, which is a bridge between haploid and diploid
models. The approximate dynamics of c-haploid models are the same as
those of diploid models, but the model itself is divorced of the complexities
that plague diploid models. The sequence of models—haploid, c-haploid,
diploid—appears to be the most natural way to develop the theory and is
the sequence that will be followed in this chapter.

This is the first time that this theory has been presented in a cohe-
sive fashion. Anyone who has attempted to extract the theory from the
literature has undoubtedly been frustrated by inconsistent notation, terse
derivations, and many tangents that make the central thread of the the-
ory difficult to follow. I am more guilty than most for these problems.
Hopefully, this chapter will make the theory accessible to anyone who is
interested. More importantly, it may provide a platform for future work.
There are a number of important mathematical questions that have yet to
be answered. The theory should represent a cornucopia of problems for
population geneticists and mathematicians alike.
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4.1 Overview

Those readers who do not wish to slog through 100 pages of mathematics
will find the most important conclusions from this chapter summarized in
this section.

The chapter begins with a discussion of haploid selection in a temporally
fluctuating environment. The most important biological conclusions are
that the genotype with the largest geometric mean fitness ultimately wins
out over all others and that all variation is eventually driven from the
population, even if all genotypes have the same geometric mean fitness.
The real purpose of this chapter, however, is the derivation of the diffusion
model for haploid selection in a temporally fluctuating environment as given
by equation 4.8. This diffusion forms the basis of our subsequent analysis
of diploid models. The complete transient solution of the diffusion is easily
found because the transformation given by equation 4.2 carries the haploid
diffusion into Brownian motion.

The transition from haploid to diploid models is made via a new model
called the c-haploid model that is the focus of the next section. Past ex-
perience has shown that a large class of diploid models share a common
diffusion approximation. The parameters of the diffusion reflect the rela-
tive contributions of three aspect of diploids: the dominance relationships
between alleles, the amount of spatial subdivision of the population, and
temporal autocorrelations of the environment. As the mathematics that
connect each of these factors to the parameters of the diffusion can be
lengthy, I have chosen to investigate the dynamics of the diffusion first and
make the connections with the biology later, hence, the somewhat abstract
incarnation of the c-haploid model.

The c-haploid model is obtained from a haploid model by simply multi-
plying the single generation change in the allele frequency by the constant
c. This leads immediately to the diffusion process given by equation 4.12.
Three aspects of this diffusion are described: its stationary distribution, its
hitting probabilities, and its waiting time properties.

The stationary distribution for the c-haploid model is a Dirichlet distri-
bution as given by equation 4.19. The fact that a stationary distribution
exists implies that the stable coexistance of alleles due to temporal fluctua-
tions in the environment is possible under the c-haploid model, a significant
departure from the haploid result. Various special cases of the Dirichlet dis-
tribution are investigated. The most important of these is a symmetric case
with an infinite number of alleles. The distribution in this case is the same
as that for the neutral allele model. Prom this we are lead to the unfortu-
nate conclusion that samples from a single population cannot be used to
distinguish between neutral models and models of selection in a fluctuating
environment.

As the c-haploid model does not incorporate genetic drift, alleles cannot
leave the population in a finite period of time. To investigate sample path
properties we must impose artificial boundaries that are hit by alleles whose
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frequencies achieve a small value e. These sample path properties turn out
to be precisely what is needed to understand the role of genetic drift in
diploid populations.

The dynamics of yfe-allele models may be split into two regions. Rare
alleles, those with frequencies close to e, live in a boundary layer where the
time scale of change is very long. Common alleles, those with frequencies
much larger than e, live in the interior where the time scale of change is
much faster than that of rare alleles. As e —> 0, the difference in time scales
in the two regions magnifies, allowing a standard asymptotic approach to
finding sample path properties. The most important of these is the mean
time to lose the first of k alleles from the interior as given by equation 4.45
and illustrated by Figure 4.7. The figure shows that the time to lose alleles
from the interior drops precipitously if the number of interior alleles exceeds
some critical value.

The next section adapts the c-halploid results to a class of diploid models
called SAS-CFF models. SAS-CFF models are diploid models with two
components reflecting gene action:

• Stochastic additive scale (SAS): Alleles contribute an amount to a
stochastic additve scale that depends on the state of a randomly fluc-
tuating environment.

• Concave fitness function (CFF): The additive scale is mapped into
fitness by a concave function called the fitness function.

The SAS-CFF model clearly shares much in common with standard quan-
titative genetics models with genotype environment interaction.

There are three components of SAS-CFF models that determine the
main features of their dynamics:

Dominance: The degree of dominance is reflected in the curvature
of the fitness function. Greater curvature implies greater dominance
and, as shown in the section on SAS-CFF models, more polymorphic
alleles and higher heterozygosity.

 Spatial subdivision: The contribution of spatial subdivision to het-
erozygosity is complex. For soft selection, where subdivisions con-
tribute a fixed fraction of individuals to a random mating pool each
generation, increasing the amount of subdivision increases the level
of polymorphism. For hard selection, where subdivisions contribute a
fraction of individuals that is proportional to the mean fitness of the
subdivision, increasing the amount of subdivision decreases the level
of polymorphism.

 Temporal autocorrelation: Increasing the temporal autocorrelation of
the environment always decreases the level of polymorphism.

Table 4.1 summarizes the mathematical formulae that lead to these conclu-
sions. Biologically, these results show that flucutations in the environment
can be a powerful force for the maintenance of genetic variation.
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When drift and mutation are added to SAS-CFF models, the mathe-
matics become horrendous. All of our results come from an asymptotic ap-
proach that assumes strong selection and weak mutation (SSWM for short).
Under SSWM assumptions, we show that a symmetric fc-allele SAS-CFF
model collapses to a one-dimensional Markov chain whose state space is
the number of interior alleles. Thus, we are able to describe the state of a
population in terms of the times that alleles enter or leave the population.
This is a powerful appraoch that allows a us to ignore many of the detailed
dynamics and to concentrated on just those properties of populations that
are most easily observed.

4.2 Hapioids

Although haploid population genetics is not our main concern, several im-
portant properties of selection in a temporally fluctuating environment that
are shared by haploid and diploid models may be investigated more easily
in haploid models. Moreover, the diffusion approximation for the haploid
model is almost identical to that of the additive diploid model. In certain
cases, the diffusions are the same. The time spent investigating simple
haploid models will prepare us for the less intuitive diploid models that lie
ahead.

The haploid under scrutiny is a creature with one locus, k segregating
alleles, separate generations, and an effectively infinite population size. The
fitness of the ith allele in the tth generation will be written iy»(£); its relative
frequency in the population, Xi(t), where Sjli^iW = 1- The change in
the frequency of the ith allele in a single generation is given by

where

is the mean fitness of the population. The transformation

takes the nonlinear difference equation 4.1 into the k—1 dimensional linear
difference equation

Herein lies the secret to the haploid model's simplicity in the theory of
selection in a temporally fluctuating environment. If the fitnesses happen
to fluctuate at random, the transformed version is a random walk, a par-
ticularly simple stochastic processes. (No such transformation is known for
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diploid models.) Known results about random walks may be used to write
down the distribution of the vector of allele frequencies at any generation.
Alternatively, the solution to the diffusion equation may be used to the
same end. Before following the latter course, some simple but fundamental
properties of the two-allele case will be presented.

For the two-allele haploid model, it is sufficient to follow the frequency
of the first allele, which we will call simply x(t), and its transformed version,

If the initial state is at t — 0, then the value of y at generation t, using
equation 4.3, is

Since x(t) is a monotonically increasing function of y(t),

its value depends monotonically on the sum in equation 4.5 which may be
rewritten as

The argument of the logarithm will be recognized as the ratio of the ge-
ometric mean fitnesses of the two alleles averaged across generations. For
a particular sequence of environments, the frequency of the allele with the
larger geometric mean fitness will increase. The geometric mean plays this
central role due to the multiplicative nature of reproduction.

So far, the two-allele model has no probabilistic content. The sequence
of fitnesses is known with certainty; as a consequence, so is the sequence of
allele frequencies. There are many ways to add randomness; the simplest
assumes that the collections {wi(t}} and {w2(t)}, t = 0,1,..., each contain
independent identically distributed (IID) random variables. In more bio-
logical terms, the environment in any particular generation is independent
of all those in past generations. As a consequence of this assumption, S(t)
is random walk—a sum of IID random variables—making the wealth of
results on random walks immediately available for our purposes.
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The question of immediate interest concerns the eventual state of the
population. Since the variance of S(t) grows linearly with time,

it is clear that the population will eventually be composed almost entirely
of one allele or the other. Since the mean of S(t) also changes linearly with
time,

it is also clear that the allele with the larger mean log fitness will eventually
dominate the population,

The geometric mean fitness of an allele is e raised to the power of the
expected value of the logarithm of its fitness. Thus, the allele with the
largest geometric mean fitness will eventually dominate in the population.
This observation, due to Dempster [53], is the most important property
of haploid selection in a random environment. Note that it carries with it
the corollary that temporal fluctuations in fitness will not maintain a stable
polymorphism when the two alleles have different geometric mean fitnesses.

The two-allele case with equal geometric means is particularly interest-
ing. Because of the symmetry and the linear increase of the variance of S(i)
with time, it seems likely that x(t) will be very close to zero or very close
to one if t is sufficiently large. Similarly, if the population is examined at
widely separated points in time, it seems likely that x(t) will sometimes be
near zero and sometimes near one, though almost never far away from one
or the other. This suggests that the allele frequency will occasionally flip
relatively rapidly across the intermediate frequencies. If these flips were to
occur at a constant rate, the haploid model might provide a basis for an
interesting model of continuing evolution without polymorphism. Sadly,
this is not the case.

The easiest way to investigate the evolutionary aspects of the haploid
model is to use the classical random walk as a model of the environment.
Let

j

making S(t) a random walk on a lattice with points at integer multiples of
s.

Whenever x(t) flips from near one to near zero, S(t) will change from a
very large positive value to a very large negative value, crossing zero in the
process. A flip in allele frequency may be equated with the random walk
crossing zero. The probability that S(t) equals zero is the probability that
the number of jumps in the positive direction exactly equals the number
in the negative direction, which can only occur when t is an even number.
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Since the direction of the jumps are independent from one generation to
the next, the probability that there are t out of It in the positive direction
is the binomial probability

where the asymptotic torm tor large t uses Stirling's approximation. We
conclude that the rate of crossing is inversely proportional to the square
root of time* and thus that the simple haploid model cannot provide a
model of continuing evolution.

The contrast between the symmetrical and asymmetrical cases is worth
emphasizing. When the geometric mean fitnesses of the two alleles are not
equal, the allele frequency will cross one-half a finite number of times. Such
processes are called transient in probability theory [23, Section 3.7]. By
contrast, when the geometric means are equal, the allele frequency will cross
one-half infinitely often, although the interval between crossings increases
with time. These processes are called recurrent. While this distinction is
mainly of mathematical interest, it does suggest that the symmetrical case
may exhibit some interesting properties if a small amount of mutation is
added.

The distribution of x(t) may be derived if some additional assumptions
are entertained. For example, suppose the random variables

are normally distributed with moments

As a sum of normal random variables is also normal, y(t) will be normally
distributed with mean y(0) + pi and variance a2t. Its density is given by

The density for x(t) may be obtained by transforming the normal distribu-
tion with equation 4.6,

Direct examination of this density* shows that the probability mass will
pile up near one if fj, is positive, near zero if fj. is negative, or at both end

*This and other facts about random walks may be found in Chapter 3 of Feller's
book [70].
tThis inelegant density has been dubbed the SB distribution [144]. There are no
simple expressions for any of its moments.
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Figure 4.1. The transient density of the symmetrical hapioid model.

points if fi is zero. The allele frequency will never actually equal zero or
one because of our assumption that the population size is infinite. For this
reason the boundaries are said to be inaccessible. Kimura [152] coined the
term quasi-fixation to distinguish this behavior from the loss of variation
through the fixation of alleles by genetic drift. An example of the change
in the density with time is given in Figure 4.1.

The multiple-allele case could be investigated in an entirely analogous
fashion using a k — 1 dimensional random walk. However, the route to the
diploid case will be made clearer if we forgo this approach in favor of one
based on diffusion approximations. To obtain the approximating diffusion
process for the multiple-allele case, we need the mean and covariance of the
changes in the allele frequencies and some conditions to assure that these
moments are small.

Selection will change things slowly if the fitnesses remain close to one.
To emphasize this restriction, write

where Yi(t) must remain near zero. Assume that {Fj(i)} is a collection of
IID random variables with moments

Assume further that the p,^ and o^- are small and of similar orders of mag-
nitude and that all higher order moments of Yi(t) are of smaller orders of
magnitude. This is a loaded assumption, one with important biological and
mathematical ramifications. The former will be taken up later in the book;
of the latter, note for now that this assumption permits us to write, for
example,

because the first- and second-order moments are both small and of the
same order of magnitude, implying that the square of the mean will be of
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a smaller order of magnitude. Similarly, EYi(t)3 is assumed to be so much
smaller than EYi(t)2 that it may be ignored in all moment calculations,
and so forth.

Using these assumptions, the mean change in the frequency of the ith
allele may be approximated by

where

This series of steps uses the familiar small e approximation for the sum of
a geometric series, 1/(1 -f e) « 1 — e.

The second-order moments for the changes in allele frequencies are ap-
proximated by

For all practical purposes, this completes the derivation of the diffusion.
We have approximations for the mean and covariance of the change of allele
frequencies that completely characterize the diffusion process. Using the
notation of stochastic differential equations, the approximating diffusion
may be written

where we understand that time is now continuous, but is still measured in
units of generations.
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The derivation can be made more rigorous. The usual approach intro-
duces a scaling parameter, say e, and guarantees the order of magnitude
assumptions on the moments by writing them as

The final ingredient is a sequence of continuous time processes, indexed by
«,

where [-]GIF ls the greatest integer function. As € approaches zero, the se-
quence of processes, x\e' (t) converges to equation 4.8. The only distinction
involves the measurement of time. In the casual derivation time is mea-
sured in units of generations. In the rigorous approach, each unit of time
corresponds to 1/e generation. The scalings on the moments guarantee that
the two approaches give the same answer for any particular model.

For a thorough discussion of convergence as it applies to population
genetics see the book by Ethier and Kurtz [64]. Issues of rigor are not of
great concern for the haploid model because it is a transformed version of
Brownian motion. The extensive literature on the convergence of random
walks to Brownian motion gives us confidence that we are on firm footing.

The obvious route to the full transient solution of the haploid diffusion
is to transform it into Brownian motion using equation 4.2, obtain the
transient solution of the Brownian motion, then transform it back to the
space of allele frequencies using the inverse of equation 4.2. Fortunately,
most of the work has already been done, so we are spared what would
otherwise be a lengthy calculation.

Instead of transforming the diffusion, it is easier to achieve the same
end by deriving the diffusion approximation of the transformed difference
equation 4.3. Use the small e expansion,

to get

and

where
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The quantities ^ and Cij appear frequently in the theory of selection in a
random environment, so the reader should commit them to memory. The
parameter 7; is approximately the geometric mean fitness minus one; Cy is
the covariance of the fitness differentials.

The diffusion for the transformed process is thus the Brownian motion

The transient behavior of this process is described by a Gaussian distribu-
tion of the vector y = (3/1,... ,2/fc-i),

with mean vector

and covariance matrix

To transform this into the distribution of allele frequencies, express y in
terms of allele frequencies using equation 4.2,

use

in b, and multiply the resulting function by the absolute value of the de-
terminant of the Jacobian of the transformation,

Direct examination of the solution shows that nothing much has changed
from the two-allele case. The second-order moments of the transformed
process still increase linearly with time, and the allele with the largest
geometric mean fitness still wins.

Our transformation of the multiple-allele model conferred special status
to the fcth allele even though nothing about this allele sets it apart from the
others. The transformation actually destroys some of the natural geometry
of the process. This is seen in the diffusion for y, which has moments of YJt
appearing in all of the drift and diffusion coefficients. There is a device for
preserving the natural geometry when transforming to Brownian motion
that was introduced by Notohara et al. [221]. Rather than following allele
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frequencies, they follow the logarithms of the total numbers of alleles. Let
Zi(t) be the logarithm of the total numbers of the zth allele. The difference
equation for Zi(t), viewing Wi(t) as the total number of offspring of an allele,
is

The fc-dimensional diffusion process for the logarithms of the total number
of alleles is

The transient density of this Brownian motion is Gaussian with mean

and covariance matrix

This is certainly a more pleasing geometry than before.
A price is extracted for this elegance when we attempt to transform

the Gaussian process back to the space of allele frequencies. The Brownian
motion is a fc-dimensional process, while the space of allele frequencies
lives in k — 1 dimensions. Thus, some device must be used to make the
transformation one-to-one. One method adds an extra dimension—call
it Xk—in the transformation, and then obtains the marginal distribution
of the first k — 1 dimensions after the transformation is completed. The
appropriate transformation is

When the dust settles, the final result is the same as we obtained from the
previous approach.

4.3 The c-haploid model

When we turn our attention to diploids, all of the niceties of haploid mod-
els evaporate. It is not simply the increase in parameters—roughly k2 in
one-locus haploid models compared with k4 in diploid models—but also
that the parameters do not enter in a symmetrical fashion. Real progress
in multiple-allele models can only come by specializing to highly simplified
versions of the general diploid model. Hopefully, the simplifications will
be guided by biological rather than mathematical considerations. In the
best of all worlds, the most convincing biological simplifications will also
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lead to the most tractable mathematics. This has been the case for a class
of diploid models, affectionately known as SAS-CFF* models, which are
closely related to haploid models. The biological motivation for these mod-
els rests on an assumption that the biochemical differences between alleles
are very small and additive, heterozygotes being intermediate between their
associated homozygotes. Mathematically, this underlying additivity allows
SAS-CFF models to be developed as extensions of the haploid model.

The full range of SAS-CFF models includes such effects as dominance,
temporal autocorrelations in the environment, and spatial subdivision. The
analysis of each of these effects can be computationally exhausting, but
experience has shown that the diffusion approximations that come out the
other end are always of the same form, differing only in the interpretations
placed on the parameters. In light of this experience, it now seems that the
most natural way to develop the theory of SAS-CFF models is through an
artificial model, called the c-haploid model, whose diffusion approximation
exhibits the full dynamic behavior of SAS-CFF diffusions, yet is divorced
of the computational nightmares.

The simplest example of a c-haploid model is a diploid model with the
fitness of a heterozygote being exactly intermediate between that of the two
associated homozygotes. That is, let the fitness of the A,Aj genotype be

This is what we mean by no dominance or, equivalently, additive alleles.
The change in the frequency of the ith allele in a single generation is

which is one-half the change in a haploid model with the fitness of the ith
haploid allele set equal to the fitness of the AiAi homozygote (compare
to equation 4.7). The mean change, JSAxj, is one-half the mean change
of the haploid model, while BAxiAxj is one-quarter the haploid value.
The unexpected consequence of this factor of one-half is that the diffusion
has a stationary solution, implying that the diploid model leads to stable
polymorphism, as will be shown shortly.

The fact that the difference equation for the additive diploid model
differs from that of the haploid model only in the factor of one-half suggests
that a class of models worthy of consideration would be those with a general
multiplier of the haploid model difference equation. If the multiplier is
called c, we have the c-haploid model defined by the difference equation

'Stochastic Additive Scale-Concave Fitness Function
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c-haploid model

SAS-CFF diffusions

SAS-CFF models

Figure 4.2. The relationships between models.

Life is made easier if we also assume that {Yi(t)}g?.0
 are collections of IID

random variables.
The rich variety of dynamic behavior that results from multiplying the

difference operator of the haploid model by the constant, c, is remarkable.
In fact, the diffusion approximation to any diploid SAS-CFF model cor-
responds to that of a c-haploid model if the parameters of the c-haploid
model are chosen appropriately. It must be stressed, however, that for
most values of c, the c-haploid model does not correspond to any known
diploid model. (An exception occurs when c = 1/2, which corresponds
to the additive model.) Only when we allow the first- and second-order
moments of Yi(t) to approach zero is the resulting diffusion the same as
the diffusion of a more complex SAS-CFF model. Our strategy is clear:
have fun studying the dynamics of the c-haploid model now, figure out
how the parameters of the c-haploid model depend on assumptions about
dominance and environmental fluctuations in real diploid models later.

The diffusion approximation to the c-haploid model is obtained by mul-
tiplying the drift coefficient of the haploid model (see equation 4.8) by c,
and the diffusion coefficient by c2,

For all of the diploid models that will be considered in the next section, c
is less than or equal to one as will be assumed in all that follows.

At present, the only exact result that is known for the fc-allele version
of the diffusion equation 4.12 is the stationary distribution. This will be
derived in the next subsection. Beyond this, the important results concern-
ing the mean times and probabilities for alleles to become rare or common
are only known through asymptotic expansions. These will be given in
subsequent subsections.

The stationary distribution

The method of choice for finding the stationary distribution of a (k — 1)-
dimensional diffusion process was introduced into population genetics by
Kimura [154]. The basic idea is to assume that (at stationarity) there
is no net flow of probability mass from one region of the state space to
another. The flow in a specified direction is called the probability flux in
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that direction. Let the probability density for the process at time t be
\t(x,t). The flux in the direction of the ith coordinate is

for a diffusion with drift and diffusion coefficients

Kimura's approach to finding the stationary distribution is to set the flux
in each orthogonal direction equal to zero,

and to solve the resulting system of first-order partial differential equations
for the stationary distribution \£(x), which is independent o f t .

For the c-haploid model, solving this system of partial differential equa-
tions is a daunting task. It works, but a much easier method, due to Seno
and Shiga [254], is to transform the diffusion into a more malleable form,
get the stationary distribution for the transformed process, and then trans-
form the distribution back to the original space of allele frequencies. It
should come as no surprise that the transformation is the very one that
carried the haploid diffusion into Brownian motion,

yi=log[xi/xk].

This is not a panacea: the algebra is messy. Fortunately, it is straightfor-
ward, and the answer collapses at the end to a very likable diffusion.

The drift coefficient of the transformed process is obtained via the Ito
formula for change of variables,*

The first step in the calculation, using equation 4.12, is

*A discussion of Ito's formula may be found in Gardiner's book [79, p. 95].
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where 6n = 1 and Sij = 0 for i ^ j. From here on everything is pretty
routine.

The initial strategy is to express all of the sums from 1 to k — 1 as sums
from 1 to &. This will introduce a lot of overbar terms (like JL) that will
ultimately cancel. For example, use

After a few lines you will get to the following:

At this point the strategy should be reversed, and the two overbar terms
should be written as sums from 1 to k — 1,

where we have reiritroduced the notation (see equation 4.10),

Finally, we get

where

The use of the parameter B may seem redundant, but there are two good
reasons for introducing it. The first is that many of the results turn out to
be functions of 1/c rather than c, so we benefit from streamlined notation.
The second is historical: B has a small but enthusiastic following. To use
1/c in its place would be unconscionable!

Note that the drift coefficient is written as if it were still a function of
Xi\ this is done for notational convenience. The Xi are actually functions of
the 2/j through the inverse transformation,

i

The transformed diffusion coefficient may be derived in an entirely anal-
ogous manner. The Ito formula in this case is
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The first step is

A shorter calculation than that for the drift coefficient yields the diffusion
coefficient

In summary, the transformed diffusion has drift coefficients

and diffusion coefficients

This process has a clear advantage over the original diffusion in that the
diffusion coefficient is constant.

It is now time to find the stationary distribution, ^(y), for the trans-
formed diffusion. Following Kimura, we will not work with the stationary
distribution directly, but rather with a new function

When ij} is plugged into the zero probability flux, equation 4.13, and the
signs are reversed, we obtain

Here is where all of our hard work pays off. Since Oy is equal to the constant
c?Cij, the first sum in this equation is zero.

From equation 4.14 we get the drift coefficient 6j(y) for equation 4.17,
giving

where

These equations may be viewed as a system of linear equations in dtjj/dyj.
The system may be written in matrix notation by introducing the matrix
C with components c^, and the vectors m with components mj, x with
components Xi, and if) with components dty/dyj.

Equation 4.17 now becomes
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Multiplying both sides by C"1 yields the solution

where

is a vector with components /?».
We can write the ith member of the solution as

which may be integrated to

where the "constant" of integration may depend on y j , j ^ i. In fact, the
equivalence of all of the dimensions immediately suggests that the "con-
stant" will be a sum with terms /3jj/j, giving

where C is a constant that does not depend on any of the j/j. Raising this
to the power e (the inverse of the transformation in equation 4.16) gives
the stationary distribution for the transformed process,

To transform this distribution back to the space of allele frequencies,
use

and the determinant of the Jacobian of this transformation (4.11),

to get the stationary distribution of allele frequencies,

where
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The distribution in equation 4.19 is called the Dirichlet distribution.* The
only restrictions on the Dirichlet parameters are that

These, in turn, impose conditions on the parameters of the c-haploid model
that must be met for there to be a stationary distribution with all k alleles
segregating. The conditions are only interesting in the context of particular
models, so further discussion on them will be deferred until the next section.

The Dirichlet stationary distribution for a c-haploid with symmetric
second-order moments was first published by Gillespie [83]. The station-
ary distribution for models with asymmetric second-order moments (equa-
tion 4.19) is due to Turelli [282] who called his model the SOS model (for
Son of SAS-CFF).

Nothing in our derivation guarantees that the stationary distribution is
unique. That the Dirichlet distribution is the unique stationary distribution
that satisfies the zero probability flux condition was proven by Seno and
Shiga [254]. Their paper also contains a weak convergence proof showing
that our diffusion is a bona fide limit of a discrete SAS-CFF model. There
remains the unlikely possibility that a stationary distribution exists that
does not satisfy the zero probability flux condition.

Many of the important properties of the Dirichlet distribution may be
derived from the marginal distributions of individual alleles. Among these
are the mean homozygosity and the frequency spectrum. Note, however,
that there is no one-dimensional "marginal diffusion." In this regard the
SAS-CFF diffusion differs from its neutral counterpart.

The marginal distribution of the ith allele is obtained by integrating
<t(x) with respect to Xj for j = 1,..., k - 1 but j ^ i,

This is a beta distribution with moments

Using these moments, it is easy to obtain the mean homozygosity,

*A particularly captivating introduction to the distribution as well as some inter-
esting applications may be found in a paper by Kingman [165].
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Similarly, the frequency spectrum, £(x), is

Recall that the frequency spectrum has the interpretation that its integral,

is the mean number of alleles found in the interval (a, b). The significance
of these general results becomes clear as we now specialize to some sym-
metrical cases that have proven useful in various applications.

The most important case is a totally symmetrical model defined by
/ii = n and

This form of the symmetrical moments was chosen to simplify the param-
eters that appear in the resulting diffusions. The correlation between Fj(i)
and Yj(t) is given by

In most of the published work on symmetrical SAS-CFF models, the basic
parameters are a2 and p rather than a2 and r. The conversion between
the two is simple enough, so we will adopt the latter convention for its
significant contributions to more elegant answers.

The symmetry assumptions transform the diffusion (4.12) into

with the aid of

The stationary distribution in this case is the Dirichlet

In deriving equation 4.27 from equation 4.19 we used
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Figure 4.3. Marginal distributions for the symmetrical c-haploid model.

There are two ways to justify this. The first appeals to the symmetry of the
model and the fact that the sum of the betas equals 2(B — 1). The second
uses the definition of ft directly. For the symmetrical case, the matrix C is

with inverse

Each component in the vector m is

so P = C"1!!! is a vector with components 2(5 — l)/k. The conditions for
the existence of the stationary distribution, /3» > 0, become simply B > 1.

Examples of the marginal distribution for B = 10 and different numbers
of alleles are illustrated in Figure 4.3. As the number of alleles increases,
the marginal distribution shifts from one with a mode near l/k to one with
a mode at zero. The critical value for the shift is A; = 2(5 — 1). When
there is an interior mode, the distribution approaches zero as x —> 0. If A; is
greater than 2(5 — 1), the probability mass approaches infinity as x —> 0.
This difference has a profound effect on the fate of alleles when genetic drift
is introduced. In the former case selection retards the loss of variation; in
the latter, selection accelerates the loss.

The mean homozygosity for the symmetrical case is, from equation 4.25,

As the number of alleles increases to infinity,
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The frequency spectrum for finite k is

As the number of alleles

These formulae should have a familiar ring: they are in exactly the same
form as the equivalent formulae from the neutral model. A comparison
shows that 2(J3 - 1) plays the same role in SAS-CFF models as does 4^14
in neutral models. In fact, the Dirichlet distribution itself is the stationary
distribution of both models. This has the distressing implication that there
can be no way to use observations on allele frequencies from a single point
in time to distinguish between these two models.

While it seems obvious at this point that the sampling distributions for
neutral and SAS-CFF models are the same, the argument has a few twists
that should be noted. First among these is that the sameness cannot follow
from Ewens' original derivation of his sampling distribution [67] as this was
based on the dynamics of neutral alleles. Rather, the sameness follows from
a theorem due to Kingman [166].

In an earlier paper, Kingmari [165] investigated the limiting form of the
^-dimensional Dirichlet distribution as A; approaches infinity. This is an
interesting problem in its own right since an examination of equation 4.27
shows that something strange happens at the limit: all of the marginal
distributions pile up at zero. Thus, the probability that any particular
allele is found in a closed interval that does not include zero is zero; yet,
the homogygosity of the population is not one. Kingman pointed out that
the correct way to describe this peculiar limit is through order statistics.
Denote by X(^ the frequency of the zth most common allele. For finite k
we have

As k —» oo, the distribution of these order statistics approaches a non-
degenerate limit called the Poisson Dirichlet distribution. Kingman showed
that samples from a Poisson Dirichlet distribution conform to the Ewens
sampling distribution. Thus, samples from the infinite-allele symmetrical
SAS-CFF model will also exhibit the Ewens sampling distribution.

Asymmetries may be introduced in a relatively painless fashion if we
relax only our assumption of equal means. The diffusion in this case is

The matrix C is the same as in the symmetrical model, but the ith com-
ponent of m becomes
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The ith component of the product, C~1m, is now

For all k alleles to remain in the population we require ft to be positive
(see equation 4.21), or

This interesting condition illustrates the tension between mean effects,
which tend to eliminate alleles from the population, and variance effects,
which tend to promote polymorphism.

For any set of /Xj, it is always possible to find a a2 that is large enough
to maintain all of the alleles. Conversely, for any a2 it is always possible
to find an allele with a large enough ̂  to prevent the stable coexistence
of the other k — 1 alleles. A possible implication of this observation is
that species that live in more variable environments (i. e., have a larger
<r2) should have more segregating alleles. However, in the symmetrical
model the stationary distribution is independent of or2, suggesting that
there should be no relationship between the variability in the environment
and the genetic variation. The relationship between environmental and
genetic variation will be made even less certain when we consider the effects
of environmental subdivision.

For the symmetrical neutral and SAS-CFF models, the infinite-allele
cases have proven to be the most important in applications. It is natural,
therefore, to explore infinite-allele limits for the asymmetrical SAS-CFF
model. In doing this, we will be particularly interested in finding limiting
distributions other than the Poisson Dirichlet distribution. The relevant
theorem is again due to Kingman [165] who provided sufficient conditions
for the convergence of a Dirichlet distribution to the Poisson Dirichlet dis-
tribution as k approaches infinity,

In our case the sum of the betas is always equal to 2(B — 1), so the first of
these two conditions is always met. Thus, our search for strange limits has
been dealt an initial blow that, while not fatal, must severely restrict the
class of inifinite-dimensional distributions that may be reached.

As an initial example, consider the case where all of the mean effects
are equally spaced. One way to accomplish this is by setting
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To satisfy the conditions for polymorphism from equation 4.31 with all k
alleles segregating, we need only guarantee that 0i > 0 as allele one is, on
average, the least fit. This will happen when

Assuming that t has this property, we may then ask whether the limiting
distribution, as k approaches infinity, is Poisson Dirichlet.

Kingman's second condition applies to the largest of the /3i; which for
this example is

Clearly, 0k does approach zero so the limiting distribution is, in fact, a
Poisson Dirichlet distribution.

Why should such a manifestly asymmetrical model yield a symmetrical
limit? The reason follows immediately from the requirement that all k
alleles be held in a polymorphic state. It is this condition that forces the
spacing between alleles to be inversely proportional to k(k - 1), which,
in turn, forces the difference, ^ — yui, to be inversely proportional to k.
Thus, as more alleles are entertained, the total spread of their mean values
actually shrinks.

If we are to find a more exotic limit, it must come from a case where
alleles may be added without having to shrink the total range of their mean
values. An obvious candidate is a model where there are a few good alleles,
with masses of ordinary alleles. For example, suppose allele one has mean
effect /j,i = 0 while the mean effects of the other k — 1 alleles are —e. The
condition for polymorphism from equation 4.31 in this instance is

As k increases,

while Pi,i > 1 approaches zero. Thus, Kingman's second condition is not
satisfied so we are facing a new infinite-allele stationary distribution.

The marginal distribution for allele one does not degenerate, being a
beta distribution with parameters fa and 2(B — 1) — @i, where the limit-
ing value for /3j. is used. The marginal distribution of the remaining alleles
approaches a Poisson Dirichlet distribution, as is easily verified by integrat-
ing the fc-allele Dirichlet distribution with respect to x\ and allowing k to
approach infinity. This is an interesting result in several respects. From a
biological point of view, we have a case that resembles mutation-selection
balance. There is a "good" allele with average frequency
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and k - 1 "bad" alleles, each with average frequency

Not only is the marginal distribution of the k - 1 lesser alleles a Poisson
Dirichlet, but so is their distribution conditioned on the frequency of the
first allele and renormalized to one. In this regard, their distribution is
exactly like that of alleles that are held in the population by the balance
between mutation and selection. This, coupled with the result from the
symmetrical case that the distribution of SAS-CFF alleles is the same as
that of neutral alleles, gives support to the view that one sample from a
population is not useful for distinguishing between these models.

There is no reason to stop with only one good allele; the same approach
will work with a finite set of good alleles, providing that the conditions
for polymorphism are met. The infinite-allele distribution, in general, will
have a Dirichlet marginal distribution for the good alleles and a Poisson-
Dirichlet marginal distribution for the bad alleles. This suggests that the
class of all infinite-allele distributions may be limited to those with these
marginal properties.

Little is gained by moving to more general models. The models that we
examined allow for an independent ft for each allele. As the stationary dis-
tribution depends only on the betas, no new properties can be uncovered by
considering more general models. They may be important, however, when
one attempts to relate the betas to some underlying biological situation;
this will be covered in a later section.

Hitting probabilities

For the study of molecular evolution, we need the probability that an al-
lele enters or exits the population and the mean time required for this to
happen. With these in hand, the rate of molecular evolution as well as the
number of alleles that are found in the population may be derived. Un-
fortunately, there are no exact results available for any of these problems.
It is a simple matter to write down, for example, the equation satisfied
by the mean time to lose an allele from the population. It is another
matter entirely to solve it. Thus, as we reluctantly turn away from sta-
tionary distributions, we leave behind the only known exact results for the
multiple-allele c-haploid model. From here on, it is a world dominated by
approximations. Our main task is to develop an approach for approximat-
ing the probabilities that interesting things happen and for the mean times
until they do.

The approach that will be used is a slight variant on the technique
introduced by Matkowsky and Schuss [204], which is suited to systems that
exhibit boundary layer dynamics. For the c-haploid model, the mean and
variance of the change in the frequencies of rare alleles are much smaller
than that of common alleles. This is evident in the fact that the drift



168 Selection in a fluctuating environment

coefficient of a particular allele is proportional to its frequency and the
diffusion coefficient is proportional to the square of its frequency. The time
scale of change of rare alleles is thus much longer than that of common
alleles.

The identification of different time scales is a key ingredient in the ap-
proximation of many processes in the physical sciences. An example that is
not unlike our own is called the adiabatic elimination of fast variables.* In
our case, the fast variables are the common alleles and the slow variables are
the rare alleles. This differs from the more usual case in which the speed of
variables is dictated by parameters rather than the values of the variables
themselves. It will emerge that the difference in time scales is necessary
but not sufficient for the existence of a boundary layer. In addition, we will
discover that the diffusion process must be stationary.

In this section we will be examining hitting probabilities: the probability
that a particular allele is the first to leave the interior of the population. In
subsequent sections we will take up the mean time for this to occur and the
entry probabilities and times. As the method is new to population genetics,
the approach will be leisurely—almost pedagogical. It will begin with the
two-allele case where everything is elementary, then proceed to three alleles
where things begin to get hairy. The only cases that will be considered
are those with symmetrical second-order moments. This restriction is done
solely for convenience; the approach should work—albeit tediously—for
asymmetrical moments as well. To date, no one has taken on the more
general cases.

Consider the two-allele version of the c-haploid model with symmetrical
second-order moments and unequal means. We will follow the first allele
and shorten the symbol for its frequency to x. The drift coefficient in this
case is, from equation 4.30,

Writing the coefficient in this form preserves its origins but is an obstacle to
performing some of the calculations. Replacing all occurrences of xy. with
1 — x and performing a modicum of algebra changes the drift coefficient
into the more manageable

Similarly, the diffusion coefficient becomes

The hitting problem that we are interested in is the probability that
allele one, with initial frequency x, hits the small frequency e before allele
two does. That is, we want to know the probability that x leaves the interval

'Gardiner's book [79] is an excellent source for this and many other applications
of diffusion processes.
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(f, 1 - e) for the first time via the left end point. Call this probability
ui(x), the subscript one reminding us that we are following allele one. The
probability satisfies the differential equation

with boundary conditions ui(e) = 1 and ui(l - e) = 0. The solution is*

where

For our case

This brings us face to face with a problem that plagues the theory of selec-
tion in a random environment: the integral of i/j(y) cannot be expressed as
a finite number of elementary functions, hence the need for approximations.

Usually, approximations are obtained through an asymptotic analysis of
the integral of tp. This works quite well in the two-allele case, but will not
generalize to more than two alleles where the exact solution to the differen-
tial equation is not available. There is no multiple-allele integral to explore
with asymptotic techniques. Thus, if we expect to find an approach that
will work with any number of alleles, it must be based on the differential
equation rather than on its solution.

Consider the case where the parameters are such that a stationary dis-
tribution exits. If e is very small, it will take a long time for an allele to
reach the end point of the interval. Before it gets there, it will have moved
around the interior, passing through most of the points many times. This
suggests that the probability that it hits e before 1 — e will be fairly insen-
sitive to the initial frequency of the allele. In fact, as e approaches zero,
the probability should become independent of the initial frequency. Sud-
denly things look promising: rather than trying to find a function, iti(z),
we are now interested in a number, call it Co- If, in a fit of naivete", we set
ui(x) = CQ and plug it into the differential equation, we see that, by chance,
it satisfies the equation. However, we cannot fit the boundary conditions:
a constant cannot equal both zero and one.

We arrived at this impasse by assuming that u\(x) is independent of
x. The argument that we used made sense for common alleles, but what
about rare alleles? If the initial frequency is very close to e, then it no longer

*The derivation and solution of this equation may be found in any treatment of
exit probabilities for diffusions, including the books by Gardiner [79, p. 143] -and
Ewens [68, p. 119].
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Figure 4.4. The hitting probability for the two-allele c-haploid model.

seems reasonable that the hitting probability is independent of x. However,
consider the fate of an allele that does begin close to e. Two things could
happen: either it hits e before becoming common or it doesn't. In the latter
case, its probability of hitting e is once again Co as it has returned to the
interior. In the former case, the probability of hitting e will surely depend
on its initial frequency. But, as all of its activity is in the boundary layer,
we could hope to approximate its dynamics in this tiny portion of the state
space with some simpler process. Should we succeed, and also be able to
repeat the analysis when x is close to 1—e, we will have removed the problem
of meeting the boundary conditions by providing one set of approximations
for ui (x) near the boundaries and a different approximation in the interior.
An example of ui(x) is shown in Figure 4.4 for the case e = 0.01, along
with a horizontal line that represents CQ. The figure illustrates our intuition
rather well.

Turning this intuition into mathematics involves a trick that, in effect,
forces most of the action into the boundary layer. It is easier to show
how this is done by using the general one-dimensional diffusion process
rather than the particular case of the c-haploid diffusion. It also helps to
introduce a notation based on forward and backward operators that allows
most of the ideas from the derivation to be extended immediately to higher
dimensions. Using this concise notation, equation 4.32 satisfied by the
hitting probability, u, may be written

where L is the backward operator,
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We will also make use of the solution to the equation

where L* is the forward operator—the adjoint of L,

Should the diffusion have a stationary density, the density will sat-
isfy L*[v] = 0, as we saw in the previous section. So will any function
formed by multiplying this density by a constant. In our modification of
the Matkowsky and Schuss technique, it will be assumed throughout that
the diffusion process does have a stationary distribution, and that it satisfies
the zero probability flux condition

However, the v(x) that we use will not, in general, be a density since it will
not be normalized.

The first step of the Matkowsky and Schuss approach multiplies both
sides of the equation L[u] = 0 by v, and integrates over the interval (e, 1 — e):

The integrand, uL[u], may be modified by adding and subtracting the term

to give

The assumption that v satisfies the zero probability flux condition means
that the second term in square brackets will be zero. The first term in
square brackets will be recognized as the derivative of a product, giving

Thus, by the simple trick of multiplying L[u] by v, we put the integrand
into a form where it is readily integrated:
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The equation 4.33, which is satisfied by the hitting probability, is now

This remarkable series of calculations has done exactly what we had
hoped: the equation to solve is now written entirely in terms of the values
of functions evaluated at the two boundaries of the process. The action
has certainly been concentrated where we want it! Notice that the only
unknowns are the derivatives of the hitting probabilities evaluated at the
end points. We should be able to use some sort of boundary layer expansion
to discover the behavior of u in the region of the end points. Before doing
this, a somewhat more abstract observation about what we have accom-
plished should be made as it is the foundation of our ability to extend this
approach to higher dimensions.

By multiplying L[u] by v, we were able to write the product vL[u] as
the derivative of the function avu' and thus were able to write the integral
of vL[u] in terms of the values of avu' at the two end points. Said another
way, we are able to write the integral over a one-dimensional region in
terms of objects evaluated at its bounding zero-dimensional points. Exactly
the same thing will happen when we move up to higher dimensions. For
example, in the three-allele case the integral of vL[u] over a two-dimensional
region will be expressed in terms of a path integral over the one-dimensional
curve that bounds the region. The calculations may be daunting, but the
basic idea is exactly the same as in the two-allele case.

Although symbols have been flying about, we have really only rear-
ranged the equation to be solved. We now turn to the solution itself. In
doing so we will return to the c-haploid diffusion. To solve equation 4.34
we require the derivatives of the hitting probability, ui(x), evaluated at e
and 1 — e. These may be obtained by using a standard boundary layer
expansion near these points.

Consider the left point first. A common way of obtaining the boundary
layer expansion of u\ (x) near f. is to work with the stretched variable

We will view y as a transformed diffusion with mean change

where terms of order of magnitude e have been dumped into the symbol
0(e). As e approaches zero, the drift coefficient for y becomes

Similarly, the diffusion coefficient becomes
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There is nothing magical about the use of stretched variables: we would
get the same result by simply retaining only the lowest order power of
x in the drift and diffusion coefficients of the original process. By using
stretched variables we place ourselves firmly in the traditional approach to
asymptotics as well as providing a recipe that protects us from leaving out
a term that we should not.

The hitting probability, ui, when written as a function of y near the
left end point, will be called C/i(y) to emphasize that it is a boundary layer
expansion for allele one and satisfies the backward equation

with boundary conditions

Obviously, the boundary conditions will need a little explanation.
Recall that ui (x) is the probability that the allele frequency will hit e

before 1 — e. This being the case, Ui(e) = 1. Because y = x/e, this furnishes
the left boundary condition for U\.

The right boundary condition is given at infinity because t is approach-
ing zero. For any value of x that is not of order e, the corresponding value
of y will approach infinity. In a sense, this provides a measure of the size of
the boundary layer. If an allele leaves the boundary layer, that is, attains a
frequency of larger order of magnitude than e, then the probability that it
ever hits e is the same as for an allele that begins outside of the boundary
layer, namely, Co-

The boundary layer equation, equation 4.35, is a particularly simple
first-order linear differential equation whose solution is

where

is the same parameter that appears in the stationary distribution. For
equation 4.34 we need the derivative of Ui,

evaluated at e:

The right boundary is attacked in the same way. The stretched variable
is
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and the equation to solve is

with boundary conditions,

The solution is

where

The derivative of HI (x) evaluated at 1 — e is, asymptotically,

The two boundary-layer approximations are only valid if ft and fa are
greater than zero. Otherwise, the right boundary condition could not be
met. The existence of a stationary distribution also requires that the betas
be positive. From this we learn that a proper boundary layer will only exist
if there is a stationary distribution.

All of the components that appear in equation 4.34 are now in hand.
For v(x), we will use

which is the stationary distribution without the normalizing constant. Put-
ting the various pieces into equation 4.34 and solving for CQ gives

The limiting behavior of this approximation may be summarized as follows:

The accuracy of the approximation and the rate of convergence may be
judged by examining Figure 4.5. The "true" values for ui(x) in the figure
were obtained by numerical integration of the exact solution. The asymp-
totic solution is substantially below the true solution until € is less than
about 0.01. The asymptotic solution is lower because the initial condition,
0.2, is close to e. In this example ft > fa so ui(x) approaches zero as e
approaches zero.

The extension to three alleles has a few new ideas, but is remarkably
like the two-allele case. The equation to solve is
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Figure 4.5. The asymptotic (open squares) and true (closed squares) values of the
hitting probability.

with boundary condition

(4.37)

where x is now a vector of allele frequencies, L is the partial differential
operator

Qe is the region in which the diffusion unfolds, dfi€ is the boundary of that
region, and / is a function that specifies the region of the boundary that,
if hit, will be scored as the loss of the allele of interest.

In the one-dimensional case, the equation L[u] = 0 held inside the in-
terval [e, 1 — e]. This interval may be viewed as a region in one-dimensional
space that depends on the parameter e with the property that as e ap-
proaches zero, the region approaches the unit interval. In higher dimen-
sions, we will be constructing a similar region, called fJe, that will approach
the unit simplex

as e approaches zero. The region will have a boundary, dtle, that corre-
sponds to the two points e. and 1 — e in the one-dimensional case.

The regions will be set up such that the boundary can only be hit by
rare alleles. A hitting probability in this case is the probability that the
boundary is hit for the first time in some specified region. The function /
in the boundary condition, equation 4.37, may be used to specify the region
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by setting it equal to one in the region and to zero everywhere else. Again,
this is completely analogous to setting u\ (x) equal to one when x = e and
zero when x — 1 — e in the one-dimensional case.

The first step in the transmutation of equation 4.36 into a form that con-
centrates the action at the boundary requires a function v(x) that satisfies
the equation

where the multidimensional form of the forward operator L* is defined by

As before, we assume that v satisfies the zero probability flux condition in
each dimension,

With v in hand, the differential equation 4.36 is converted to the integral
equation

The product vL[u] may be simplified by adding and subtracting the term

to get

The second term on the right side is a sum of probability fluxes, hence equal
to zero. The first term on the right side is a sum of partial derivatives of
the functions:

Equation 4.36 now takes on the simple form
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At the comparable point in the one-dimensional development, we were
in the enviable position of having to integrate the derivative of a function.
Although it may not be obvious, we are in exactly the same position in the
general case. To avoid introducing ideas and notation from vector analysis
at this point, we will specialize to the three-allele case that lives in two
dimensions. The two-dimensional form of equation 4.39 is

where the integrand is in the form required of Gauss's Theorem—the two-
dimensional equivalent of the fundamental theorem of calculus that we used
in the one-dimensional case.

Gauss's theorem shows that an area integral over a region may be ex-
pressed in terms of a line integral along its boundary.* The line integral
must be oriented such that the region is always to the left. Using Gauss's
theorem, the equation becomes

where the plus sign indicates the positive direction of the line integral.
Expanding fully using equation 4.38, we have

where the arguments to the functions have been suppressed for clarity.
To proceed with the boundary layer expansion, we need to define the

region fle and the boundary conditions on dfle- There is a great deal of
freedom in choosing the region; the one that will be used was chosen to
allow a simple evaluation of the line integral. It is the simplex defined by

and is illustrated in Figure 4.6. The boundary condition that will be used
is

That is, we are seeking the probability that the process leaves the region
flf for the first time on the edge where x\ = e.

The drift and diffusion coefficients for the three-allele c-haploid model
are, from equation 4.30,

*A very readable account of Gauss's theorem may be found in Chapter 5 of the
textbook by Courant and John [45].
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Figure 4.6. The region of integration showing the direction of integration of the line
integral and the areas where the three boundary-layer expansions apply.

for i,j = 1,2. These are used for the boundary layer expansion by intro-
ducing stretched variables just as was done in the one-dimensional case.

Consider first the region where allele one is rare. The stretched variable
for allele one is

As f. approaches zero, the drift coefficient for the stretched process ap-
proaches

and the diffusion coefficient approaches

Were we to follow slavishly the one-dimensional example, we would use
these coefficients in the appropriate differential equation and solve for the
boundary layer function t/i. However, this would not make a lot of sense
since the variable x? that appears in the drift and diffusion coefficients is
actually a random variable. Its appearance as a parameter in U\ would
definitely be bizarre.

An appeal to the difference in time scales in the boundary layer versus
the interior appears to provide a natural escape from this impasse. As the
rate of change of x\ in the boundary layer is e times that of xa in the interior,
xa will realize most of its dynamics before x\ changes appreciably. As a
consequence, it seems reasonable that the drift and diffusion coefficients for
y should be averaged over the stationary distribution for x% in the absence
of x\. This represents a departure from the usual Matkowsky and Schuss
approach reflecting the fact, mentioned earlier, that the asymptotics in our
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case are generated not by a shrinking parameter, but rather by different
time scales for rare and common alleles.

There is an analogous approach that appears in the theory of the adia-
batic elimination of fast variables mentioned earlier. In that theory, when
one dimension appears in another through a simple averaging as we did
above, the fast variable is called a silent slave [79, p. 225]. When the fast
variable alters the form of the slower process, it's called a noisy slave. The
alteration comes from the fact that the fast variable is autocorrelated and
that the autocorrelation can affect the drift coefficient just as it does in the
Stratonovich approach to stochastic differential equations. This dichotomy
is mentioned as a warning that there are other possibilities than the one
that we have adopted. At the present time there is no rigorous justification
for our approach, although the averaging of the dynamics of rare alleles
over those of common alleles has been used successfully in other genetic
contexts [283].

To avoid doing any calculations until absolutely necessary, define the
(mean) drift coefficient for y to be M\y where

as obtained by averaging equation 4.40 with respect to the stationary den-
sity of alleles two and three, pretending that allele one does not exist:

The betas have been primed as a reminder that they will be different from
the corresponding (nonprimed) betas when all three alleles are part of the
model. Similarly, the diffusion coefficient will be written Viy2, where

The boundary layer expansion for HI , when allele one is rare, satisfies the
backward equation

with boundary conditions

The solution is just as it was in the two-allele case,

The partial derivative, which will be needed in the line integral, is
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The expansion along the horizontal line applies to allele two when rare.
The boundary conditions for this expansion are

As in the other cases, we easily get the required partial derivative:

The next expansion should be for the case where allele three is rare,
giving Uy. The expansion is slightly trickier, since the stretched variable
is (1 — xi — x-i)!*.. However, it is really not necessary to do the third
case since, by symmetry, it will be exactly like that for allele two with the
obvious parameter changes.

The line integral along the horizontal segment of d£le has x? = e and
dx-i = 0. Thus, the integral along this segment is the garden variety integral

that approaches

Let

so that we can write the integral along this segment in the less intimidating
form

The value of the integral along the hypotenuse will be in exactly the
same form since the labeling of alleles is arbitrary. Simply switch all of the
twos and threes to get the condensed form

Along the vertical segment, dx\ = 0 and xi — e. The integral along this
segment approaches

where

Be sure, when verifying this, to adjust the sign of the integral to take into
account that the path integral moves down rather than up the vertical
segment.
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The line integral around the edge of the simplex equals zero,

which provides the final asymptotic expression for the hitting probability
for allele one:

This answer is a rather straightforward extension of the two-allele case,
although the constant multipliers of the powers of e are in a much less
appealing form. The limiting form of the hitting probability is

Recalling that the mean frequency of an allele is @i/2(B — 1) (see equa-
tion 4.22), we see that an allele's mean frequency determines whether or
not it will be the first allele to leave the interior. The probability that the
allele with the smallest mean frequency will leave first approaches one as
€ approaches zero. Tracing back through the calculation, it is clear that
the power of e comes from the stationary distribution. Thus, this aspect of
the result should also hold for c-haploid models with asymmetrical second-
order moments. The constant multipliers, on the other hand, will depend
on other aspects of the parameters than those summarized in the betas.

The fact that the probability that the allele with the smallest beta hits
e first approaches one means that there is a kind of determinism to the
outcome as long as the boundary layer is small enough. It is as if all of the
randomness gets ironed out and the mean effects are left to determine the
final outcome.

As a final point, note that the boundary layer expansions are only valid
if the quantities

are negative. Otherwise the right boundary condition, t/i(oo) = Co could
not be met. Since Vi is always positive, the sign of this expression is deter-
mined by V^ — 2Mj, which, after some painful algebra, may be written

These will be negative only if the three betas are positive, which is precisely
the condition for the existence of a stationary distribution. Thus, as in
the two-allele case, the boundary layer only appears for those models that
possess a stationary distribution.
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Waiting times

In the previous section we learned where alleles go; in this section we learn
how long it takes them to get there. This section will continue the trend
toward symmetry; in fact, it will deal exclusively with symmetrical models.
As before, we will begin with the two-allele case to illustrate the main
principles, then move to the three-allele case, and end up with k alleles.
We will be finding the mean time for a common allele to become rare.
More precisely, we will be seeking an asymptotic expression for the mean
time for one of the interior alleles to hit a barrier at e. Fortunately, this time
may be found by an almost trivial modification of the hitting probability
solution from the previous section. Moreover, we will be able to establish
that the time to hit £ is (asymptotically) exponentially distributed in the
two-allele case and conjecture that this holds also for the k-allele case.

Consider the symmetrical two-allele case with drift coefficient

and diffusion coefficient

Let t(x) be the mean time until either allele one or allele two hits e, or,
equivalently, the mean time until x leaves the internval (e, I — e). The mean
time satisfies the differential equation

with boundary conditions

The solution to this equation is known,* but involves a double integral
and other debris that makes it totally opaque. Therefore, we will jump
immediately into the asymptotic analysis.

As before, assume that v satisfies the forward equation L*[v] = 0. Mul-
tiply both sides of equation 4.41 by v and integrate to get

Following the same steps used to get the hitting probabilities yields

*The derivation and solution of this equation may be found in any treatment of exit
times for diffusions, including the books by Gardiner [79, p. 136] and Ewens [68,
p. 120].
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This equation concentrates the action at the boundaries, leading into the
boundary layer expansion for each of the alleles when rare.

To explore the boundary layer expansion of t(x) when x is close to e,
we introduce the stretched variable y = x/e and the function Ti(j/) that
approximates t. The function T\ (x) satisfies the equation

with boundary conditions

where Co is now the asymptotic mean time to hit the boundary. There
is clearly something very odd here: why should the equation to solve be
L[T] = 0 rather than L[T] = -1? What follows is a summary of the full
explanation contained in the Matkowsky and Schuss paper [204].

Using the maximum principle for differential equations, a lower bound
on the mean time to hit the barrier for interior alleles may be found and
used to rescale time. When this is done, the —1 term becomes an order-one
term divided by the bound, and hence approaches zero as c approaches
zero. The time spent in the boundary layer is insignificant compared with
the time spent in the interior. Recall that the width of the boundary layer
is only of order e, as is the rate of change in x. Thus, the time spent in the
boundary layer should be an order one quantity, even as e approaches zero.
The time spent in the interior, on the other hand, grows to infinity as e
approaches zero. Moreover, the time spent in the interior does not depend
on the initial value of the process.

If we translate these ideas into a representation of the mean time it
looks like

where u(x) is the probability of hitting e before entering the interior. If
we now multiply the second derivative of t(x) by one-half the diffusion
coefficient and the first derivative by the drift coefficient we get

which is the correct form for the boundary layer equation.
The solution to the boundary layer equation is

Note that this solution will meet the right boundary condition only if B
is greater than one, which is also the condition for the existence of the
stationary distribution.

The derivative of T\ with respect to a; at e is
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Similarly, the derivative of the expansion near one evaluated at 1 — e is

The remaining ingredient required for CQ is

where we have used

Putting all of this together yields

As expected, the mean time to hit the barrier at e increases as e approaches
zero. The rate of increase is larger for larger values of B because larger
values of B cause a stronger push of allele frequencies toward the interior,
making it harder for them to hit a barrier that is near the end points.

Much more is known about the time to hit the barrier thanks to a re-
markable theorem due to Mandl [202, p. 109], which shows that the time
to hit a barrier near the boundary of a one-dimensional diffusion with in-
accessible boundaries is asymptotically exponentially distributed with the
same mean that we derived above. The only condition that must be placed
on the diffusion—other than the inaccessibility of the boundaries—is that
it have a stationary distribution, as ours does. The two-allele c-haploid
diffusion also has inaccessible boundaries at zero and one. This is easy to
verify using the standard criteria for the classification of the boundaries of
diffusions.* To say that a boundary is inaccessible simply means that it
will not be hit in a finite length of time. Since the c-haploid model in its
present incarnation assumes that the population is made up of an infinite
number of individuals, there is no genetic drift to propel an allele to fixation
or loss once it approaches a boundary. Thus, Mandl's theorem applies to
the c-haploid model and shows that the time for an allele to hit a barrier
that is near a boundary approaches an exponential distribution.

Why an exponential distribution? There are many answers, some ana-
lytic, some probabilistic. Of the latter, one should be mentioned as it forms
the basis of a conjecture that the exponentiality applies to models with more
than two alleles. It is based on the property of exponential distributions
that they "lack memory." If a waiting time is exponentially distributed
and if you have been waiting patiently for an event to occur, then the time
that you must continue to wait is independent of the time that you have
already waited. This property actually characterizes an exponential distri-
bution [11, Chapter 1.1]. The fact that the asymptotic form of the waiting

*Discussions of the classification of boundaries for one-dimensional diffusions may
be found in the books by Ewens [68, p. 131] and Gardiner [79, p. 123].
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time to hit a boundary for the c-haploid model is independent of the initial
frequency of an interior allele is an instance of this lack of memory property.
If the process has failed to hit a barrier during a certain interval of time,
then knowing its state at the end of this interval will add no information
about the distribution of the subsequent time until the barrier is hit.

The k-allele extension is based on the symmetrical c-haploid diffusion
with drift coefficient

and diffusion coefficient

The first step in the solution of the problem is, as before: multiply both
sides of the equation L[i] = — 1 by the solution of the equation L*[v] = 0
and integrate over the region fie to get

Specializing to three alleles and using Gauss's theorem, this equation be-
comes

There are two differences from the hitting probability problem. First,
all three, not just two, boundary layer expansions use the same boundary
conditions:

Second, the right hand side of the equation, which was zero for the hitting
probability, is now

when we use

Because of the symmetry assumptions, it is possible to write down ex-
plicit results with very little effort. The first place where the symmetries
impart this advantage is in the mean of the drift coefficient for the allele in
the boundary layer, M»j/, where
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From equation 4.28 we have

giving

The diffusion coefficient is V^y2, where

These are combined in the boundary layer solution,

to give

Thus, the derivative of the boundary layer expansion with respect to Zj,
evaluated at e, is

(4.44)

All of the pieces are now in hand to solve for CQ. As each of the segments
along the three edges of the curve dflf will contribute the same value to
the line integral, it is only necessary to evaluate the integral along one of
the edges. For example, along the horizontal edge x% = e and dx2 = 0 so
the line integral along this edge is

where

As e approaches zero, this expression approaches

There are three such terms in the line integral, so if this is multiplied by
three and set equal to the right hand side of the equation being solved, we
get

where
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The extension to k alleles is straightforward. In the boundary layer,

This may be used to obtain the derivative of Tj at the boundary:

In higher dimensions, the line integral becomes an oriented surface inte-
gral that is composed of the k sides of the simplex 0«. Because of the
symmetries, we need only multiply the integral over one of the sides by
k to obtain the integral over the entire surface, d£le. By analogy to the
three-allele case, it seems clear that the integral over one of the sides of the
simplex approaches

where

and

The integral is over the entire k — 1 dimensional unit simplex and evaluates
to

The right hand side of the equation is given by

Putting all this together we get the general result

where

A quick check shows that this answer does, in fact, specialize to the two-
and three-allele cases. The constant, Ak, differs slightly from the one that
I published earlier [90]. In that paper I was too cavalier about setting J~i
equal to its expectation. Fortunately, the two constants differ only by about
2% for reasonable values of B and k.
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Figure 4.7. The mean time for the first interior allele to hit the boundary.

Figure 4.7 illustrates the behavior of ifc(x) as a function of B and k. A
striking property of the mean is the sharp rise that occurs when the number
of alleles is below some critical value that depends on B. When the number
of alleles is above this value, the mean time for an allele to become rare
is relatively short. When the number is below this value, alleles tend to
remain in the interior a very long time before becoming rare. It is easy
to imagine that this property will place an upper bound on the number of
interior alleles in a finite population, even though the number in an infinite
population is unbounded.

The asymptotic expansions presented in this section have not been ver-
ified by any rigorous mathematical treatment. The approach differs suffi-
ciently from that of Matkowsky and Schuss that the proof of their method
given by Kamin [148] is probably not applicable. This would appear to be
a fertile area for additional work. We need to know if the mean time given
here is, in fact, the leading term in the asymptotic expansion as e —» 0, if
the distribution of the time is asymptotically exponential, and the rate of
convergence to the asymptotic form. There are two steps in our approach
that are of particular concern. The first is the assumption that the behav-
ior in the boundary layer may be viewed as a one-dimensional process by
averaging over the interior. The second is the fact that we ignored all of the
corners. That is, there is a hidden assumption that alleles always leave the
interior one at a time. While both of these assumptions appeal to intuition,
they cry out for mathematical justification.

To assess the accuracy of the approximations, a series of computer simu-
lations were performed. The results are given in Figure 4.8. The agreement
is quite good, although the logarithmic scale on the vertical axes hides the
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Figure 4.8. A comparison of simulation results with the asymptotic expression for the
mean time for the first interior allele to hit the boundary.

fact that the asymptotic approximation is higher than the simulated value
by about 10%. Other simulations have suggested that this error is at-
tributable, at least in part, to the triangular distribution that was used in
the simulations for the values of Yi(t) and to the fact that a was a rather
large 0.2.

4.4 SAS-CFF models

The diploid models to be introduced in this section share an underlying
additive structure that makes their approximating diffusion processes the
same as those of the c-haploid model. Let Yj be the contribution of the ith
allele to the underlying additive scale. The contribution of the genotype
AiAj to the additive scale is just (Y* + Y})/2. The values of the Y4 will,
by assumption, depend on the state of the environment. The models to be
examined include both temporal and spatial components to the variation
in the environment, so the Yi should be viewed as random variables that
change in both time and space. In certain cases, the additive scale may
correspond to some measurable biological object. For example, in the Ur
SAS-CFF model [84] the additive scale represented the activity of an en-
zyme. At the other extreme, it could be a morphological trait such as those
studied by quantitative geneticists. In this case, the dependence of the
allelic contributions on the state of the environment is what quantitative
geneticists call genotype-environment interaction.

The additive scale could be fitness itself, but more often it is mapped
into fitness by a function called the fitness function, <j>. If the fitness function
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is nonlinear, this induces dominance in fitness. In the Ur SAS-CFF model
the fitness function was concave, birthing the abbreviation SAS-CFF for
Stochastic Additive Scale-Concave Fitness Function.* Using all of these
assumptions, the fitness of the genotype AiAj in a particular environment
may be written

where the constant a represents the value of the additive scale to which the
ith and j'th alleles contribute. In the Ur SAS-CFF model o = 1, but it may
take on other values as well. The fitness function, when evaluated at o, will
always equal one.

As the lead off member of the parade of models, consider an additive
locus—one without dominance—in a diploid species experiencing nonauto-
correlated temporal fluctuations in the environment. In this case,

so the fitness of the genotype AiAj is

Plugging this into the standard diploid recursion equation yields

for the change in the allele frequency in a single generation. This will be
immediately recognized as a c-haploid model with c = 1/2 or, equivalently,
B = 2. Thus, we already know a tremendous amount about the dynamics
of this diploid model.

For example, if the first- and second-order moments of the Yi are the
same for all alleles, then, from equation 4.27, the stationary distribution is
the Dirichlet distribution

In the two-allele case, this is just a uniform density. The biological mes-
sage is that the diploid model that is most nearly equivalent to a haploid
model differs from the haploid model in being able to support a balanced
polymorphism in a temporally fluctuating environment. This is a profound
difference. However, before running to the field to document the higher
levels of variation in diploids, the experimentally inclined reader should

*SAS-CFF is not the Celtic word for truth and beauty as is commonly believed.
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Table 4.1. The parameters of the c-haploid models that correspond to various forms
of SAS-CFF models. To construct a c-haploid model, simply set each of the three
c-haploid parameters from the top row equal to the corresponding entry from the
SAS-CFF model of interest

Model
Additive
Dominance
Subdivision:

Soft selection

Hard selection

Mushy selection
Autocorrelation:

Weak

Moderate

a

read on to learn that spatial variation superimposed on temporal variation
allows plenty of variation in both haploids and diploids.

The additive model will be used as a benchmark to assess the effects
of dominance, spatial subdivision, and temporal autocorrelations. Each of
these will be injected separately into the model so their effects may be un-
derstood in isolation, without any compounding from the others. For each
case, the approximating diffusion will be derived, and the correspondences
between this diffusion and that of the c-haploid model will be written in
Table 4.1. For the additive case this is trivial, but is nonetheless given as
the first entry in the table.

Dominance

Dominance in fitness may be included by mapping the additive scale into
fitness with a nonlinear function, <f>. Since the additive contributions of
alleles are small, the fitness of the genotype AiAj may be approximated by

These fitnesses may be plugged into the general diploid recurrence equation

to obtain the means of Aajj and (Axi)2 as required in the diffusion approx-
imation. The calculation of these moments is a bit of a grunt, but uses the
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same approach as was used for the haploid model. When the dust settles,
we have a diffusion process with mean differential

and mean squared differential

By comparison, recall (from equation 4.12) that the c-haploid diffusion is

where the superscript Hs are used to differentiate the c-haploid parameters
from the diploid parameters.

The easiest way to discover the parameter equivalences is to write all
of the c-haploid covariance parameters as a constant, i/, times the diploid
covariance parameters

Plugging these into the c-haploid diffusion shows that if

the two models will have the same diffusion coefficient. Comparing the
coefficient of the o — &i in the drift coefficients of two models gives

Solving this pair of equations shows that the value for B in the c-haploid
model should be

while the covariance parameter of the c-haploid model should be

A similar approach will yield the equivalence for the mean terms:

These parameter equivalences are summarized in line 3 of Table 4.1.
We turn now to one of the more intriguing properties of the SAS-CFF

model with dominance: the conditions for the existence of a stationary
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distribution are the same as those for the existence of a stable central
equilibrium in a constant fitness model in which the geometric mean fitness
of a genotype is used as its constant fitness. There is something about
the additive structure of the SAS-CFF model that endows it with this
property that, as shown by Turelli [282], does not generalize to other models
of selection in a random environment. It is probably best to view the
formal similarity of the equilibrium as a coincidence that does not hint
at any deeper structure of models of selection in temporally fluctuating
environments.

The geometric mean fitness of the genotype AiAj is approximately one
plus its arithmetic mean fitness,

minus one half its variance in fitness,

or

where

These approximations come from the first three terms of the Taylor series
expansion of the fitness, Wij.

If 1 + 7ij is now viewed as the constant fitness of genotype AiAj, it is
possible to find the equilibrium of the population using standard population
genetic arguments. There are two approaches to finding the equilibrium of a
multiple-allele model. One, due to Kimura [153], views the problem as living
in k — 1 dimensions throughout. The other, due to Mandel [201], pretends
that the problem lives in k dimensions through most of the calculation,
then normalizes at the end to recover allele frequencies that add to one.
Kimura's approach is much more convenient for our purposes since the
SAS-CFF diffusions are firmly rooted in k — 1 dimensions.

Kimura's approach makes use of the fact that the mean fitness of a
constant-fitness multiple-allele model is maximized at a stable internal equi-
librium. Given this, one way to discover the equilibrium is to find a maxi-
mum of the mean fitness with all allele frequencies falling between zero and
one. In our case, the mean fitness is the quadratic form

where
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The maximum may be found by solving the set of linear equation obtained
by setting each of the (k - 1) partial derivatives of 7 equal to zero. The ith
equation is given by

where

The gij are readily found to be

where Cjj is the, by now, familiar

The mean effects are missing from the g^ because they always enter as
linear effects that exactly cancel in the pluses and minuses that define g^.

The term on the right hand side of equation 4.47 may be simplified to

If the vector of the m, is called m, and the matrix of GJJ, C, then equa-
tion 4.47 becomes

with solution

This looks a lot like equation 4.18, the formula for the betas that appear
in the stationary distribution of the c-haploid model. In fact, this is where
the connection between the stochastic model and the constant fitness model
will be made.

To make the connection, we need to substitute the appropriate diploid
parameters from Table 4.1 into a slightly rearranged equation 4.18,

Some straightforward algebra yields

as the equation that is satisfied by the betas for the stationary distribution
of the diploid model. The solution may be formally written as
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A comparison of this to equation 4.48 shows that x and 0 are related by

Recalling that the sum of the betas is 2(J3 - 1), we see immediately that
the allele frequencies will, in fact, add to one. As all of the betas must be
positive for the stationary distribution to exist, the allele frequencies will all
lie between zero and one. Moreover, as the mean frequency of the ith allele
at stationarity is /3j/2(B — 1), we obtain the result that the equilibrium
frequency of an allele under the constant fitness model using geometric
means is equal to the mean frequency of the allele under the SAS-CFF
model. A remarkable result, indeed!

One loose end needs to be tied up. We have shown that the conditions
for the existence of a stationary distribution are the same as the conditions
for an internal equilibrium of the constant fitness model. However, we have
not established that the internal equilibrium is at a maximum rather than
a minimum of the mean fitness. Kimura provided a convenient criterion to
assure that the equilibrium is at a maximum. It is that

where

Recalling that </tj is a negative constant, — (<j>12 — <f>')cij/4 times the covari-
ance cy, and that the determinant of a matrix with a constant multiple of
each of its elements is equal to the constant raised to the power of the order
of the matrix times the determinant of the matrix without the constant,
the determinants may be written

As C is a covariance matrix, its determinant will be positive. The conditions
for stationarity require that B is greater than one, as is always true for the
SAS-CFF model with a stationary distribution with all k alleles segregating.
Thus, the equilibrium point is at a maximum for the mean geometric mean
fitness.

The best way to assess the effects of dominance on the conditions for
polymorphism is to specialize to a model with symmetrical second-order
moments. The condition for polymorphism for the c-haploid model given
by equation 4.31 is readily modified using the entries in Table 4.1 to obtain
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Dominance, as measured by <j>", appears in these conditions only through
its effects on B. Increasing the curvature of a concave <j> will increase B
and lead to higher levels of polymorphism. Increasing the dominance of a
concave <j> will also increase the heterozygosity. Just the opposite will hold
if <t> is convex.

Subdivision

The models that we have examined thus far include only temporal fluctua-
tions in the environment. It would be a strange species, indeed, that could
find a niche with such a simple structure. The usual case must be an envi-
ronment that fluctuates in both time and space. Models that include both
temporal and spatial fluctuations fall naturally into two groups: those with
free migration and those with restricted migration. By free migration we
mean only that migration, as an evolutionary force, dominates selection.
In a freely migrating species there will be no geographic differentiation.
Differential changes in allele frequencies that occur in particular subpop-
ulations within a generation are swamped out when a round of random
mating occurs. Such models are within the scope of the diffusion approach
that we have been developing. Models with restricted migration, on the
other hand, require new methods.

The simplest structure of a freely migrating species is one that was
introduced by Levene [186] that has unfortunately come to be called soft
selection [41,290]. Unfortunate because the term soft selection carries little
useful information about the structure of the model. The species is assumed
to be distributed over n subdivisions. After selection occurs within the
subdivisions, each one contributes a fixed fraction of individuals, denoted
by <2j, to a round of random mating. The subdivisions are then repopulated
from the offspring of the mating, and the cycle begins anew. The essence
of the model is captured in the simple expression

where Axj(j, i) represents the change in the frequency of the ith allele in
the j'th subpopulation in the ith generation and

The change in the frequency of an allele in the species is a weighted average
of its changes across the subdivisions, the weights reflecting the relative
contributions of each subdivision to the next generation.

An important feature of the Levene model is that the contribution of
each subdivision is independent of the fitnesses of the individuals within
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the subdivision. It is as if there were strong local regulation of the popu-
lation size within a subdivision. However, without explicit population size
dynamics, one should not take this interpretation too seriously.

Subdivision leads to an explosion of parameters. If fitnesses are assigned
at random, there will be n sets of parameters summarizing the moments
of fitness within subdivisions and n(n — l)/2 sets reflecting correlations in
fitnesses across environments. A completely general analysis, while pos-
sible, would be too convoluted to be of much biological interest. Things
become manageable if we are willing to accept some symmetries. One ob-
vious approach is to assume that the subdivisions all experience the same
environmental fluctuations, although at different times.

In equation 4.46, Yi(t) is the additive component in the tth generation.
Now, let Yt(t,j) be a set of random variables reflecting the state of the
environment in the j'th patch in the tth generation. Assume, as before,
that there are no temporal autocorrelations. Our symmetry assumption is
simply that the moments of Yi(t,j) do not depend on t or j.

We will introduce one new parameter, p,

that reflects the correlation of the YJ across patches. Not all values of p axe
acceptable. In applications, it must be checked that p is chosen such that
the (huge) covariance matrix involving all of the Yi(t,j) is positive definite.

In accord with the program of adding each effect separately onto the
additive model, assume that in the mth patch

Plugging this into equation 4.50 and going through the usual diffusion ap-
proximation steps gives the diffusion coefficient

which is the same as for the additive model without subdivision. This is
as it should be since each of the subdivisions has the same mean change in
the allele frequency because of the symmetry assumptions.

The diffusion coefficient is more interesting. The first step in its deriva-
tion involves changing equation 4.50 to

This may be broken up into a term with cross products from within a patch
and one with cross products from between patches:



198 Selection in a fluctuating environment

At this point it should be clear how to derive the squared differential

where

Once again, the resulting diffusion is in the same form as a c-haploid
model. To find the parameter equivalences we will use the same approach
as we did for dominance. Examination of the drift and diffusion coefficient
shows that

and

From this we see that B in the equivalent c-haploid model is

as recorded in Table 4.1 along with the other equivalences.
Under soft selection, the main effect of environmental subdivision is to

increase the value of B, and thus to increase the strength of the balancing
component of selection. Both parameters contribute to the effect. If the
correlation between patches, p, decreases, the degree of environmental sub-
division and the magnitude of B will increase. If the number or equality of
patches increases, so will the value of « and with it the magnitude of B. The
effect of increases in B on the conditions for polymorphism in the model
with symmetrical second-order moments are found using equation 4.31:

Clearly increasing B makes polymorphism more likely, supporting the intu-
ition that environmental heterogeneity should be positively correlated with
the level of polymorphism. (In this business generalities are hard to come
by: the next example of environmental subdivision will show a different
relationship.)

An interesting limit occurs if the number of subdivisions increases in
such a way that

This could happen, for example, if the correlation between patches is zero
(p — 0), if all of the patches are the same size (a» = 1/n), and if the number
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of patches increases to infinity (n —> oo). At the limit, the diffusion coeffi-
cient is zero, so the diffusion equation becomes the deterministic system of
ordinary differential equations:

This model is widely known as the random Levene model. The other vari-
ants of SAS-CFF models will yield similar limiting deterministic models if
B is allowed to approach infinity. This opens up the strange possibility that
deterministic models may be adequate approximations to the dynamics of
selection in a fluctuating environment.

Hard selection [41,290] differs from soft selection in that the contribution
of each subdivision is made proportional to the size of the subdivision times
the mean fitness of the population residing there. It is as if the regulation
of the size of the population involved the population as a whole rather than
the subdivisions separately. If the mean fitness of the population in the
izth patch is written w(u), then the contribution of the uth patch to the
random mating pool is

a

Writing the marginal fitness of the ith allele in the uth patch as Wi(u), we
can write the change in frequency of the ith allele as

The latter form shows that the model behaves as if fitnesses were first
averaged across environments and then plugged into a standard constant
fitness model. Averaging tends to smooth things out, making the effects of
environmental fluctuations less pronounced than in the soft selection model.

For the additive model, we can introduce a random variable Zi for the
average of the additive effects,

and use Zi everywhere that Yi appears in the additive model with no sub-
division. The moments of the Zi are

Note the reduction in the variance due to the averaging. Using these mo-
ments, it is easy to obtain the approximating diffusion
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For hard selection B = 2, being independent of the subdivision entirely.
This and the other equivalences for the c-haploid model are given in Ta-
ble 4.1. The conditions for polymorphism when the second-order moments
are symmetrical are, from equation 4.31,

As the spatial heterogeneity increases, the conditions for polymorphism be-
come more stringent, exactly the opposite of soft selection. The conflicting
properties of these two models were originally discovered by Dempster [53]
in an analysis of models that lacked the temporal component of the fluctu-
ations. In this context, the comparisons of hard and soft selection can lead
to unexpected consequences if the fitnesses within subdivisions are scaled
inappropriately as pointed out by Walsh [291].

Hard and soft selection may be viewed as two extremes on a continuum
of models. The intermediate models are less likely to fall into a simple
metaphor involving population regulation, suggesting that they be termed
mushy selection. The key to finding the intermediate models is to generalize
the contribution of the uth patch to the random mating pool,:

If p = 0, the model reduces to soft selection; if p = 1 it reduces to hard
selection. Using the same approach as in the previous models, we get the
diffusion

The c-haploid equivalences are given in Table 4.1. The conditions for poly-
morphism when the second-order moments are symmetrical are

If p < 1/2, the conditions for polymorphism become easier to meet as
the spatial heterogeneity increases; if p > 1/2 it gets harder to maintain
polymorphism as the heterogeneity increases. For the peculiar case where
p = 1/2, spatial heterogeneity has no effect.

These results cloud any effort to interpret observations on correlations of
environmental variability with levels of polymorphism. Positive, negative,
and no correlations are all compatible with selection in a temporally and
spatially fluctuating environment. A more interesting use of the results
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may be through comparisons of haploids and diploids. All of the results in
this section may be readily adapted to haploid species. When this is done,
we discover that soft selection will allow polymorphisms in haploids, but
hard selection will not. If it were known that levels of variation in haploids
and diploids were similar, then our theory would suggest that soft rather
than hard selection is operative in nature.

Temporal autocorrelations

The temporal fluctuations that provide the randomness in our models have
the peculiar property that the environment in each generation is indepen-
dent of the environments in all past generations. It may be that this situa-
tion seldom, if ever, holds in nature. If our models are to be taken seriously,
they must be modified to include environmental correlations.

From a mathematical point of view, it would appear that autocorrela-
tions require an entirely new approach. Recall that the independence of
environments means that the allele frequency process is a Markov process.
The state of the process in one generation depends only on its state in the
previous generation. Our method of approximation has been through dif-
fusion processes that are also Markov processes. If we were to allow the
environment to be autocorrelated, that is, to depend on past states, then
we would destroy the Markovian nature of the allele frequency process. It
would seem that diffusion approximations would be a casualty as well.

Remarkably, this need not be the case. There is a recent mathematical
literature on the approximation of non-Markovian processes by diffusion
processes that was motivated, in part, by models of selection in a random
environment. Unfortunately, the methods that are used are quite advanced,
far beyond the level of mathematics that characterizes this book. Given
the importance of this area, it seems appropriate to provide a heuristic
derivation of the main results. We will only derive the two-allele result.
The extension to k alleles may be readily understood once the two-allele
case is in hand.

Consider the stochastic difference equation

where Y(t) is a vector with components Yi(t) and Y^(t). The function F
will be used to hide some of the details of the genetic model.

Because F(x, 0) = 0, if the 1̂  are small, the change in x is small as
well, allowing a diffusion-style approximation. Diffusion approximations are
usually obtained by calculating the mean and variance of Ax. If a; and Y(t)
are uncorrelated, as when Y(t) is not autocorrelated, then this calculation
is easy, at least in principle. However, when Y(t) is autocorrelated, x and
Y(t) become correlated with each other. In this case, the calculation of
the moments of Ax requires that the correlation between x and Y(t) be
known. The only exact method for obtaining the correlation is by solving
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the difference equation completely. This is not possible, in general, so we
must resort to some trickery.

An approach that has proven successful approximates the nonlinear dif-
ference equation with a linear equation that can be solved exactly, thus
allowing the calculation of the appropriate moments. If a bunch of linear
processes, which are viewed as local approximations to the original process,
are patched together, they provide the correct diffusion approximation to
the nonlinear process. To suggest such an approach with a straight face
without supporting theorems would be outrageous; nevertheless, this was
the approach that lead to the original conjecture for the diffusion approxi-
mations and provides the motivation for the method of proof.

The first step on the road to the diffusion is the approximation of the
nonlinear process with a linear process. Assuming that the original process
is initiated at time zero at x(ff), we are seeking an approximation of

that is valid as long as u(i) remains small. Doing what comes naturally,
we will use the first two terms of the Taylor series expansion of F around
x(0),

where the subscript x means the partial derivative of F with respect to x,
This expansion provides the difference equation for u(t):

The most interesting initial condition is u(0) = 0, as this is the only one
that corresponds to the difference x(t) — x(Q). The wisdom of hindsight
suggests that this equation should be written in the more convenient form

where

The general solution of the linear equation, in terms of a particular
realization of the process Y(f), may be found by writing u(l) in terms of
u(0), then w(2) in terms of M(!), and so forth. The result is
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The next step could be to find a limiting form of the solution to the linear
equation as Y(t) approaches zero in some appropriate way. However, for
our more narrowly focused drive toward the diffusion approximation, we
really do not care about the complete solution; rather, we only need an
approximation of the first two moments of u(t) when u(0) = 0.

Use

and

where the subscripts of / and g are partial derivatives with respect to the
corresponding Yi and all of the partial derivatives are evaluated at zero,
with u(0) = 0 to obtain

We will also need an approximation for the square of u(t):

For the evaluation of the expectations of u(t) and u(t)2, we need to
define the moments of Y(t). At this point, it will be useful to become a bit
more formal by writing these moments as explicit functions of a number, e,
that will approach zero. For the means and covariances use

where 6 is a number from the closed interval [0,1]. Note that this represents
a departure from earlier definitions in that the covariances may become
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much smaller than the means if 0 < 8. This is done because the presence of
autocorrelations causes an inflation in the effects of the random fluctuations
that must be kept under control. Smaller covariances are the obvious way
to accomplish this.

Let the autocorrelations be described by the autocorrelation function

We are assuming that the autocorrelation is the same for each of the alleles.
This assumption is not necessary for the derivation of the diffusion, but is
required for the diffusion to be a c-haploid diffusion. As an example, a
Markovian environmental process might have an autocorrelation function
of the form

which has the property that, if 0 < 6, the autocorrelation approaches one
as e approaches zero. Otherwise, it is independent of e. We will often adopt
this special form of p as it will allow a concrete representation of the results.

The limiting forms of the moments of u(t) depend on the value of 6. In
fact, there are three limiting forms: one occurs if 6 = 0, another if 0 < S < 1,
and the third if 6=1. These limits are sufficiently different from each other
that they will be considered separately.

When £ = 0, the environment is said to be weakly autocorrelated. In this
case the autocorrelation function does not depend on e. As e approaches
zero, u(t) slows down, causing it to experience more and more environ-
mental states before changing appreciably. In fact, once it has changed, so
many environmental states will have occurred that the current and future
environments will be essentially uncorrelated with those that caused x to
change. For this reason, the weakly autocorrelated case represents a rather
small departure from the nonautocorrelated case that may be approximated
with a diffusion process once the expectations of u(t) and u(t)2 are known.

To know Eu(t)2, we require

A useful relationship for evaluating this sum is

where

For the special form of the autocorrelation function given by equation 4.52,
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By scaling time such that t = t'/e, where t' is a real number, we obtain
a continuous time approximation for jBu(t)2. With this scaling, we have

There is a hidden assumption that the infinite sum of the autocorrelation
function is finite. For the special case, equation 4.52, this does hold, and

Putting all this together, the diffusion coefficient for the limiting diffu-
sion process becomes

For the drift coefficient, we need the following:

This yields

To apply this to the genetic model, use

to get
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where

In arriving at this result, in effect, we lumped together the linear approxi-
mations of the original process at each point in the domain of x(t). Recall
that the linear process focused on the single point z(0). Now we are viewing
x(0) not as a fixed numerical argument of F, but rather as the state of the
process at time t.

The extension to an arbitrary number of alleles is obvious:

From this we see that

The various equivalences for the c-haploid model are given in Table 4.1.
The effects of weak autocorrelations on the level of polymorphism is

rather interesting. As B is a decreasing function of the strength of the
autocorrelation as measured by rj2, we might expect that the conditions
for polymorphism become harder to meet as ?j2 increases. That this is not
the case may be seen by plugging the c-haploid equivalences from Table 4.1
into the conditions for polymorphism (equation 4.31 for the model with
symmetrical second-order moments) to get

This condition is independent of rf and consequently independent of the
strength of the autocorrelation. We saw earlier that the conditions for
polymorphism may be written in terms of the geometric mean fitness of the
genotypes. The geometric mean fitnesses are also independent of the level
of autocorrelation. This implies that the geometric mean fitness conditions,
which were derived for the case of a nonautocorrelated environment, should
apply to an autocorrelated environment as well.

Although weak autocorrelations do not affect the conditions for poly-
morphism, they do affect the homozygosity of the population. This may
seen in a variety of ways. In the completely symmetrical model, the ho-
mozygosity is a decreasing function of B. Since B decreases with the auto-
correlation, the homozygosity will increase. As r?2 approaches infinity, the
homozygosity approaches one yet the conditions for polymorphism continue
to be met. At the limit, the dynamics are the same as for the moderately
autocorrelated case, as will be seen shortly.

The heuristic approach for deriving the limiting diffusion that we have
just slogged through will work for a large class of stochastic difference equa-
tions. The conjecture for the form of the limiting diffusion first appeared
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in 1978 [97] and was proven for the one-dimensional case by lizuka and
Matsuda[137] and for the k-dimensional case by Kushner and Huang [177].
The fact that the autocorrelation drops off rapidly with time makes this
case somewhat easier to investigate than the cases of moderate and strong
autocorrelations

Moderately autocorrelated environments occur when 0 < 6 < 1. In this
instance, the autocorrelation must approach one as (. approaches zero. How-
ever, it must not approach one so fast that the time scale of environmental
change is the same or greater than that of the change of u(t). One way to
quantify the relationship of the time scales is through the persistence time
of the environment defined as the time required for the autocorrelation to
equal l/e « 0.368. For the special case of equation 4.52, this is given by

As e approaches zero, the persistence time increases to infinity as l/e*
whereas the time scale of change of u(t) is l/e. Thus, the environment is
changing more rapidly than u(t). This is the property that leads to the
diffusion limit.

The route to the limiting diffusion is exactly like the previous case.
Begin by noting that, for the special case of equation 4.52,

As before, the special form is really unnecessary, so we will assume only
that

A simple but useful consequen

From here it is a simple matter to get the diffusion coefficient of the linear
process

This is in exactly the same form as for the weakly autocorrelated environ-
ment. By contrast, the drift coefficient,

lacks terms involving second-order derivatives of / that appeared in the
weakly autocorrelated case. Applying these to the genetic case yields the
diffusion
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where

The limiting argument is quite delicate due to the increase in the auto-
correlation with decreasing e. A formal weak convergence proof has been
provided by lizuka and Matsuda [137] for the two-allele case. The k-allele
case has yet to be examined.

The moderately autocorrelated diffusion has B = 1, making it formally
equivalent to a haploid model. Thus, polymorphism due to balancing se-
lection is impossible, firom a biological point of view, this is an important
difference between the mildly and strongly autocorrelated cases. If tem-
poral fluctuations in the environment are to be invoked as the cause of
polymorphism, then it must be that the fluctuations are weakly autocorre-
lated.

The final case, that of a strongly autocorrelated environment (6 = 1), dif-
fers from the other two in that the limit is not a diffusion process. Rather, it
is the solution of an ordinary differential equation with a stochastic process
appearing as a parameter. This is suggested by the fact that the persistence
time,

is of the same order of magnitude as the time scale of change of u(t).
The actual form of the differential equation can be inferred from the

linear solution, given by equation 4.51. As 6=1, the variance of Yi(t)
will be of order e2. A bold move—which happens to be correct—is to use
this observation to remove all terms from equation 4.51 that contain the
products Yi(t)Yj(t). This gives the refreshingly plain

One way of guaranteeing the order of magnitude assumptions is to write

where the moments,

are independent of e. The autocorrelation function for Zi(t; e), on the other
hand, does depend on e, being the same as for Yi(t). If time is scaled as
t = t'/e, then

The sums that appear in this solution should approach integrals if the
processes Zi(t; e) approach integrable processes. Assume that this is the
case:
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The solution maythan be wrkitten

suggesting immediately that

is the limiting stochastic ordinary differential equation for the k-allele
genetic case this becomez

In producing this resultm,we assumed that approaches a contin-
uous stochastiocprocess. To assure that the result is not vacusous, we need
an example where the covergence does ocuur as assumed. O e example is
a first-order autoregression process,

where is a sequence iuence of independent standardized normal random vari-
ables. is a stationary Markov Gaussian process with mean zero,
variance one, and autocorrlelation funcion

When time is scaled by the autocorrelation function approaches

Thus,the limiting process,is a stationary Gaussian Markov process
with an exponential autocorrelation function. In fact, it is a n ornstein
Uhelenbeck process, which is a diffusion process with ciontinuous sample

paths.As we had hoped there is at leasr one process that yields the limiting
differential equation; the reader will have no difficultly in producing many
other.

Iizuka has provided the weak covergence proff for the stronghly
autocorrelated case. His proff is very general, vovering an arbitaty number

of dimensions and having a very general form for the sdifference operator,
As the limit of the strongly autocorrelated case is not a diffusion, we

cannot appeal to any of our previous results to investigate the properties
of the model, It shares with the moderately autocorrelated case the fact
that hte limiting priocess is in the same form as a haploid model, Thus,
the diffeerntial equation ,ay be transformed to a linear process just as
was done for thje haploid diffusion and the general solution displayed. This
will not be pursued here. the reader may after to fpr the twp-allele
solution,
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The SAS-CFF diffusion

Each of the three modifications of the additive model leads to an approxi-
mating diffusion process that is the same as that for a c-haploid model. The
equivalent parameters need only be plucked from Table 4.1. This suggests
that a diffusion that combines all three elements would be of the same form
as well. The derivation would be a herculean task and there seems to be
no compelling reason to attempt it. It is clear that the diffusion will be
the c-haploid diffusion with parameters reflecting, in a complex way, the
relative contributions of dominance, subdivision, and autocorrelation. If we
could envision an experimental program that would allow us to estimate
the contributions of these three elements, then the combined model might
prove to be of value. However, even the most optimistic experimenter will
realize that this simply isn't in the cards. To make the needed observa-
tions on fitnesses differences that are likely to be smaller than 0.1% is not
possible.

Attempts to estimate the parameters that appear in the diffusion mod-
els by careful direct observations on fitness differences between genotypes
and demographic properties of populations may be called the microscopic
approach. For example, one outcome of this approach might be the de-
termination that the alleles at a locus exhibit neither dominance nor mean
differences, that the fitnesses are not autocorrelated, and that hard selection
is operating with parameters p and K whose values have been estimated.
In this case we know that

We could think of B as a macroscopic parameter whose value we just deter-
mined by careful microscopic observations combined with theoretical work
showing the dependency of B on p and K.

By contrast, we could admit at the outset the impossibility of ever
making such observations and attempt to estimate B from allele frequency
dynamics. In practice, this will necessitate making some additional assump-
tions. For example, we may want to begin with the simplest model—the
totally symmetrical model—to see how far it can be pushed. In this case,
B may be estimated from the observed homozygosity using

which we obtained earlier. From this point of view, we really do not care
why B exhibits the value that it does. If B were small, for example, we
abandon any hope of knowing whether this is due to autocorrelations or
hard selection and simply savor the knowledge that it is small. By going
through the various models in this section, we have learned that B can
range upward from one, and that B may be large or small for a variety of
reasons. This gives us confidence that the diffusion corresponds to at least
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some situations in nature and suggests that it may apply to many other
situations that we have not examined.

It is a small extension of this line of reasoning to suggest that the SAS-
CFF diffusion model should be viewed as primitive. We know that it applies
to some situations in nature and could very likely apply to more. The most
convenient parameterization of the SAS-CFF model is that used for the
c-haploid model as given in equation 4.12. However, even this model is too
general for most applications since it has i(i + l)/2 + i + 1 parameters. At
the other extreme, the totally symmetrical version given by equation 4.26
is the most useful since it has only two parameters, B and cV2. In the
sequel, when the symmetrical SAS-CFF model is used, it will be written

where we have lumped the combined c-haploid parameter, c2a2, in the
single SAS-CFF parameter, d2. When an asymmetrical version of the SAS-
CFF model is needed, we will never go beyond the version that uses the
symmetrical second-order moments

Here the same lumping of cV2 is used as is a lumping of the c-haploid cm
into the SAS-CFF fa. From this point on these two diffusion models will
be adopted and a great deal of effort will go into judging their success in
accounting for observations on molecular evolution and polymorphism.

4.5 Drift and mutation

Most alleles begin their lives as a single copy and, in their infancy, are
subject to the whims of genetic drift. Should they become common, they
still face an eventual death at the hands of genetic drift. Thus, models
of molecular evolution must include mutation and drift if they are to be
faithful to the real world. The most important properties of models with
drift and mutation are the mean time to lose a segregating allele and the
mean time for an allele to enter the population. Combining these two times
allows a description of both the levels of variation in the population and
the rate of molecular evolution.

Losing alleles

We will examine the effects of genetic drift first. We hope to find an asymp-
totic expression for the mean time to lose an interior allele from the popula-
tion. Based on past experience, it would seem that the Matkowsky-Schuss
technique would provide the answer. However, a straightforward applica-
tion of the technique breaks down due to changes caused by genetic drift
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near the boundary. Yet, the technique seems particularly well suited to
examining boundary and interior dynamics separately, suggesting that, if
properly modified, it might still be applicable to models with genetic drift.
This appears to be the case, as will be argued in this section. The results,
however, must remain suspect until a more rigorous approach can be found.

Consider a diploid population of effective size N. The finiteness of the
population adds a new element of randomness that appears in the diffusion
coefficient. As genetic drift is due to multinomial sampling of a population,
the additional term is

When this is added to the symmetrical SAS-CFF diffusion from equa-
tion 4.53, we have the new diffusion

Population geneticists traditionally scale time so that it is measured in units
of 27V generations. This has the effect of removing one parameter from the
model and helps to focus on inequalitites in the magnitudes of parameters.
Following in this tradition, the diffusion becomes

where a = 2Na2.
The most important consequence of adding drift is that the process no

longer has a stationary distribution. The boundaries at zero have become
accessible; they will be hit in a finite period of time. Once an allele is lost,
it is gone forever. Thus, the eventual state of the population is to be made
up entirely of a single allele. It is this process of losing alleles that we would
like to describe.

The first problem that we encounter when applying the Matkowsky-
Schuss technique is with the solution to the equation L*[v] = 0. Recall
that in obtaining the mean time for an allele to hit a barrier at e in the
infinite population case we required the integral of v over the domain of the
process. As v is proportional to the stationary distribution, it is integrable
over the entire domain of the process. However, when drift is added, v
is no longer a distribution and will not be integrable over the domain of
the process effectively aborting any effort to use the Matkowsky-Schuss
approach in the obvious way. To add insult to injury, when drift is present
the solution to L* [v] — 0 is not known.

The reason for the breakdown of the technique is tied up with the
behavior of the diffusion at the boundaries. In our previous application,
the boundary at « was imposed by us. When genetic drift is present, the
boundary corresponds to edges where the diffusion coefficient is identically
zero. Such things are not meant to happen in the usual application of the
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Matkowsky-Schuss technique. Still, there must be some connection between
the mean time for an allele to become rare when drift is absent and the
mean time to be lost when drift is present, at least asymptotically.

The connection emerges when we consider the asymptotic form of the
mean times in very large populations. In such populations, selection will
dominate drift for common alleles, while rare alleles will be subject to the
combined action of drift and selection. The time required for an allele that
is initially common to become rare should be determined by selection alone.
Once it becomes rare, its subsequent fate will be dictated by the combined
action of drift and selection. This suggests that we should be able to use
our previous results to obtain the mean time to become rare, and a new
boundary layer analysis to describe what happens once an allele becomes
rare. Clearly, a major hurdle in such an approach is deciding what we mean
by rare.

The boundary between common and rare could be defined to lie at the
point where the contributions of selection and drift are roughly equal in the
diffusion coefficient. By this criterion, the ith out of A; alleles will be rare
when

When Xi is small, we can ignore higher powers to get

as a criterion for rareness. This only makes sense when selection is relatively
strong, that is, when a is large.

When an allele is rare, its frequency changes more slowly than those of
common alleles. Moreover, the homozygosity will be determined mostly by
the k — 1 common alleles. This is why EFk-i was used in place of f^ in
the criterion. We could imagine that the mean time to lose an allele from a
finite population is roughly equal to the mean time for an allele to become
rare in an infinite population. Were this so, then we could take our results
on the mean time to hit e for an infinite population (equation 4.45) and
substitute

to get the mean time to lose the first of k alleles from the interior. An
obvious shortcoming of this argument is that it fails to recognize the role
of the mean change of rare alleles. Nonetheless, the answer appears to be
correct. We will be able to demonstrate this for two alleles, and provide
some support for the k-allele case.

The role of a in this discussion should be emphasized. For the asymp-
totic expansion to apply, e must approach zero. Equivalently, a must ap-
proach infinity. As a grows, selection dominates drift over an increasing
fraction of the state space. We will say that a population is experiencing
strong selection if a is much larger than one. This contrasts to the cases
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of moderate or weak selection where a is near one or much less than one,
respectively. Notice that strong selection does not imply that selection is
strong in some absolute sense, but only that it dominates drift. Thus, in
large populations alphas that range from 10 to 100 will be compatible with
very small values of a2.

Our derivation of the asymptotic expression for the mean time to lose an
allele will rest heavily on intuition gained from the two-allele case. The two-
allele version of the symmetrical SAS-CFF diffusion that includes genetic
drift has drift and diffusion coefficients

The problem before us is to find an asymptotic expression for the mean time
for one or the other of the alleles to be lost from the population when both
alleles are common at the outset. That is, we want to find an asymptotic
expression for the solution to the equation

with boundary conditions f(0) = t ( l ) — 0 as a —* oo.
The asymptotics will be performed on the general solution of the back-

ward equation. Toward this end, let

and let u(x) be the probability that x(t) hits zero before one. With these
definitions, the general solution of the backward equation may be written*

As a —> oo, u(x) —> 1/2. Thus, we need only attack the two double
integrals. They turn out to be asymptotically the same, so only the left
one will be considered and it may be written in the suggestive form

A quick and dirty analysis of this integral goes as follows. The inner
integral, viewed as a function of y, increases rapidly from zero to a value
that may be found by approximating the integral with

*The solution to this equation may be found in any treatment of exit times for
diffusions, including the books by Gardiner [79, p. 139] and Ewens [68, p. 120].



Drift and mutation 215

Since the increase to this value is rapid, the integral could be viewed as
simply being equal to the constant (2a)B~1/(B - 1). This suggests writing
the double integral as

Turning a blind eye to the divergence of this integral, we could let a ap-
proach infinity, causing the bracketed expression to approach one, and the
entire expression to approach

To recover the mean time, incorporate the second double integral by con-
tinuing the upper limit of integration to one, giving

To express the mean time in terms of generations gather than units of
2N generations, multiply the mean time by 27V, giving

Comparing this with the mean time to hit e for the model without drift
from equation 4.43, we see that the two are the same if

Since EJ-\ = 1, this corresponds exactly to the conjecture given in equa-
tion 4.56. For two alleles, the mean time to lose an allele from a finite
population is asymptotically the same as the mean time for an allele to be-
come rare in an infinite population, providing that rare is defined according
to equation 4.56.

The problem lies with the asymptotic analysis of the integral. The
approach that we used, while instructive, produced a divergent integral at
an intermediate step. To do it correctly, one must use the fact that the
inner integral approaches zero at zero to make the full integral converge.
One method is to break the outer integral into two pieces: an integral from
zero to 6, where 6 is a small number, and a second integral from 6 to x.
It is easy to establish that the second integral approaches an expression
that is in the same form as we claimed above. It is also easy to show that
the first integral converges. By letting S approach zero, the desired limit is
obtained.

Unfortunately, this line of argument cannot be extended to multiple al-
leles because we do not have the general solution for the mean time to lose
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an allele. However, if we assume that the solution is asymptotically of the
same form as the mean time for an allele to become rare in an infinite pop-
ulation, then all we need to do is find the appropriate value for e. The most
likely place to look is the boundary layer solution. Since the Matkowsky-
Schuss technique only requires the derivative of the boundary layer solution
at the boundary, a comparison of the derivatives at the boundary for the
finite and infinite population models should suggest the correct value for e.

Consider again the two-allele case. The boundary layer equation for the
finite population model uses the stretched variable y = ax. The equation
for the mean time to lose allele one in the boundary layer is

with boundary conditions

and solution

We need the derivative of Tj with respect to x. Substituting ax for y,
differentiating with respect to x, and evaluating the derivative at zero gives

The derivative for the infinite population size case, evaluated at e, was
shown to be

in equation 4.42. The two are equal if e = l/(2a).
This result suggests an approach to the multiple-allele case: find a value

for e such that the derivative of the mean time to hit e—evaluated at e—
in the infinite population size case equals the derivative of the mean time
to lose an allele—evaluated at zero—in the finite case, all using boundary
layer expansions.

For the Jfc-allele case, the boundary layer equation for the ith allele is

with boundary conditions

and solution

The derivative of the solution with respect to x, evaluated at zero, is
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Using equation 4.28 to evaluate EFk-i yields

Prom equation 4.44 we see that the derivative of the mean time to hit e,
evaluated at e, for the infinite population size case will equal this finite
population result if

Using equation 4.45, we conclude that the mean time to lose the first of k
alleles from the interior is

where

and

Time continues to be measured in units of IN generations. This agrees
with our conjecture based on the definition of rareness from equation 4.56.

It would be desirable to have a benchmark to decide how fast alleles are
lost from the population. Neutral alleles provide a time-honored basis for
comparison. Littler [199] showed that the mean time to lose the first of k
interior alleles under the neutral model without mutation is proportional
to N when time is measured in units of generations. From equation 4.57
we see that the mean time to lose the first of k interior SAS-CFF alleles
is proportional to N2(B~l)/k, which grows faster than the neutral time
whenever 1(B - \)/k > 1. This is also the condition that the stationary
distribution has an interior mode with tails that approach zero. Clearly,
if the stationary distribution is such that alleles seldom approach zero,
then the mean time to lose an allele will be (asymptotically) much longer
than the time to lose a neutral allele. If 2(J5 - l)/fc = 1, the stationary
distribution is uniform and the mean time to lose an allele grows with N
at exactly the neutral rate. Otherwise, the first SAS-CFF allele will be lost
sooner than the first neutral allele.

Why should an allele be lost sooner at a locus experiencing balancing
selection than at one with no selection whatsoever? When 2(B — l)/fe <
1, the stationary distribution is unbounded at zero. Selection will cause
allele frequencies to move relatively rapidly toward zero where they become
trapped by genetic drift before they can move to the interior again. This
is very similar to Robertson's [247] observation that overdominance can
speed up the loss of alleles if the deterministic equilibrium is close to zero.
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However, we should not jump to the conclusion that there will be less
variation when balancing selection is present, since in both SAS-CFF and
overdominance the time for alleles to enter the interior when mutation is
present is much less than for the neutral model.

From a mathematical point of view, our results could use some addi-
tional work to prove that we have identified the correct leading term in an
asymptotic expansion. Our derivation depends very much on comparisons
with the two-allele case rather than a direct attack on the k-allele diffu-
sion. It might seem that genetic drift in large populations would make this
problem formally like small noise problems that are so popular in the world
of stochastic differential equations. However, there are two aspects to this
problem that make it fundamentally different from those that are usually
analyzed. The first is that the limiting process obtained by allowing a to
approach infinity is not an ordinary differential equation, as is usual, but
rather is a diffusion process. The second is that the mean time that we are
most interested in is the time for the process to hit a boundary where the
drift and diffusion coefficients vanish. Again, this is not the situation that
is usually addressed. These models would appear to hold great promise
for some interesting mathematical work that departs quite a bit from the
standard fare.

Gaining alleles

Having allowed genetic drift to remove all of the variation from our popula-
tions, it is time to add mutation to bring it back. There are many ways to
model mutation depending on the assumptions that are entertained about
the mutational distances between alleles. The simplest scheme, and the one
most often employed, assumes that the k alleles are separated from each
other by one mutational step. While this may strain our topological un-
derstanding of the structure of DNA, it is convenient from a mathematical
point of view. Fortunately, when mutation rates are small, the results for
this scheme are readily modified to cover all others.

Let the nucleotide mutation rate be un. If there are k alleles, then
each allele can mutate to k — 1 other alleles making the total mutation
rate (fc - l)wn. If the frequency of the ith allele is Xj, then the rate of
mutation to this allele is (1 - Xj)un, whereas the rate away from the allele is
Xi(k — l)un. These rates produce an additional term in the drift coefficient
of the diffusion equation

where 0n = 4Nun. (We follow the conventional definition of On, even
though defining it as 2Nun would eliminate the factor of one half in the
drift coefficient.)
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Mutation prevents alleles from being permanently lost from the pop-
ulation. Thus, the new diffusion will have a stationary distribution. Un-
fortunately, we have no idea what it is. The usual approach to finding a
stationary distribution through the zero probability flux condition fails. It
should come as no surprise that the only known results are from asymp-
totics. The basic idea is the same as for the case of drift alone: try to keep
the effects of mutation and drift small except near the boundary. One way
to accomplish this is by allowing a to approach infinity just as was done in
the previous case. A second way is to allow a to approach infinity while On

approaches zero.
Biological considerations make the latter route preferable. The nucleo-

tide mutation rate is known to be very small, of the order of 10~9 to 10~8.
We do not know the effective population sizes of species, but for many it
is probably smaller than 108. Thus, On should be quite a bit smaller than
one for many, if not most, species. This suggests the form of the asymp-
totics that will be developed. By allowing a to approach infinity and 0n to
approach zero, we are, in effect, assuming that

In words, we are assuming that genetic drift dominates mutation and is, in
turn, dominated by selection. The limiting results under this assumption
have been termed the strong-selection, weak-mutation or SSWM limit.

The mean time until an allele leaves the interior for this new diffusion
must be asymptotically the same as for the case with drift and selection
alone. It is clear that mutation will have little effect in the interior, given
that a is growing and 0n is shrinking. Once an allele becomes rare, drift
should continue to dominate mutation since 0n is approaching zero. When
the allele becomes so rare that mutation does affect its dynamics, a crash
into the barrier at zero is almost a certainty. Thus, the mean time to lose
an allele with drift alone should equal the mean time for the first crash into
the boundary at zero when mutation as well as drift is present.

Mutation will provide a very weak push away from zero. Although it is
unlikely that an allele that is pushed away will reenter the interior during
any single trip off of the boundary, eventually mutation, drift, and selection
will work their magic and the allele will reenter the interior. An allele that
is trying to enter the interior will spend a very long time at a low frequency.
In fact, it will be lost from the population many times before it finally enters
the interior. During this period the time scale of its movement will be slow
relative to that of interior alleles. It seems reasonable, therefore, to view
the dynamics of a rare allele as a one-dimensional process that depends
only on the average properties of interior alleles.

The appropriate one-dimensional process for a rare allele when there
are i interior alleles is a linearization of equation 4.58 near zero. The drift
and diffusion coefficients for the linearized process are
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In deriving this diffusion, higher powers of x were ignored except when x2

is multiplied by a. Similarly, Onx was ignored since On is approaching zero.
As very rare alleles will hit the barrier at zero many times before entering

the interior, we will restrict our attention to alleles whose initial frequencies
are zero. Mutation's constant push makes zero a reflecting barrier. Thus,
we are interested in the mean time for the process, beginning with x(0) = 0,
to hit a small value, £. The mean time is*

where

and

The latter two quantities are temporary constants that will streamline the
notation during our analysis of the mean time. The task before us is to
find an asymptotic form for the mean time as a -+ oo and 6n —» 0.

The first step is to change variables in equation 4.59 with u — arjx and
v = arjy.

Write the integrand of the inner integral as

and then integrate to get

The first term on the right side of equation 4.61 approaches

as a —> oo because 7 — 1 is always positive. The integral that makes up
the second term is asymptotically insignificant to the first term and can be
ignored. The reasons are as follows.

*The mean time for a diffusion with one reflecting barrier to hit an absorbing
barrier may be found in Gardiner [79, p. 139] or Ewens [68, p, 123].
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The integrand is bounded, suggesting that the asymptotic behavior of
the integral will be determined by events when u and v are large. When this
is so, the inner integrand will grow as v^9"'2, and its integral as vi+9n~l.
Similarly, the outer integrand should grow as it"7"9", suggesting that the
double integral will grow as \og(ar)S) and the entire term as

This approaches zero as a —» oo. Thus, the integral term in the expansion
will be insignificant providing

or, more simply, if On log (a) —> 0. This condition is our first stab at trying
to understand the relationship that must hold between a and On for our
asymptotics to be correct.

Using equation 4.28 for the mean homozygosity, equation 4.60 for the
definitions of 7 and 77, and equation 4.62, we have

for the mean time for an allele that is initially absent from the population
to enter the interior.

The problem began with an effort to find the mean time to hit a barrier
at S, yet S does not appear in the final answer. The reason is that an
allele spends most of its time very close to zero, actually disappearing and
reappearing many times before it gets close to 8. Once it breaks away from
the influence of the boundary at zero, it rapidly moves into the interior
where it moves on a much faster time scale. Thus, the mean time to hit
any of the interior points will be asymptotically the same.

It appears that the time to enter the interior is exponentially distributed.
The intuition comes from a remarkable theorem due to Gnedenko [101].
The theorem states that the distribution of a geometric number of positive
random variables will approach an exponential distribution if the mean of
the geometric approaches infinity and the positive random variables are
suitably scaled.

To use Gnedenko's theorem for rare alleles, pick a very small allele
frequency, say a;*, as the initial frequency of the process. An allele with
frequency x* will either hit zero before entering the interior or will enter
the interior without hitting zero. Let u(z*) be the probability that it hits
zero before entering the interior. Should it hit zero, then it will eventually
return to x*. Given that the process hits zero before entering the interior,
let TI be a random variable representing the time from the beginning of
the process until the process hits x* again, but only after having first hit
zero. Given that it is at x* the second time, then the conditional time for
it to hit zero and return to x* the third time will be called T2, and so forth.
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Time

Figure 4.9. The sample path of a rare allele.

Eventually, the process will enter the interior from x* without hitting zero.
Let the conditional time for this to happen be T*. These definitions are
illustrated in Figure 4.9.

From this description it should be clear that the number of times that
the process hits zero and returns to x* will be geometrically distributed
with mean [1 — u(x*)]~l. Call the number of these events M. The time to
enter the interior may now be written

This representation is essentially the same as that required of Gnedenko's
theorem. What needs to be done to complete the proof of the exponentiality
is to let x* approach zero, causing u(x*) to approach one and the mean
number of regenerations before entering the interior to approach infinity.
At the same time, the mean of the T± will approach zero, allowing the
convergence to occur. The contribution of T* will become insignificant as
x* approaches zero.

Turning this intuition into a rigorous demonstration of the exponential-
ity of the waiting time entails a fair amount of work. In fact, this has yet to
be done. Here we will make some observations to bolster confidence in the
approach. What we will do is derive the mean of the geometric distribution
and of the Tj, and show that the product of the two gives the same mean
time to enter the interior that we obtained above.

The probability of hitting zero before entering the interior is given by

If we let ax* —+ 0, then it is not difficult to show that
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Thus, the mean number of times that the zero is hit before the allele enters
the interior is 1/077(7- l)x*, which increases without bound because of our
assumption that ax* —> 0.

The other quantity that we need is the mean of the Tj. This is a difficult
calculation since the mean is for a conditional process. However, we can
assume that the conditional time to hit zero is small relative to the (uncon-
ditional) time to go from zero back to x*. From equation 4.61 the latter
mean is, asymptotically, 2x*/0n. Multiplying this by the mean number of
times that the process hits zero recovers the mean time to hit 6:

In Gnedenko's proof, the means of the positive random variables are fixed,
suggesting that we must set x* equal to some constant times On. This would
presumably make the random variables T$ approach some limiting form. It
also implies that a6n must approach zero for the exponentiality to hold.
However, this condition may well prove too restrictive. This whole issue is
in desperate need for some more work to clear up each of these points.

Consider, now, the consequences of all of this on the composition of
the population. Imagine that there are a k alleles at the locus, but that
only K of them are currently in the interior and k — K are waiting to
enter the interior. The mean time for any one of them to enter is given
by equation 4.63 with i = K. By our conjecture that the time for any one
allele to enter is exponentially distributed, the time for the first of the k — K
alleles to enter should also be exponentially distributed with a mean that
is l/(k — K) times the mean time for any one of them to enter:

The time to leave the interior is also exponentially distributed and inde-
pendent of the initial conditions. In both cases the only dependence on the
state of the population is through K, the number of interior alleles. This
suggests that the number of interior alleles may be viewed as a continuous
time Markov chain. Such chains will be called SSWM Markov chains.

The Markovian behavior of K is best summarized'by the probability of
increase of K at the next event

and the mean time until the next event
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Figure 4.10. Two functions characterizing the SAS-CFF SSWM Markov chain.

The mean time may be derived by noting that the total rate of change of
K is the sum of the rate of entry and the rate of exit:

The mean time until a change occurs is the reciprocal of the rate of change,
which gives the expression for te(K).

Figure 4.10 illustrates the dependence of q(K) and te(K) on K for
a particular set of values of B, a, k, and On. A striking aspect of this
figure is the strong S-shaped form for q(K). For small values of K, the
probability that the number of interior alleles increases is very nearly one.
At a critical value of K this probability suddenly drops to nearly zero and
remains low for higher values of K. The mean time between events changes
in a coordinated way, with the fastest times being associated with values
of K that are far away from the critical value. This behavior suggests that
the number of interior alleles will generally be very close to a value of K,
call it K, for which q(K) « 0.5.

The reason for this behavior lies mainly with the function tout(K). Re-
ferring to Figure 4.10, we see that the waiting time to lose an allele from
the interior rises sharply once K falls below a value that is determined
mainly by B. The radical change in the value of tout(K) is far greater than
that of tin(K), suggesting that the value for K will be fairly insensitive to
the values of the parameters On and a. For example, the value for K that
corresponds to the parameters in Figure 4.10 is 6.9. If 9n is reduced by 2
orders of magnitude to 10~4, K only changes to 4.4. These values for K
were obtained numerically. It appears to be very difficult to find an ap-
proximation for K that is of value over a suitable wide ranges of parameter
values.
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With the SSWM assumptions, that is, with a -> oo and 0n —» 0, the
state space of the fc-dimensional SAS-CFF diffusion (equation 4.58) col-
lapses into a one-dimensional process. The time scale of change of this
process is based on the mean times for alleles to enter or leave the inte-
rior. The alleles in the interior are undergoing changes on a much faster
time scale. When an allele enters or exits, the interior process achieves
stationarity in a time period that is instantaneous when compared with the
time scale of entry or exit. The distribution of the interior alleles is given
by the 7f-dimensional Dirichlet distribution (equation 4.27). The original
diffusion may be said to converge to a one-dimensional, distribution-valued
stochastic process. The identities of the alleles are not followed in this
process suggesting that the process be called unlabeled to match the term
applied to a similar situation that arises in the neutral allele theory [69].
We are not restricted to such esoterica as distribution-valued processes. It
is usually easier to focus on just the number of interior alleles, K, which is
a one-dimensional birth and death process whose state space is the set of
integers 1,..., k.

There is a mathematical question lurking around concerning whether
there is a proper limiting process as a —> oo and On —> 0. We cannot hope
to find this process unless an explicit assumption is made concerning the
relationship between a and 0n. Earlier we argued that the product aOn

must approach zero for the time to enter the interior to be exponentially
distributed. Were this to hold, then the mean time for an allele to enter
the interior will grow as l/(aOn)- At the same time, the mean time for the
first of K interior alleles to exit will grow as

For there to be a nontrivial limiting process, there must exist a value for K
such that these two means grow at the same rate. An obvious candidate is

Ignoring for the moment the fact that this is not an integer, note that a
limiting value for K will only occur if

where £ is between zero and infinity. One way to guarantee this limit is
to set a = 0~£, which is compatible with the requirement that l/a0n —* 0
providing that £ < 1. This suggests that a proper limiting Markov chain
will exist if these two conditions are met. However, the limiting chain will
be trivial in the sense that the limiting value of q(K) will equal one for value
of K less than K and zero for values greater than K. The convergence to
the limit will be very slow, probably logarithmic in On and a. It is unlikely
that in nature Qn will be small enough and a large enough for the dynamics
to match the extreme form of q(K) in the limiting process.
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4.6 Sticky boundaries

It is an extraordinary stroke of bad luck that such a fundamental model
as captured in the diffusion process in equation 4.58 should be so difficult
to analyze. Population genetics tends to be treated better by its models.
We are usually able to derive most of our important results by relatively
elementary techniques. Why should this model be so different?

Looking back over this chapter, it is clear that things turned sour when
drift and mutation were added to the SAS-CFF diffusion, equation 4.53.
Without drift and mutation, we were able to derive the stationary distri-
bution exactly and could use an established asymptotic technique to solve
hitting probability and waiting time problems. When drift and mutation
were added, we could do neither. By contrast, for constant fitness models
the stationary distribution for multiple alleles is known exactly [313] and
the waiting times in large populations may be found by standard small
noise approximations [200].

Mathematically, the difference may lie with the fact that the constant
fitness model is reversible while the SAS-CFF model with drift and muta-
tion is not. I can offer no evidence in support of this view; it is presented as
a conjecture that may entertain someone skilled in these matters. Should
our asymptotics ultimately prove to be correct, we will have in hand the
most important properties of the model, though not a simple way to derive
them. We will not have, on the other hand, a model with a very pleasing
mathematical structure.

It is tempting to seek a model that gives up a little biology to simplify
the mathematics much as we did in using the c-haploid model to approx-
imate the dynamics of the SAS-CFF model. In doing this, we would like
to use the pristine SAS-CFF diffusion (i. e., without drift or mutation) in
the interior and to compress the complex behavior of rare alleles into the
boundary. One approach is to impose a sticky boundary on the diffusion
equation 4.53 at e and 1 — e.

Sticky boundaries represent a little known option for the behavior of
sample paths that crash into regular barriers. They cause sample paths to
behave in a manner that is remarkably like that of rare alleles that hit zero
in the SAS-CFF diffusion with drift and mutation. In particular, whenever
a process hits a sticky barrier, it will return to the barrier infinitely often
before escaping from its influence. Although the process does not stay on
the barrier for a finite length of time on any one hit, the time spent on
the barrier after the infinite number of hits will be nonzero. Moreover, the
distribution of the time to hit a point that is close to the sticky barrier is
exponentially distributed.

It is difficult to find any discussion of stick barriers in the secondary
literature on diffusion processes. Most of what I know comes from working
out problem 11 in Chapter 16 of Breiman's book [23] and from a correspon-
dence with M. lizuka and Y. Ogura. Perhaps this situation will change as
the relevance of sticky barriers to population genetics becomes more gener-
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ally appreciated. Here we will only describe a two-allele process with sticky
barriers to illustrate the idea.

Consider a two-allele symmetrical SAS-CFF diffusion without drift or
mutation,

on the closed interval [e, 1 — e]. The two points e and 1 — e will be the sticky
barriers. When a sticky barrier is present, the mean time for a process that
begins in the interval (e, 6) to hit 6 satisfies the equation

with boundary conditions

The parameter s£ is a measure of the stickiness of the barrier. As se in-
creases, the barrier becomes stickier. If s€ = 0, the barrier behaves just like
a reflecting barrier.

The solution to the differential equation is

where

As e approaches zero, the influence of the sticky barrier is lessened because
of the longer intervals of time between visits. To counter this, the stickiness
should be increased as e decreases. This leads to an asymptotic expansion
for the mean time to hit S,

which is valid as long as sf grows faster than log(e)/e.
The sticky boundary process will be asymptotically equivalent to the

genetic process if the values for e and sf are chosen appropriately. For the
former, we have already seen that we should use e = l/(2a). For the latter,
we need only set the mean time to hit 6 given above to the mean time for
an allele to enter the interior (from equation 4.63) to get

In making this comparison, we have measured time in units of generations
rather than units of 2AT generations.
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Figure 4.11. The fates of alleles in the sticky barrier process.

Of the two processes, the sticky barrier process is by far the simpler. The
state space is broken into a sticky barrier and the interior. The dynamics
of interior alleles are completely unpolluted by drift and mutation, pot just
asymptotically so. This means that the stationary distribution, conditioned
on residencey in the interior, is a truncated Dirichlet distribution. The
probability that the process is found in the interior is given by

just as it is for the genetic process.
The real advantage of the sticky barrier approach is for processes with

more than two alleles. In this case the stationary distribution of interior
alleles will also be a truncated Dirichlet. Recall that for the genetic case we
were not able to write down the stationary distribution exactly. The stick-
iness of the barriers is specified by the mean times given by equation 4.64.
This model is presented here as a carrot to lure workers to examine its
fascinating structure. Figure 4.11 gives a cartoonist's view of the dynamics
of SAS-CFF models with sticky barriers.

4.7 An historical note

In 1948, Sewall Wright initiated his mathematical work on selection in a
temporally fluctuating environment with the following diffusion model for
selection on additive alleles in a diploid population [312, p. 292]:
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Wright apparently obtained his diffusion by first approximating the change
in the allele frequency by

and then using the mean and variance of Aa; for the drift and diffusion
coefficients. In so doing, he set E(SI — s^) = s — s and cr2 = Var(sj — s^).
The essential difference between his model and ours is the absence of the
variance term in his drift coefficient. Significantly, when this term is present
a polymorphism results if the appropriate conditions on the parameters are
met; when it is absent, genetic variation is driven from the population.
Wright viewed the effects of random fluctuations as being analagous to
genetic drift. That temporal fluctuations in fitness could lead to a stable
polymorphism appears to have escaped him.

In 1954, Kimura [152] obtained the complete transient solution to equa-
tion 4.67 using a transformation that converted the diffusion into Brownian
motion. He noted that, although variation was driven from the population,
alleles could not actually become fixed due to the assumption that the pop-
ulation size is infinite. To emphasize this point he called the loss of variation
quasi-fixation. He, like Wright, appeared to be unaware of the error in the
drift coefficient.

In 1955, Dempster [53] examined a haploid model and, as we saw ear-
lier, was able to show by an exact anlaysis that the allele with the largest
geometric mean fitness ultimately prevailed in the population. Kimura's
solution gave a contradictory result: the allele with the largest arithmetic
mean prevailed. Neither Dempster nor Kimura appears to have noticed the
contradiction, perhaps because the more important result, that temporal
fluctuations remove variation, was shared by both models.

In 1963, Haldane and Jayakar [113] analyzed a two-allele diploid model
with deterministic fluctuations and showed that a polymorphism would oc-
cur if the geometric mean fitness of the heterozygote exceeded that of both
homozygostes. Like Dempter's, theirs was an exact analysis, one based on
the behavior of rare alleles. Unfortunately, Haldane and Jayakar considered
neither the diffusion approximation of their model nor the additive case cor-
responding to equation 4.67. Thus, while their results were very important,
they had little impact on the prevailing view that temporal fluctuations are
a dispersive force.

The tide began to turn in the early 1970s when at least four popula-
tion geneticists—independently and at about the same time—realized that
Wright's diffusion was in error. Out of this came two papers on the diffusion
analysis of haploid models by Jensen [141] and myself [81], one manuscript
by Joe Felsenstein which he withdrew because Jensen and I were further
along in getting ours published, and one blackboard derivation by Warren
Ewens that was obliterated by an eraser. The correct calculation is suffi-
ciently elementary that others undoubtedly repeated it at about the same
time.
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The new diffusion allows the genotype with the largest geometric mean
to win, thus resolving the conflict between Kimura and Dempster in Demp-
ster's favor. It is a simple step from the correct haploid diffusion to the
additive diploid diffusion, a step that appears to have been taken first in
1974 [82]. With this paper it became known that temporal fluctuations
in diploids should not be viewed as a wholly dispersive force, even for the
additive model. A large number of papers on selection in a fluctuating en-
vironment were written during the 1970s. Felsenstein's review [71] should
be consulted for a complete review.

Surprisingly, the interpretation that temporal fluctuations are a dis-
persive force like genetic drift lives on. In 1976, Nei and Yokoyama [219]
devised a frequency-dependent model in a fluctuating environment whose
(correct) diffusion approximation is the same as Wright's diffusion. Other
than the fact that the model reproduces Wright's diffusion, it has little to
recommend it. Nonetheless, as recently as 1987, Nei supported this model
writing

In Nei and Yokoyama's formulation, alleles are expected to behave just
like neutral alleles when the mean of a is equal to zero, and the rate of
gene substitution is not affected by population size. The only effect of
this type of fluctuating selection is to increase the amount of genetic
drift per generation and thus to reduce genetic variability. [216, p. 201]

I mention this bit of history as I find it interesting that a simple mathemat-
ical error could have had such a profound impact on a subject as important
as the effects of temporal fluctuations of the environment on genetic varia-
tion.



5
SSWM approximations

In the previous chapter we made progress on a formidable diffusion model
by using strong-selection weak-mutation (SSWM) limits to study the entry
and egress of alleles from the population. Bolstered by this success, it
is natural to seek other arenas to apply the SSWM methodology. Before
setting off on the quest, however, we should step back for a moment and
reflect on its purpose.

The SSWM analysis of the SAS-CFF model allowed us to collapse a
complex high-dimensional process into a simple one-dimensional Markov
process. As the simple process is fully specified by the mean times for alleles
to enter or leave the interior, we can hope that other models for which the
equivalent mean times are available will collapse similarly. Should this be
the case, then the simple processes become objects of general interest in
population genetics theory.

In this chapter we will show how directional selection and overdom-
inance models may be collapsed via SSWM limits to simple processes as
well. The limiting processes will henceforth be called SSWM Markov chains.
In some of these cases the SSWM Markov chains may be solved completely
to provide insights into molecular evolution and polymorphism. In others,
they may be studied by computer simulations or numerical approximations.

5.1 Substitution processes

In this section we will use a few elementary ideas to make some interesting
observations about the substitution of advantageous alleles in the strong-
selection weak-mutation domain. Our goal is to see if there are situations
that might lead to the episodic evolution that we inferred in Chapter 3:
bursts of amino acid substitutions followed by latent periods.

As our aim is to provide an intuitively appealing route to the final
results, we will use, whenever possible, the simplest model that captures
the essential ideas. The time-honored simplest model for rare advantageous
alleles is the Galton-Watson branching process.* Our use of this theory will

*My favorite introduction to branching processes is in Feller's book [70, Sections
XII. 3-5].
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be confined to the approximation for the probability of ultimate survival of
a new mutation. Let the fitness of the heterozygote for a new mutation be
1 + s and that of the common allele be one. Branching process theory tells
us that the probability of ultimate survival of the mutation is approximately
2s if s is small.

In the SSWM world, mutations to the same allele recur. Thus, the
probability of ultimate fixation of an advantageous allele is one. It may
take a long time for the particular mutation that ultimately sweeps through
the population to appear, but eventually it will show up. How long will it
take? On average, 2Nun new mutations to a particular allele appear each
generation. (Recall that N is the population size and un the nucleotide
mutation rate.) If exactly 2Nun were to appear each generation, then the
probability that at least one of these ultimately survives is

that is, one minus the probability that they all go extinct. If s and 4Nuns
are both small, p3 may be approximated by

Thus, the mean time until a mutation appears that ultimately survives is

a result that has appeared numerous times in the literature as befitting its
importance. Here I will call attention only to an article by Maynard Smith
who uses the same derivation as ours [206].

Each generation, either a mutation appears that will ultimately survive
or it does not. If the ultimate survival of a mutation is independent of the
survival of all other mutations, then the number of generations until the
first surviving mutation appears, Tg, will be geometrically distributed:

The independence assumption seems reasonable in large populations be-
cause the relative frequencies of the new mutations are vanishingly small.

In the SSWM domain, N is very large (say greater than 106), 6n — 4Nun

is small (less than 0.1), and a = 2Ns is large (greater than 10). Together,
these imply that the waiting time until a surviving allele appears will be
large. A geometric distribution with a large mean may be approximated
by an exponential distribution. To keep the mean of the exponential under
control, time should be scaled in units of 27V generations. The exponential
distribution of the time until the first surviving mutation appears, T, is
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Figure 5.1. The substitution process described in the text. The dotted line is the
trajectory of the first allele to sweep through the population.

where time is now measured continuously with a particular realization T = t
corresponding to 2Nt generations. The mean time is (0na)~l.

To define a SSWM Markov chain for a substitution process, we need
to assign each allele a number. Let the allele that is initially fixed in the
population be allele two and the advantageous allele be allele one. The
state space for the SSWM Markov chain is the identity of the allele that
is currently fixed—or nearly fixed—in the population. Thus, the chain for
our first substitution process begins in state two where it remains for an
exponentially distributed length of time before jumping to state one where
it remains in perpetuity. The rate of change from state two to state one is
the reciprocal of the mean time in state two, A2,i = 0na. These ideas are
illustrated in Figure 5.1. It is hard to imagine a simpler process!

For a more traditional description of the SSWM Markov chain, we need
to study the probability of being in state i at time t, Pi(t), for a specified
initial condition. The rate of change of p^(t) for an arbitrary continuous-
time Markov chain is

where Ani is the rate of transition rate from state n to state i and

In all of our applications, the process will start in a particular state with
probability one. If the process starts in state k, the initial conditions are
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The time spent in state i, given that the process is sitting there, is expo-
nentially distributed with mean I/A,,.

It is often convenient to write Markov chains using matrix notation.
Let p(t) be the column vector of the pi(t) and A the matrix with the Ay
as off-diagonal elements and -Xit as diagonal elements. The differential
equation for the probabilities may be written concisely as

where the prime indicates the transpose of the matrix. For our simple
two-allele genetic case,

There is an ambiguity in the definition of the SSWM Markov chain
stemming from the identity of the allele that is currently fixed in the pop-
ulation. What should we do while one allele is in the process of replacing
another? In the SSWM domain the time spent in such nebulous states is
small relative to the time spent waiting for an allele to begin its ascent.
There are, in fact, two different time scales. The longer time scale applies
to rare advantageous alleles waiting to enter the interior. The shorter time
scale is the transient time required for an ascending allele to move through
the interior. The former time scale is governed by three forces: drift, mu-
tation, and selection. The latter is set by selection alone. Thus, we can
adopt any convention we choose for identifying the allele that is currently
"fixed." Figure 5.1 was drawn such that an allele that is destined to be
fixed is called fixed at the moment it arises. We could have claimed an
allele is fixed when its frequency exceeds one half. The difference between
these definitions is unimportant when the process is observed on the time
scale of rare alleles.

The power of the SSWM approach becomes apparent as we move to
more complicated situations. Consider first the case where there are k
different alleles, each with a different scaled fitness, ctj. What is the mean
time until the first allele sweeps through the population? This is the same
as asking for the minimum of k exponentially distributed random variables,
each representing the time spent by one of the alleles in the boundary layer
before entering the interior. The minimum of a collection of exponential
random variables is also an exponential random variable but with mean

when the mean of the ith exponential random variable is \/Ono.i. For
example, if the fitnesses of all of the alleles were the same, the mean time
until the first of them sweeps through the population is just I/k times the
mean time until a particular allele enters.
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The fact that the minimum of a collection of exponential random vari-
ables is also exponential plays such an important role in what follows that
a short proof of this and some other useful properties of collections of expo-
nentials seems warranted. Consider first the case of two exponential random
variables, X and Y, with means fix and /zy. The probability that the min-
imum Z = mm(X, Y) is less than z is equal to one minus the probability
that X and Y are greater than z:

The final result will be recognized as the distribution function for an expo-
nential random variable with mean

If we set fjLx = l/(0nati) and fj,y = l/(0na2), we get equation 5.2 for the
special case of two alleles. The extension to an arbitrary number of alleles
is obvious.

Next, we might ask: What is the probability that the ith allele is the
first to sweep through the population? This is the same as asking for the
probability that the ith exponential waiting time, Ti, is less than the others.
For the genetic case the answer is

The most fit out of the k advantageous alleles is the most likely to sweep
through the population. However, if there are a large number of alleles
with similar fitnesses, the probability that the most fit allele is the first
one through may be quite small. As a consequence, there are likely to be
several substitutions; call it a burst of substitutions.

The proof of equation 5.3 may also be sketched with our two exponential
random variables, X and Y. The probability that X is less than Y is

Setting fix = l/9na\ and /j,y = l/0nc*2, we get equation 5.3 for the special
case of two alleles.
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The final question yields a surprising result: What is the mean time until
the first allele sweeps through the population, given that it is a particular
allele? We might expect, for example, that if the first allele to swept through
were the most fit, the waiting time might be shorter than the time for an
allele of lesser fitness. Of course this isn't true; the mean time is the same
no matter which allele we condition upon.

The appropriate calculation in this case is

which is the same exponential distribution as for Z = min(X,Y).
With these simple observations under our belts, it is possible to attack

a more substantial problem. Imagine a diploid population with k alleles
with additive effects on fitness at a particular locus. Let the fitness of the
homozygote for ith allele be 1 + Sj and that of the i/j heterozygote be
1 + (si + Sj)/2. Label the alleles such that

Thus, the homozygote for allele one is the most fit and that for allele k is
the least fit. Suppose the population is initiated with allele i fixed. Since
there are (i — 1) alleles that are more fit than the ith allele, we would
expect a succession of substitutions ending up with allele one. On average,
how many substitutions should occur? To find the answer we need only
derive the SSWM Markov chain and use standard results from Markov
chain theory to obtain the mean number of steps before absorption at state
one.

The fitness of the i/j heterozygote (j < i) relative to the common
homozygote is

Thus, the exponential waiting time associated with the jih allele, given
that allele i is fixed in the population, has mean

when time is measured in units of 2N generations. The reciprocal of the
mean time is the rate of change from state i to state j:

For reasons that will become apparent shortly, it is helpful to write this
rate as
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where vn — an - "n+i is the incremental fitness increase of the nth allele
over the (n + l)st allele.

There is nothing special about the ith allele other than it is the one
that is initially fixed in the population. If the jth allele should be the next
one fixed, then the rate of flow to subsequent alleles will be in the same
form as given in equation 5.4 with the obvious argument changes. Using
equation 5.4, the SSWM Markov chain for this model is defined by

where

and the initial condition is

The complete transient solution of this process is known [86]. Rather than
present the details here—they are an entirely routine application of Markov
process theory—we will only display the mean number of substitutions
before allele one becomes fixed:

The derivation is in [86, p. 208-209].
In one sense, the promise of the SSWM approach has been fulfilled

in this example. We have derived a Markov chain for the substitution
process with minimum effort. In another sense, it has not because the
solution that we are most interested in (equation 5.6) is still rather messy.
It depends, for example, on i parameters. To display the mean time we
would first need to assign values to the Sj. There is little in the experimental
literature that provides any guidance. One way around this dilemma is to
assign the selection coefficients at random, perhaps chosen independently
from a common probability distribution. But which distribution? The
experimental literature will not help here either; extreme value theory will.
If the number of alleles, k, is very large, then the distribution of the fitnesses
of the top few alleles should converge to the extreme value distribution no
matter what distribution is used to assign the fitnesses.
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The use of extreme value theory is new to population genetics so a
few words on its behalf are in order.* Consider a sample of n independent,
identically distributed random variables that have been ordered and labeled
such that

Assuming that certain conditions on the random variables are met, it is
possible to find a sequence of numbers an and 6n such that the distribution
of

converges to the extreme value distribution

The fact that the limiting distribution does not depend on the distribution
of the Xi is reminiscent of the Central Limit Theorem. The theory turns
out to be remarkably useful. An obvious application is the prediction of the
size of the 100-year flood, this being the maximum of 100 random variables
representing river heights.

A technical inelegance of extreme value theory is the derivations of the
constants on and 6n. The best approach is to look them up in a book. Here
I will give a couple of examples. If the Xi are standardized normal random
variables, then

and

If the Xi are exponentially distributed, an = Inn and 6n = 1. Both of these
examples are taken from Galambos' book [78].

A technical detail involves the conditions placed on the distribution of
the Xi to assure convergence of the maximum to the extreme value distri-
bution. In fact, there are not one but three extreme value distributions.
Bounded random variables converge to one, strange creatures like Cauchy
random variables go to a second, and unbounded, well-behaved random
variables like those with normal, exponential, gamma, or log normal distri-
butions go to a third. The latter distribution is called the Type III extreme
value distribution and is the one given in equation 5.7. In all that follows,
we will assume that the random variables representing fitness belong to the
latter class.

An obscure corner of extreme value theory involves the distribution of
the spacings Xi — Xi-i between the largest random variables. For a fixed

*A concise introduction to the theory may be found in David's book on order
statistics [51, Section 9.3]. Galambos' book [78] should be consulted for a, more
complete account.

SSWMapproximations
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m, the asymptotic scaled spacings

are independent, exponentially distributed random variables [85,305]. The
factor i multiplying the ith spacing corrects for the fact that the random
variables become closer together as they move toward the median.

The definition of the Vi should look familiar. Recall that the eigenvalues
given in equation 5.5 depend on the spacings between fitnesses multiplied
by the same integers as used in the definition of the Vi. For a fixed n and as
k —> oo, the distribution of An/6n should approach that of a sum of (n — 1)
independent exponential random variables. To obtain the average number
of fixations we need only take the expectation of equation 5.6 with respect
to the joint distribution of the scaled spacings.

The calculation is even easier than it might seem at first glance. We
really need only the expectation of the ratios of eigenvalues:

The final step follows from the symmetry of the jVj. Using this result, the
mean value of equation 5.6 is seen to be

The dependency of the mean number of substitutions on the allele that is
initially fixed is illustrated in Figure 5.2.

The most remarkable aspect of this result is the slow growth of the mean
number of substitutions with the number of the initial allele. Obviously,
the first fixation usually involves an allele whose fitness is relatively high,
moving the process rapidly toward allele one.

A lot more could be learned about this substitution process. How-
ever, there are aspects of its biological underpinnings that make it unre-
alistic as a model of molecular evolution and thus less worthy of further
study. The process was introduced mainly to illustrate the power of an ap-
proach based on SSWM Markov chains and extreme value theory. We have
taken a formidable problem—the waiting time properties of a Jfc-dimensional
stochastic process—and reduced it to a simple one-dimensional Markov
chain. The reduction occurred because of the emergence of two time scales
as the SSWM limit is approached: the time scale of rare alleles subject to
the joint effects of drift, selection, and mutation and the much faster time
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Figure 5.2. The mean number of substitutions for the simple substitution process.

scale of common alleles subject only to the action of natural selection. The
time scale of the SSWM Markov chain is that of rare alleles. The jumps
from one state to another occur on the common allele time scale, which is
instantaneous on the rare allele time scale.

The SSWM approach is nestled comfortably between the deterministic
and diffusion models commonly used in population genetics. The diffusion
models usually assume that the parameters s, u, and I/TV are all of similar
orders of magnitude. Thus, drift, mutation, and selection all contribute
equally to the dynamics. The deterministic theory, on the other hand, as-
sumes that N = oo and (frequently) that u = 0, making selection the only
relevant force. In the SSWM approach, drift and mutation are entertained,
but only for rare alleles whose dynamics may be studied by diffusion meth-
ods as we saw in the previous chapter. Common alleles, on the other hand,
follow deterministic dynamics. Moreover, since our interest is usually in the
time scale of rare alleles, the only aspect of the deterministic theory that
we need is the equilibrium behavior. The time required to move from one
equilibrium to another is negligible on the rare allele time scale. From this
perspective SSWM Markov chains emerge as a bridge between the diffusion
and deterministic approaches. They appear to be perfectly suited to study
the role of natural selection in molecular evolution.

After that bit of proselytizing, we must make some effort to modify
our first substitution process into one with more biological currency. The
problem lies with the mutation structure. We assumed that each allele can
mutate to every other allele in a single mutational step. The linear structure
of DNA, on the other hand, mandates that if one allele mutates to a second
by a base change, and the second changes to a third by a mutation at a
different site, then the first and third cannot be reached from each other in
a single mutational event.

A model that mimics the full mutational structure of DNA is an awe-

Number of first alllele
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some thing to behold. Fortunately, under SSWM dynamics, back substitu-
tions never occur allowing us to assume with impunity that back mutations
do not occur either. The absence of back mutations makes some aspects
of the model similar to those of the infinite-sites models that play such an
important role in neutral allele theories. The similarity of the two will be
more fully described at the end of this chapter.

The modification of our previous substitution model to one without
back mutations is relatively easy. The best approach is to describe the
new model verbally and to add some mathematics later. Imagine that we
begin as before with one allele fixed in the population. This allele will be
generating mutations that are one mutational step away. Mutations that
are two mutational steps away will appear so infrequently that they may
be ignored. (If the nucleotide mutation rate is 10~8, a particular double
mutation will occur at the rate 10~16.) Let there be k — 1 alleles one step
away that are engaged in SSWM dynamics. We must now assign fitnesses
to these fc alleles as we did before and label them such that allele one is the
most fit, followed by allele two, and so forth. Let the currently fixed allele
be allele i. This defines the starting condition of the model.

From equation 5.3 we see that the probability that the first allele to
sweep through the population is allele j is

(5.10)

Once fixed, all subsequent mutations will be one mutational step away
from the new allele, but two mutational steps away from the original allele.
Consider the set of alleles containing the newly fixed allele plus the k — 1
that are one mutational step away. The newly fixed allele retains its fitness
but we need to assign fitnesses to the others at random as was done for
the first set of alleles. Once assigned, the alleles need to be labeled such
that the most fit allele is allele one, etc. In general, the fixed allele must
take on a new number reflecting its ranking among the new mutations. If it
happens to be the most fit allele, then it will be allele one and the process
will come to a grinding halt. Otherwise, one of the alleles that is more
fit will become the newly fixed allele as determined by the probabilities in
equation 5.3. At this point, we need to generate a new set of alleles, assign
fitnesses, relabel and decide if the process will go for one more iteration or
terminate. Figure 5.3 illustrates the process.

I have called this process the mutational landscape* [89]. The name was
coined to emphasize its analogy with Sewall Wright's adaptive landscape.
For the adaptive landscape, evolution stagnates when it reaches a peak on
the adaptive surface. For the mutational landscape, evolution stagnates
when it reaches a point where all alleles that are one mutational step away
are less fit then the fixed allele. There may be an allele two mutational steps
away that is more fit, but the mutation rate to that allele is so low that

*In fact, I have also called it the molecular landscape [93] process for reasons that
even I don't understand.
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Figure 5.3. One realization of the mutational landscape process. The black dots
represent the fitnesses of alleles. The numbers are the indices of the fixed alleles in the
current iteration. Only the fixed alleles and those of higher fitnesses are represented.
The dotted lines illustrate the inheritance of fitness through successive iterations.

the population is stuck at the current peak for a period of time that is long
relative to the time scale of molecular evolution. The two landscapes are
very similar, perhaps the main difference being one of emphasis. Factors
other than mutation may hold the population on a peak under Wright's
model, whereas mutation, or the lack thereof, is always the factor holding
the population at a peak under the mutational landscape process.

The two aspects of the process that are most relevant to studies of
molecular evolution are the mean number of substitutions before the process
terminates, /xx, and the dumpedness,

where aH is the variance in the number of substitutions before termina-
X

tion. Recall that if the occurrence of bursts follows a Poisson process, the
clumpedness is the index of dispersion for the process (equation 3.7). There
are no analytic results available for either of these moments. However, the
model is easy to simulate. The results of one such simulation are illus-
trated in Figure 5.4. As with the simpler model, the striking aspect of
the dynamics is the small mean number of steps that are taken before the
process terminates. The clumpedness also grows slowly. In this regard the
landscape process is compatible with the statistical description of molecular
evolution that we outlined in Chapter 3.

5.2 Overdominance

Overdominance is a form of balancing selection. Consequently, our interest
gravitates from substitutions to the maintenance of alleles in the popula-
tion. Under SSWM assumptions, the dynamics of overdominant alleles are
rather uninteresting in comparison with those of SAS-CFF alleles. The
reason is simple: With Overdominance, selection dominates drift, holding
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Figure 5.4. A simulation of the mutational landscape process. The curves are
fourth-order polynomials that were fitted to the 50 initial conditions simulated. For
this simulation there are a total of 500 alleles with exponentially distributed fitnesses.
Each case was replicated 2000 times.

alleles in the interior essentially forever. With SAS-CFF, alleles meander
around due to the vagaries of the environment, occasionally becoming rare
enough to be captured by the sticky dynamics at the boundaries.

Our study of the SSWM dynamics of overdominant alleles could proceed
in several different directions. In analogy with the development of the SAS-
CFF model, we could derive the mean times for alleles to enter and leave the
interior and use them to infer the number of segregating alleles. However, a
more direct approach applies SSWM limits to the stationary distribution of
the overdominance model as obtained from a standard diffusion equation.
This approach has the advantage of being both easier and falling more in
the tradition of theoretical population genetics. We will begin by displaying
the fc-allele diffusion with its stationary distribution. Next, the asymptotic
analysis will be directed at the two-allele case as a way of introducing the
approach. Finally, we will attack the fc-allele model.

Consider a locus with k segregating alleles with frequencies

Let the fitness of the i/j genotype be

a notation chosen to allow us to take SSWM limits without having to go
through an extra round of symbols. The (k — 1)-dimensional diffusion
describing the dynamics of this population has mean incrementals
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where time has been scaled in units of IN generations and

The stationary density of this diffusion, first derived by Sewall Wright [313]
in 1949, is

where C is the normalizing constant. Our task is to examine this distri-
bution as On —> 0 and a —> oo to discover where the probability mass
accumulates. This will give us the number of alleles that are segregating in
the population.

For two alleles, the density may be written

where x is the frequency of allele one. An example of fa for a symmetric
model, Sji = —1 and si? — 0, with a = 20 and On = 0.01 is illustrated
in Figure 5.5. Note that the probability mass is concentrated in three
regions. The central region is centered on the deterministic equilibrium
(i.e. the equilibrium for an infinite population with no mutation). The
two boundary regions correspond to the fixation of the one or the other
of the two alleles. The height of the mode for the central equilibrium is
determined entirely by the value of a. As a —> oo, the peak at 1/2 narrows
considerably.

The behavior at the end points is determined by the value of 6n. As is
apparent, the rise toward infinity as x approaches 0 or 1 occurs very close
to the end points. This creates a valley with very little probability mass
separating the central and the boundary regions. Alleles will stay in a region
for a very long time before jumping to a neighboring region. The amount
of time spent in a region is proportional to the probability mass associated
with it. As the SSWM limits are approached, the distinction between the
regions is magnified. In addition, unless some very delicate conditions are
met, the mass in one of the regions will become infinity greater than that
in the others as the SSWM limits are approached.

To obtain the probability mass near zero we need to examine the integral
of fa in a small region,
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Figure 5.5. The stationary distribution for two symmetric overdominant alleles. The
near-vertical lines at the boundaries are not axes as they might appear, but rather are
part of the distribution.

where S is a small fixed constant. If 6 is small enough, s « s22 = s(0),
allowing us to write

where the asymptotics are meant to apply as On —> 0.
The mass around zero will be compared to the mass that accumulates

around the stable deterministic equilibrium at

The simple expedient of expanding ,s(x) around the equilibrium will make
the analysis particularly easy. Use the Taylor series expansion

to obtain

In the region around the deterministic equilibrium, we can approximate the
mass of fa by

The asymptotic form of the integral (as a —> oo) follows immediately from
the recognition that it is the integral of a normal function with "variance"
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[-2a5"(x)]-1. This yields

(Recall that s"(x) is negative by our assumption that x is a stable equilib-
rium.)

The ratio of the mass at x to that at zero will indicate the relative
accumulation of probability mass at the internal fixed point:

The constant C* contains all of the factors that are independent of a and
9n.

As the SSWM limit proceeds, the ratio will approach infinity or zero
unless a delicate relationship exists between 9n and a. The mass will accu-
mulate near zero if

For example, suppose that the model is symmetric with si2 = 1 and su = 0.
In this case the condition becomes

If a '= 100, then 9n would have to be smaller than about 10~21 for an
appreciable fraction of the probability mass to accumulate at one of the
end points! The message is obvious: overdominance is a potent force for
maintaining variation in the population.

By contrast, we learned from equation 4.66 that the number of interior
alleles under the SAS-CFF model is approximately

For there to be only one,

If B = 2, 9n would have to be less than about 0.01 for the probability
mass to pile up at one of the fixation points. Recall that when B = 2 the
stationary distribution is uniform, implying that the allele frequency will
wander freely through the unit interval including frequent skirmishes with
the boundary dynamics. We conclude that, for values of B close to or less
than two, balancing selection under the SAS-CFF model is not nearly as
effective as overdominance at maintaining variation.

Once B exceeds two by a sizeable amount, SAS-CFF dynamics become
just as effective as overdominance at maintaining variation. For example,
if B = 5 and a = 100, then On would have to be much less than 10~8 for
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drift to be effective at reducing the number of segregating alleles. This is
numerically much larger than 10~21, but the biological implication is the
same: alleles will remain in the interior for a very long time.

The extension of the overdominance analysis to multiple alleles uses the
same approach as the two-allele case. It is easy to understand the gross
behavior of (f>k by appealing to the deterministic dynamics of overdominant
alleles. The deterministic system corresponding to the diffusion is described
by the differential equations

This system may have a considerable number of fixed points. There may
be an internal stable equilibrium with all A; alleles in the population and a
number of unstable marginal equilibria with a subset of segregating alleles.
Alternatively, some of the marginal equilibria may be stable but not the
internal equilibrium. Under the SSWM assumptions, selection dominates
drift so we would expect the probability mass to accumulate around some
or all of these equilibria.

Surprisingly, it is possible that the mass might accumulate around a
fixed point that is unstable under the full deterministic dynamics. Consider
that drift is always working to remove alleles from the population. If the
mutation rate were zero, the probability mass would eventually accumulate
at one or more of the k states with only a single allele in the population.
With a very small amount of mutation, it may be possible for two or three
alleles to be held in the population near their deterministic equilibrium,
but perhaps no more than this. As 0n grows, more alleles will be able to
enter until finally the alleles accumulate around the fixed point with the
highest mean fitness.

To locate all of these potential points of accumulation, we need to find
all subsets of the k alleles that can coexist at an internal stable equilibrium.
Next, we need to integrate <f>k (from equation 5.11) in the regions around
these equilibria to see how much probability mass is nearby. By comparing
the mass at each of the fixed points it will quickly become apparent where
the mass is accumulating as 0n —> 0 and a —> oo.

Consider a fixed point of the form x = (xi, x2 , . . . , XK , 0,.. . , 0), where
the Xi are the deterministic equilibrium allele frequencies for a population
with K segregating and k - K absent alleles. Assume that this equilibrium
is stable in the subspace consisting of alleles one to K. (It may, however, be
unstable when all k alleles are allowed to participate.) The probability mass
around x may be determined by integrating <t>k in a small region around x:

The asymptotic form of this integral will be examined in two steps.
Consider first the contribution to the integral of the absent alleles. They
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make essentially no contribution to s allowing the approximation

The integral in the dimension of the fcth allele may be approximated by

The same procedure should be carried out for the remaining absent alleles.
In addition, it seems reasonable to approximate each of the x± in the terms of
the form x^"""1 for the k interior alleles with their deterministic equilibrium.
Then, as 6n —> 0, we have

(5.12)

as the asymptotic form of the integral of <j) for the integration in the (A; — K)
dimensions of the absent alleles.

Integration in the remaining dimensions is more orthodox as we require
the integral of exp(as) as a —> oo. The usual approach to such integrals is
via Laplace's method. It relies on the observation that the integral will be
dominated by events near the maximum of s. As s is proportional to the
mean fitness of the population, the fixed point will sit at a maximum of
s in the K"-dimensional subspace. By expanding s around the fixed point,
we will simultaneously focus our attention on the region of the integrand
that determines the asymptotic value of the integral as well as putting the
integral in the form of a normal distribution.

The obvious way to proceed is by expanding s as a Taylor series around
the point (xi,... ,XK). However, we must be careful since the allele fre-
quencies add to one. The best approach is to begin by setting

and breaking s into the components
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The expansion of s around the fixed point may be written

All of the s functions and derivatives on the right side of the equation are
evaluated at the fixed point. It is entirely routine to use the above to arrive
at

where

and

The integral of equation 5.12 over the remaining (K — 1) dimensions in
the region around the fixed point may now be written

Although the integration is over a small region around the fixed point,
the dominant contribution to the integral comes from an even smaller re-
gion very close to the fixed point. Thus, the limits of integration may be
extended over the entire (K — l)-dimensional space without affecting the
asymptotic value of the integral. The integral is now in the familar normal
form

where b is the matrix with components 6^-. The quadratic form s*(x)
must be negative definite if the fixed point is a stable point in the (K — 1)-
dimensional space [153]. Thus, — s*(x) is positive definite as required for
the normal integral.

The final asymptotic form of the integral is

where C* absorbs all of the factors that are not functions of a or On. Our
only use of this result will be for the symmetric overdominance model. A
discussion of asymmetric cases may be found in [88].

For the symmetric case, set sn = 0 and Sij = 1, i ^ j. For the fixed
point with K segregating alleles, x» = l/K and s(x) = 1 - I/A". Plugging
these into the asymptotic value of the integral gives
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To compare the mass accumulating at two points, say ones with KI and
K2 segregating alleles, use the ratio of the masses at each of the points:

where C** is the ratio of the two constants.
As an example, we might ask under what conditions will fewer than k

alleles be maintained in the population? The answer comes from setting
K! = k and K2 = k - 1:

If the mass were to accumulate at a fixed point with k — 1 alleles, this
ratio would have to approach zero as On —> 0 and a —> oo. Note that
a in argument of the exponential function is divided by k(k — 1). For a
large number of alleles, 0: would have to be very large indeed to maintain
all alleles in the population. Since the average frequency of each allele is
1/Jfc, as k increases alleles find themselves closer and closer to the boundary
where they can be snapped up by genetic drift.

The view that will be argued in the final chapter is that there are,
at most, only a few alleles at a locus that will be under strong enough
selection to be in the SSWM domain and, at the same time, be mutationally
accessible. Other alleles that might participate in the push toward the
interior are two or more mutational steps away from the K segregating
alleles. If true, then we need only be concerned with the time scale of the
build up to the k alleles that will ultimately segregate in the interior.

The mean time for an allele with selective advantage s to enter the
population is, from equation 5.1, l/(4Nuns). When there are K segregating
alleles under the symmetric overdominance model, the average selective
advantage of a rare allele is

as Si w 1 and s ~ 1 — 1/K. Thus, the mean time for a particular allele
to enter when time is measured in units of 27V generations is K/(dna). If
there are k — K alleles waiting to enter, the mean time for the first of these
to arrive is

This is in the same form as the analogous result for the SAS-CFF model
as given by equation 4.64. The two differ only in the factor of (B — 1) that
appears in the denominator of the SAS-CFF time. Thus, the dynamics of
the buildup of alleles should be similar for the two models, at least when
B is larger than two to prevent the loss of alleles before the buildup is
completed. The mean time, in units of 27V/(#no:) generations, is illustrated
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Figure 5.6. The mean time for an overdominant allele to enter the population as a
function of the number of segregating alleles.

in Figure 5.6. As expected, the time decreases as the number of segregating
alleles increases just as it does for the SAS-CFF model.

The most important point of this section is that the buildup of alleles
for the overdominance model is, at the SSWM limit, very similar to that of
the SAS-CFF model. If our only interest is in the entry of alleles into the
interior, then we are moving toward a view that deemphasizes the detailed
dynamics of a particular model and focuses only on the mean times for
alleles to jump into and out of the interior. These times could be viewed
as the parameters of models rather than derived quantities. Such a view
would free us from the tyranny of population genetics algebra. This point
will be taken up again in the final chapter.

5.3 Models of the gene

So far, we have dealt only with the dynamics of allele frequencies. Yet, the
data we must eventually confront are DNA sequences of alleles that contain
considerably more information than that found in an allele's frequency. The
connection between neutral allele-frequency models and DNA sequences
was made years ago by Kimura [157] and Watterson [297]. Kimura intro-
duced a model of the gene that he called the infinite sites model. A locus
is imagined to be composed of an infinite number of nucleotides with free
recombination between them. While an infinite number of nucleotides may
seem excessive, it is meant to be an approximation to a locus with a large,
but finite, number of sites. The assumption was introduced to prevent more
than one mutational event at a single site, thus allowing two-allele models
to be used instead of the more difficult three- or four-allele models. More
problematic is the assumption of free recombination, which is, in fact, an
assumption that there is no linkage disequilibrium between sites. Watterson
considered the other—perhaps more realistic—extreme: infinite sites but
no recombination. Either extreme is much easier to deal with mathemati-

K,Number of interior alleles
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Figure 5.7. A real ization of the buildup process ending with four alleles. The gray bars
represent the sequences, the numbers designate the mutations in order of appearance,
arid the lines give the parentage of alleles. Solid lines connect alleles differing by a
mutation, dotted lines connect alleles that are the same.

cally than are models with intermediate levels of recombination. A common
practice is to analyze the two extremes and view them as bounds on the
situation in nature. In this section we will concentrate on infinite-sites,
no-recombination models in the context of our SSWM Markov chains.

No additional work needs to be done to graft the infinite sites struc-
ture onto the substitution models. Each substitution causes one nucleotide
change, making the number of substitutions and the number of nucleotide
differences separating a pair of sequences the same. Additional work is re-
quired to describe the numbers of mutations separating alleles held in the
population by balancing selection.

The buildup process

Our results for the symmetric SAS-CFF and overdominance models at the
SSWM limit suggest that both models will accumulate a moderate number
of alleles fairly rapidly. We will refer to this as the buildup process. The
models differ in what is likely to happen next. Overdominant alleles are
likely to remain in the population for a very long time if the parameters
remained unchanged. SAS-CFF alleles, on the other hand, begin an allelic
exchange process that causes alleles to enter and leave the interior at a rate
smaller than that of the buildup process.

Consider first the accumulation of mutations during the buildup process.
Imagine that the population is initiated with an allele, the first allele, with
a specified DNA or amino acid sequence. The sequence of the second allele
to enter the interior will differ from the sequence of the first allele by a
mutation at a single site as seen in the first bifurcation in Figure 5.7. For our
symmetric models, the average frequency of each of two alleles is one half.
The third allele to enter will be derived from one of the two existing alleles
by a single mutational event. The parent allele is assumed to be chosen
at random from the two segregating alleles. For example, in Figure 5.7,
the allele with the first mutation happens to parent the third allele that
contains both the first and second mutations. By symmetry, the frequencies
each of the three alleles is one third.

The buildup process proceeds in this way until all of the alleles that
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can coexist and are mutationally accessible are in the interior at which
point the process terminates. As is clear, the buildup process produces a
genealogy for the segregating alleles. Each bifurcation of the tree yields two
daughter alleles, one identical to the parental allele and one differing by a
single mutational event. Whenever a new bifuration occurs, the parental
allele is chosen at random from all of the contemporary alleles. These allelic
genealogies are particularly easy to describe. In what follows we will give
just two properties: the distribution of the number of mutations that are
found on a randomly drawn allele and the mean and variance of the number
of mutations that separate two randomly drawn alleles.

Consider first the number of mutations on a randomly drawn allele from
a buildup that resulted in K segregating alleles. The probability that the
chosen allele contains the first mutation to have entered the population is
one-half, the second mutation, one-third, and so on up to the (K — l)st mu-
tation. Let SK be the number of mutations on the randomly drawn allele.
SK may be written as a sum of independent Bernoulli random variables:

where

The mean number of mutations on the randomly drawn allele is thus

Similarly, the variance of the number of mutations is just the sum of
Bernoulli variances:

Note that both of these moments grow by approximately l/i with successive
alleles implying that their growth is logarithmic in K.

These results may be applied immediately to a simple model of molec-
ular evolution to demonstrate that polymorphism can lead to bursts of
substitutions just as did the mutational landscape. Imagine that the en-
vironment that led to the buildup of alleles occasionally changes in such a
way that one of the segregating alleles becomes more fit than the others,
resulting in its fixation. We will call the loss of alleles allelic constrictions
to leave open the possiblity that they may be caused by mechanisms other
than selection. In the new environment a set of alleles that are mutationally
accessible from the fixed allele leads to another buildup process and so on
as illustrated in Figure 5.8.

With each allelic constriction, a random number of mutations are fixed
in the population. If we assume that the allele that is fixed is chosen at
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Figure 5.8. An illustration of the major features of molecular evolution involving an
alternation of buildup processes and allelic constrictions.

random from the segregating alleles, the number of mutations that are
fixed is given by the random variable SK- From this and equation 3.7 we
conclude that if the allelic constrictions follow a Poisson process, the index
of dispersion for the process will be

This result, which depends only on K, is illustrated in Figure 5.9.
A comparison of Figures 5.4 and 5.9 shows that both the mutational

landscape and polymorphism can lead to bursts of evolution. They share
the property that the clumpedness increases slowly, making large values
unlikely.

The second property of our model concerns the number of mutations
that separate a pair of distinct alleles drawn at random from the popula-
tion. One approach to the problem is through allelic genealogies. When all
K of the alleles in the population are considered, their ancestry may be rep-
resented by a binary tree, as illustrated in Figure 5.10.. Each bifurcation of
the tree produces one branch identical to the parental branch and one with
a single new mutation. Thus, to find the number of mutations separating
a randomly drawn pair of alleles we need to derive the distribution of the
time back to the common ancestor of the two alleles and compound this
with the probability of a mutation on the branch leading to the sampled
allele.

The probability that the common ancestor of two randomly chosen al-
leles occurred at the most recent bifurcation is

The probability that the first allele that was drawn participated in the most
recent bifurcation is 2/K; the probability that the second allele drawn also
participated isl/(K — l). As these events are independent, the probabilities
may be multiplied to give pi. Similarly, the probability that the two alleles
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Figure 5.9. The mean number of substitutions and the index of dispersion for a process
with Poisson allelic constrictions followed by buildups to K alleles.

came from the second most recent bifurcation is

Proceeding in this fashion, we see that the probability that the common
ancestor of the two chosen alleles occurred i bifurcations in the past is

The probability is written as the product of the probability that the bifur-
cation did not occur up to the (i — l)st bifurcation times the probability
that it did occur at the ith bifurcation.

The mean number of mutations that separate a randomly drawn pair
of alleles whose common ancestor allele is known to have occurred j bifur-
cations in the past may be obtained by an argument that is summarized in
Figure 5.11.

If the two alleles came from the most recent bifurcation, they are always
separated by exactly one mutation. If the ancestor allele occurred two
bifurcations in the past, the mean number of mutations separating the two
alleles is

Referring to Figure 5.11 for the case j = 2, we see that the one in fj,2 comes
from the step just before the bifurcation and 2/(K + 1) comes from the
initial step. The argument for the second term is as follows.

There are three events that our two alleles could experience during the
first iteration. The two alleles could have emerged from the most recent
bifurcation. This occurs with probability p\. However, as we have condi-
tioned on j = 2, this event is of no interest.

Number of segregating alleles, K
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Figure 5.10. A typical realization of an allelic genealogy. Alleles are represented
by circles, mutations are marked by an "x"; the number below each allele is the
total number of mutations that have accumulated on the allele. The two open circles
represent two randomly chosen alleles, and the arrow points to the common ancestor
of these two alleles. Time, as measured backward in units of bifurcations, is given on
the right-hand side. The figure is from [96].

Alternatively, the two alleles may not have participated in any bifurca-
tions. This occurs with probability

In this case neither of our alleles will receive a mutation so this event
contributes nothing to /j,2 •

Finally, one or the other of the two alleles could have participated in a
bifurcation, but not both. This occurs with probability

In this case, the probability that the allele that participated in the bifur-
cation received the mutation that always accompanies a bifurcation is one
half. The mean number of new mutations contributed by this event is given
by the probability that one of the two chosen alleles participates in a bifur-
cation, given that both do not participate (equation 5.18) divided by pi,
multiplied by 1/2, as in the second term in equation 5.17.

Carrying on this argument, using Figure 5.11 as a guide, we find that
the mean number of mutations that differentiate a randomly drawn pair of
alleles with a common ancestor allele known to have occurred j generations
in the past is



Models of the gene 257

Figure 5.11. The history of a pair of randomly drawn alleles with a common ancestor
j bifurcations in the past.

By convention, the sum will equal zero when j = 1. The mean number of
mutations that separate a randomly drawn pair of alleles is given by

which depends only on the number of segregating alleles, K. It is illustrated
in Figure 5.12.

The variance in the number of mutations separating a randomly drawn
pair of alleles may be obtained by a similar argument. Consider first the
variance conditioned on the common ancestor allele having occurred j bi-
furcations in the past. The variance in the number of mutations contributed
by the ith step is just the Bernoulli variance obtained by multiplying the
probability of a mutation by one minus that probability:

The total variance, given that the common ancestor allele occurred j bifur-
cations in the past, is

Let the random variable Zi represent the number of mutations contributed
by the ith step. The total variance may now be written as
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Figure 5.12. The mean and the variance-to-mean ratio of the number of mutations
separating a randomly drawn pair of aileles at the end of the buildup process.

In terms of our previous results, this becomes

The ratio of this variance to the mean is illustrated in Figure 5.12.
These results may be obtained by an entirely different approach based

on the probability distribution of the number of aileles that a particular
mutation occupies. We refer to the number of distinct aileles occupied
by a particular mutation as its multiplicity. The probability that the nth
mutation to enter the population has multiplicity j at the end of the buildup
process is

The derivation of this result may be found in [95]. It is a straightforward
route from pnj to equation 5.20.

The allelic exchange process

SAS-CFF models differ from overdominance models in that allele frequen-
cies go on long excursions. Sometimes they get close enough to the bound-
ary to become mired in the sticky dynamics that are the scourge of rare
aileles. Should an allele be lost, a new mini-buildup process begins that
increases the number of interior aileles from K — 1 back to K. Alterna-
tively, an allele sometimes enters the population bringing the number of
interior aileles to K +1. This results in a relatively rapid loss of an allele to
once again bring the number of interior aileles back to the most probable
number, K.

The steady and gain and loss of aileles is called the allelic exchange
process. With each allelic exchange there will be a change in the identity

Number opf segregating alleles, K
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and perhaps number of segregating sites. The distibution of the number of
segregating sites given the number of alleles, K, is of particular interest in
the study of molecular variation. At the end of the buildup process to K
alleles there are K — 1 segregating sites. When the allelic exchange process
kicks in, the number of segregating sites becomes a random quantity.

A mathematic description of the allelic exchange process for the SAS-
CFF model has yet to be achieved. In this subsection we will explore a
crude approximation that exposes some of the major features of the pro-
cess. The approximation is based on the assumption that the number of
interior alleles, K, is constant. We saw in the previous chapter that K is,
in fact, a Markov chain with transition probabilities q(K) as illustrated in
Figure 4.10. As the SSWM limit is approached, the transition probabilities
tend to hold K tightly to its most probable state, but not sufficiently to
allow us to claim that K is constant. A correct analysis is an open and
interesting problem.

Assume from now on that the number of interior alleles is fixed at the
most probable value of K. For this value, q(K) « 1/2, which implies that

Recall that te(K) is the mean time between gains or losses of alleles as
defined in equation 4.65. When q(K) « 1/2, te(K) « tin(K)/2, where
tin(K) is given by equation 4.64. Thus,

is the mean time between allelic exchanges in units of 2N generations. If the
number of available alleles, k, is less than or equal to the number that can
be maintained in the population, then te(K) = oo and the allelic exchange
process does not function. Otherwise, the rate of the process is

when time is measured in generations.
At this point we can exploit a remarkable analogy between the dynamics

of mutations in the allelic exchange process and those of a haploid neutral
model. Every time an allelic exchange occurs an allele is chosen at random
to receive a new mutation and replace one of the existing alleles (possibly
including itself). The dynamics of mutations on the K alleles is exactly like
those of mutations on chromosomes in a haploid population of size N = K.
The only difference between the allelic exchange process and the haploid
neutral model is in the mutation process. In the neutral model a Poisson
number of mutations accompanies each event; in the allelic exchange process
each event includes a single mutation with probability one.

Watterson [297] gave a mathematical description of the haploid neutral
model that is ideal for our purposes. His equation 4.2 is the generating
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function for the number of segregating sites in a sample of size i from an
equilibrium population. The only change that we need to make to use his
generating function for the allelic exchange process is in the mutation pro-
cess. Rather than using a Poisson number of mutations for each event,
we must assume that a single mutation occurs with each exchange with
probability one. Thus, where Watterson used the Poisson probability gen-
erating function g(s) — exp\y(s — 1)] for the number of mutations, we will
use g(s) = s, allowing us to modify his equation 4.2 for the probability
function of the number of segregating sites in a sample of size i to

The mean number of segregating sites in the population may be obtained
from Pi(s) or, more easily, from Watterson's equation 1.4a:

We see from this result that, at equilibrium, the number of segregating sites
will exceed the number of alleles.

The connection between the allelic exchange process and the neutral
model also allows us to write down the rate of substitution. The probability
that a new mutation that enters the interior is ultimately fixed is equal to
its mean initial frequency, 1/K, in analogy to the probability of l/N that
a new mutation is ultimately fixed under the neutral model. The mean
number of allelic exchanges to occur in a short period of time, 6, is px6. A
fraction, l/K, of these are ultimately fixed. Thus, the rate of substitution
of sites is

Interestingly, the rate of substitution appears to be inversely propor-
tional to the number of segregating alleles. The true dependency is much
more complex. If we rely on our rough estimate of the number of segre-
gating alleles (equation 4.66) combined with equation 5.21 and A; » K,
then

If B is increased, K is increased and the rate of substitution is decreased. If
a is increased, then K is increased and the rate of substitution is increased
as well. Obviously the dynamics of the allelic exchange process are complex
and at this point not well understood.

The evolution of DNA as formulated in this section is the foundation of
a theory of molecular evolution by natural selection that will be developed
in Chapter 7.



6
Neutral allele theories

In this and Chapter 7 we will address the scientific issues raised by the
observations on molecular variation and the mathematics of selection in
a fluctuating environment. This chapter is about the neutralist side of
the much-publicized "neutralist-selectionist" debate. The next chapter is
about the selectionist side.

Our initial problem is to define exactly what we mean by "the neutral
allele theory." Many neutral theories are not neutral at all, but assume that
the mutations that contribute to molecular variation are slightly deleterious.
In his lament of this situation, Kimura wrote

One possibility would be to rename the theory the 'mutation-random
drift theory', but the term 'neutral theory' is already widely used and
I think it better not to change horses in midstream. I want the reader
to realize that 'neutral theory' is shorthand for 'the theory that at the
molecular level evolutionary changes and polymorphisms are mainly
due to mutations that are nearly enough neutral with respect to nat-
ural selection that their behavior and fate are mainly determined by
mutation and genetic drift.' [159, p. xii]

Although the range of neutral theories is large, there is a common thread
tying them together: they all rely on mutation to introduce new variants
and genetic drift to fix them in the population. For genetic drift to play
its part, the selective differences between alleles must be small. But how
small? The original neutral theories included the assumption that the se-
lective differences between alleles are much less than the reciprocal of the
population size. If we represent the selective difference between alleles by
<rs, we can write this initial assumption as aa <C I/AT, where N is the ef-
fective size of the population. We will call selection of this magnitude weak
selection.

As data on molecular evolution and polymorphism accumulated, the
neutral theory based only on weak selection appeared unable to account
for all of the observations. As a consequence, the theory was expanded to
include alleles whose fitness differences were close to the reciprocal of the
population size, crs « l/N. Selection of this magnitude will be called mod-
erate selection. However, not all moderately selected alleles are part of the
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Figure 6.1. A selection coefficient distribution for the neutral allele theory.

theory. Only those that are deleterious with respect to a common allele are
included. Moderately selected advantageous or overdominant alleles enter
the population through the action of selection, not drift, so are excluded
from the theory.

The neutral theory based on weakly and moderately selected deleterious
alleles has been widely accepted by the scientific community. One can safely
state that no other mechanistic theory of molecular evolution has received
even a small fraction of the support that the neutral theory has received.
The aim of this chapter is to judge whether this support is warranted.

Our investigation begins with a precise description of the theory; it is
difficult to judge its success if some of its assumptions are left under the rug.
From here we will move to an examination of the traditional arguments that
support the theory. Finally, we will summarize the success of the theory.

6.1 Fitness distributions

Neutral theories are concerned with the evolutionary dynamics of muta-
tions of very small effect. The key player in these theories is the fitness
distribution of new mutations. Our initial goal is to describe the two fit-
ness distributions that appear in the literature and to offer a combined
distribution that appears to combine the best features of each.

The gross context of neutral fitness distributions is illustrated in Fig-
ure 6.1 in which it is assumed that natural selection has already moved the
locus to such an exalted state that further improvements through selection
on new mutations is extraordinarily unlikely. Rather, almost all new muta-
tions are either strongly deleterious (cr3 3> I/TV) or are weakly (as <C 1/N)
to moderately (aa « I/TV) deleterious. In drawing Figure 6.1, I have as-
sumed that the strongly selected mode is at lethality. For loci that are not
lethal-mutable, the strong selection mode could be at some other value as
long as it is much smaller than one. Our concern is not with this mode, but
with the mode near one, which will be called the neutral mode. Mutations
in the neutral mode are the raw material of neutral evolution.

As our interest is only with neutral mutations, assume that the area
under the neutral mode is one, making it a proper probability distribution.

Darwinain fitrness



Fitness distributions 263

Selection coefficient

Figure 6.2. A selection coefficient distribution for the weak-selection neutral model.

The mode of the distribution will be placed at zero rather than one and
the random fitnesses, now deviations from one, will be called selection co-
efficients (except for occasional lapses when they will be called fitnesses
because it sounds better). We must assume that the fitness distribution
applies to all of the species in a particular study. For example, the same
fitness distribution is used for all species of mammals.

The dispersion will be characterized by its standard deviation, as- The
fraction of the neutral mode occupied by weakly selected mutations will be
called fw; that by moderately selected mutations, fm. If the total mutation
rate to alleles in the neutral mode is u, then the mutation rate to weakly
selected alleles is fwu and to moderately selected alleles is fmu.

Under the weak-selection neutral model, as -C 1/N, as illustrated in
Figure 6.2. There are two key points to make about the weak-selection
model. The first is that as is assumed to be so small that Nas <S 1 holds
for species with population sizes ranging over several orders of magnitude.
Otherwise, the neutral mutation rate, fwu, would vary as a function of
population size and moderately selected alleles could make up a significant
fraction of the mutations in the larger populations.

The second point is that the fraction of mutations that fall within the
neutral mode, fw, is locus specific. Loci that evolve more slowly are said
to be more constrained and thus have a smaller /„,. In our terminology, we
say that slowly evolving loci have greater site effects and are not environ-
mentally challenged.

The fact that /„, varies from locus to locus, or from site to site within a
locus, in the weak-selection model has some interesting implications about
the nature of fitness effects of mutations. It is as if mutations sit near cusps:
they can be either weakly selected or strongly selected, but not moderately
selected. From a modeling point of view, this is perfectly reasonable as
suggested by the distributions illustrated in Figures 6.1 and 6.2. Even as
a biological statement about the nature of macromolecules this does not
appear to be unreasonable a priori.

We do not have to specify any other properties of fitness distributions for
weak-selection models. The dynamics should behave essentially the same no
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matter what the form of the fitness distribution. Even balancing selection
will have only a small effect as long as Naa < 1. Not so for moderately
selected mutations: almost all aspects of their dynamics depend critically on
the form of the fitness distribution. For this reason we will spend somewhat
more time on the actual form of the distribution than we did for weakly
selected alleles.

The first detail in a discussion of moderate selection concerns the dom-
inance relationships between alleles. It is generally assumed that heterozy-
gotes are exactly intermediate between their two associated homozygotes.
This assumption is motivated by experiments on both spontaneous mu-
tations and naturally occurring variants that generally exhibit an inverse
heterozygous-homozygous effect [260]. Mutations of large effect tend to be
nearly recessive (s « — 1, h « 0.05), those of small effect tend to be nearly
additive (\s\ K 0, h « 0.5).* Mukai et al. [215], for example, estimated that
spontaneous mutations in Drosophih with an average homozygous effect of
s K —0.075 have a heterozygous effect of h « 0.4. Presumably, mutations
of smaller effect are even closer to exact additivity.

In most of the work on moderate-selection neutral models, the fitness
distribution is assumed to represent the fitnesses of heterozygotes, each
with one allele being a new mutation and the other contributing a selective
coefficient of zero. The globally most-fit allele is assumed to be nearly fixed
in the population and all others are derived from it.

Two fitness distributions have been commonly used in the literature.
The first, due to Ohta [228], is the exponential distribution

We use ffms instead of as to emphasize that we are discussing moderately
selected alleles. The second, due to Kimura [158], is the gamma distribution

where a = /3/crms.
The two fitness distributions are illustrated in Figure 6.3 for the special

case ams = 0.001, ft = 0.5 favored by Kimura [159]. They have the same
means but differ greatly in their behaviors near zero. The gamma distribu-
tion has considerably more probability mass near zero, suggesting that fw

will be much larger than for the exponential distribution. Kimura was led
to the gamma distribution precisely for this property:

Ohta's model has a drawback in that it cannot accommodate enough
mutations that behave effectively as neutral when the population size
gets large. [158, p. 3440]

*The notation for heterozygous effects comes from the two-allele model using rel-
ative fitnesses with the most-fit homozygote having a fitness of one, the least fit
homozygote 1 — s, and the heterozygote 1 — ha.
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Figure 6.3. The exponential and gamma densities for selection coefficients of mod-
erate-selection neutral models.

For large Nams, the probability mass in the interval (—O.l/N, 0) for the
exponential distribution in equation 6.1 is

For the gamma (equation 6.2) it is

for the special case /? = 0.5. Thus, the ratio fw /fm grows as v^V showing
why Kimura's choice of the gamma distribution allows many more neutral
mutations in large populations.

But why the gamma? Why did Kimura base his 1983 book on this
particular distribution? He seems to have chosen the distribution solely
for its ability to save the moderate selection neutral theory from evolution-
ary stagnation, not for any a priori biological reason. By one criterion, it
appears not to have been the best choice.

The distribution of s is meant to reflect the selection coefficient relative
to the most fit allele. By implication, there is an underlying distribution
of absolute fitnesses from which the relative fitnesses are derived. Suppose,
at a particular locus, the absolute fitnesses of m alleles are given by the
random variables

which are ordered from m random variables drawn independently from some
probability distribution. The selection coefficient of the second best allele,
relative to the top allele, is given by
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Figure 6.4. Simulation results illustrating the convergence of the selection coefficient
of the second most fit ailele to an exponential distribution. The lines are through
points of three histograms obtained from 10,000 replicates of 10, 100, or 10,000
normal deviates.

As m —» oo, extreme value theory tells us that the distribution of s ap-
proaches an exponential distribution rather than a gamma, no matter what
the distribution of the X^.

The proof is a straightforward extension of our previous observation that
the spacings between the top order statistics are exponential. Recall from
Chapter 5 that there are sequences am and bm such that the distribution
of

approaches one of the three limiting extreme value distributions. This
suggests rewriting s as

The ratio 6m/om approaches zero as m —> oo, giving

We have already seen that the spacing (Zi—Zi) is exponentially distributed,
so we conclude that s must be exponential as well.

Rates of convergence to extreme value limits are often quite slow, par-
ticularly for the normal distribution. To help assess the rate of convergence,
Figure 6.4 presents the distribution of Z\ for normally distributed Xi. The
curve for n = 10,000 is convex, being similar to Ohta's exponential distri-
bution illustrated in Figure 6.3. Note, however, that for smaller n = 10
the curve is concave. That is, the approach to the exponential is from
the "opposite side" from Kimura's gamma distribution. From this we con-
clude that Ohta's exponential distribution is the preferred distribution for
selection coefficients.

Category
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Figure 6.5. The distribution of selection coefficients for the combined model.

Kimura introduced the gamma as a means of assuring that there will be
enough neutral mutations in large populations to prevent the stagnation of
molecular evolution. The same end could be attained by assuming that the
distribution of selection coefficients is a mixture of two components, one for
alleles that are weakly selected and the other for alleles that are moderately
selected. The mean of the weakly selected mode must be so small that crwa,
the standard deviation of this component, is much less than the reciprocal
of the largest population size of the taxa under discussion. The standard
deviation of the moderately selected component, on the other hand, must
be such that ama « I/TV for the population sizes that typify the taxa.

The two-component neutral model seems both reasonable and yet, at
the same time, completely at variance with the extreme value argument
used to defrock the gamma distribution. The difference lies with implicit
assumptions about which alleles are parenting the mutations. In our ex-
treme value argument, we assumed that the allele producing the mutations
was the most fit allele. If we were to make the same assumption for the
two-component model, we would necessarily end up with an exponential
distribution for the relative fitnesses.

But the assumption that the most-fit weakly selected allele is fixed is
absurd. The alleles within the weakly selected group are not influenced by
natural selection. There is no reason to assume that the most fit among
them is the one that is most frequent in the population. In fact, the most
natural assumption is that the alleles that are frequent in the population
are chosen at random from all of the weakly selected mutations with the
same largest moderately selected component. In our two-component model
we must assume that the alleles producing the mutations are chosen at
random from among the weakly selected alternatives of the allele with the
largest moderately selected component of fitness. When we do, we are led
to a distribution as illustrated in Figure 6.5.

Putting these ideas together we arrive at what I feel is the most satis-
factory version of the neutral fitness distribution. Let pw be the fraction
of mutations from the weak-selection component of the neutral mode. A
fraction 1 — pw comes from the moderate-selection component that is ex-

selectin coefficient
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ponentially distributed with mean -ams. The total fraction of mutations
that are weakly selected is

while the fraction that is moderately selected is

In these approximations, I have somewhat arbitrarily assumed that mod-
erately selected alleles are those with selection coefficients spanning two
orders of magnitude from —10/7V to —Q.l/N.

Our new fitness distribution appears to fit very well what Kimura in-
tended for his gamma distribution. There is a real advantage in the explicit
use of the parameter pw in that it allows us to slide freely between the weak-
selection neutral model (pw — 1) and Ohta's moderately deleterious model
(pw = 0). Having arrived at the distribution, I now want to point out two
fundamental problems with its use as a model for molecular evolution.

The first problem concerns the assumption that once a fitness is assigned
to an allele, it is fixed in perpetuity. Consider that the fitness of an allele
is a measure of its success in a particular environment relative to that of
other alleles. Given that environments are in a constant state of flux, it is
hard to imagine a situation that would lead to a very small—of the order
l/N—selective advantage of one allele over another that would not flip-flop
frequently as the environment changes from one generation to the next.

But even if such rapid fluctuations are rejected, it is even harder to
imagine that fitnesses are constant on the time scale of molecular evolution.
As the theory is usually developed, relative fitnesses are assumed to remain
fixed for several substitutions, a time span of at least several million years.
Given that such major climatic events as ice ages occur on time scales of tens
of thousands of years, it seems unlikely that fitnesses would remain constant
for periods of time that are larger by two or more orders of magnitude.

The constancy of fitnesses might not be viewed as a serious problem were
it not that the dynamics of moderate selection neutral models are struc-
turally unstable to the assumption. If the fitnesses fluctuate, the dynamics
change substantially. We will return to this point in the next chapter.

The second problem is related to the first: is it not peculiar that, we
would assume that essentially all moderately selected mutations are delete-
rious? Not if we feel that selection has proceeded for a very long time—at
least tens of millions of years—in a constant environment so that the most-
fit allele has had an opportunity to displace the others. But if the fitnesses
were fluctuating, even on a very slow time scale, then given that the fitness
differences are very small (of order l/N), we might expect the population
to be sufficiently far away from the most-fit allele that it is about equally
likely that a moderately selected mutation is advantageous or deleterious.
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To appreciate this argument, it must be borne in mind that the fitness
differences are very small, perhaps as small as 10~10 to 10~5, depending
on the species. We have no experimental results to help decide whether
mutations of such small effect are mostly deleterious or split evenly between
positive and negative selection coefficients. One thing is clear: we cannot
use the fact that strongly selected alleles are almost always deleterious to
argue that moderately selected alleles should be deleterious as well.

Mutations of large effect usually involve loss of function through major
disruptions of the integrity of the protein. Alleles of moderate effect, by
contrast, alter the protein by a miniscule amount. I can see no reason to
assume that this miniscule change is generally deleterious, particularly in
the context of a changing environment. That the assumption that mod-
erately selected mutations are almost always deleterious has never, to my
knowledge, received much discussion, is unfortunate.

6.2 Genetic loads

Lewontin and Hubby [190] appear to be the first to use genetic load theory
to argue against natural selection as a mechanism for maintaining molec-
ular variation within populations. After some calculations, which will be
reproduced below, they concluded that

While we cannot assign an exact maximum reproductive value to the
most fit multiple heterozygous genotype, it seems quite impossible that
only one billionth of the reproductive capacity of a Drosophilo, popula-
tion is being realized. No Drosophila female could conceivably lay two
billion eggs. [190, p. 606]

Although load theory led them to this point, it did not compel Lewontin and
Hubby to accept the neutral alternative, even though they clearly stated it
as one of the possible explanations for molecular variation.

Two years later Kimura [155] also applied load theory to molecular
variation. He was concerned with substitution load—Haldane's Cost of
Selection—as it applied to mammals. He concluded that

... the calculation of the cost based on Haldane's formula shows that
if new alleles produced by nucleotide replacements are substituted in a
population at the rate of one substitution every 2 yr, then the substitu-
tional load becomes so large that no mammalian species could tolerate
it [155, p. 625].

Unlike Lewontin and Hubby, Kimura felt that the only escape from intol-
erable loads was to assume that molecular variation is neutral.

The invocation of genetic loads is a natural reaction to the suggestion
that selection plays a major role in molecular evolution. It seems unlikely
that selection could act simultaneously on tens of thousands of segregating
nucleotides without resulting in extraordinary fitness differences between
genotypes. Experience has shown that large fitness differences between
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outbred individuals do not occur: We have yet to see a female Drosophila
lay a billion eggs! Thus, we are led to reject selection as a likely cause of
molecular variation.

Load theory is one of those areas where intuition can be misleading. In
this section we will develop the theory in an orthodox fashion, yet reach
a conclusion that is entirely different from that of Lewontin, Hubby, and
Kimura. In accord with history, we will consider segregation load first,
followed by substitutions! load. Segregation load is much easier to describe
yet includes all of the concepts of substitutional load.

Consider a diploid species experiencing overdominant selection at n di-
allelic loci. Let the fitness contribution of each of the two homozygotes at
a locus be 1 — s and that of the heterozygote, 1 + s. (The restriction to two
alleles and symmetry has no impact on the points to be made.) Assume
that the loci interact multiplicatively; that is, that the fitness of a genotype
that is homozygous at i loci is

Because the marginal mean fitness at each locus is one, the mean fitness of
the entire population, w, is one as well.

The genetic load is, by definition, the difference in fitness between the
most-fit genotype and the average fitness of the population:

If, as Lewontin and Hubby argue, s = .01 and n = 2000, then L w 109,
suggesting that somewhere out there is a female with a billion eggs. The
calculation becomes even more compelling if larger values of n are used, as
seems appropriate for mammals or if silent as well as amino acid variation
is included.

In response to Lewontin and Hubby's fecund female, a number of papers
were written that pointed out that a true understanding of the significance
of genetic loads can only come from a description of the distribution of
fitness in the population [163,210,276]. The analysis of load theory that
follows is taken from these papers and from one by Ewens [66].

For our case, we can obtain the distribution of fitness by randomizing
w(i) from equation 6.4 with respect to the distribution of the number of
homozygous loci per individual. For weak linkage, the latter is a binomial
distribution with mean n/2 and variance n/4.

The calculations will be somewhat easier if we use some approximations.
For the fitness w(i) use the Taylor series expansion

to obtain

where



Genetic loads 271

The moments of Y are

If n is large, the binomially distributed i may be approximated with a
normal distribution. In so doing, eY becomes log normal with moments

The significance of these calculations becomes apparent when we return
to Lewontin and Hubby's original example, s = 0.01 and n = 2000. The
coefficient of variation of fitness in this instance is

not nearly as large a number as we may have expected given what the
celebrated fecund female contributes to the variance in fitness. The reason
that the coefficient of variance is not astronomical is that most individuals
are heterozygous for a number of loci that does not differ tremendously
from the mean number, n/2.

We can use extreme value theory to discover the number of heterozygous
loci that are likely to be found in the most heterozygous individual in a
population of size N and to compare this to the fecund female. If ZN is the
maximum of N standardized normal random variables, then (Zpf — ctff)/bN
converges to the extreme value distribution given in equation 5.7, where o,ff
and bff are given in equations 5.8 and 5.9. "Un-standardizing" the normal
and rearranging the extreme value scaling shows that the distribution of
the maximum number of heterozygous loci in an individual approaches that
of

where U is an extreme value random variable with extreme value distribu-
tion given in equation 5.7. As N grows, the mean number of heterozygous
loci in the most heterozygous individual approaches

Using equation 6.5, we see that the fitness of this genotype is

For example, in a population of 106 individuals with 2000 loci, the
mean number of heterozygous loci in the most heterozygous individual is
only 117 more than the mean (1000). The fitness of this individual is 3.23,
9 orders of magnitude less than that of the fecund female! Thus, when
load is based on the most-fit individual that is likely to occur, rather than
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on a mythical individual that will never occur, the entire load argument
for molecular variation evaporates. This conclusion could be strengthened
by using values of s that are smaller, say 10~3 or 10~4, as may be more
appropriate for molecular variation.

Ewens [66] used substitution rather than segregation load to make the
same argument. For substitution load caused by the fixation of additive
alleles experiencing directional selection, he showed that the variance in
fitness is s/p, where p is the rate of substitution of alleles for the entire
genome in units of nucleotides fixed per generation. Using s = 0.01 and
Kimura's estimate that p = 1/6, Ewens argued that the standard devia-
tion of fitness is only 0.245, about half that obtained using Lewontin and
Hubby's figures for segregation load. Thus, we are again led to the view
that a great deal of selection could be operating without an unreasonable
effect on the distribution of fitness.

We have seen in equation 6.6 that the coefficient of variation of fitness
is about T/ns. Dobzhansky and Spassky [57], showed that the variance in
viability in outbred individuals for one of the four Drosophila chromosomes
is around 0.05. We could use this to argue that ^/ns < v^05 = 0.22.
If s — 10~4, then about 5 million loci could be experiencing balancing
selection without fitness differentials that are out of line with experiments.
If s — 10"5, the number of loci jumps to 500 million. Clearly a large
number of loci may be weakly selected without incurring a burdensome
genetic load.

What about the fecund female? Her existence as part of our model,
if not of the natural world, must be explained. One avenue is to claim
that our multiplicative model is only viewed as an approximation to fitness
interactions for genotypes that are close to the population mean. It simply
does not apply to genotypes that are many standard deviations away. By
adopting this view, we are throwing up our hands and saying that L =
wmax ~ w cannot be discussed in the context of our model. Were we to
be interested in L, we should produce a new model that places an upper
bound on w(i). Such a bound both appeals to our intuition and brings the
genetic load under control.

I do not want to leave the impression that load theory has no place in
population genetics. It is clearly the most expedient means of examining
the consequences of mutation-selection balance, particularly for mutations
with relatively large effects. This aspect of the theory, however, has little
relevance to our discussion of molecular variation.

6.3 Substitutions

Under the weak-selection neutral model, the rate of substitution is equal
to the neutral mutation rate per generation:
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If mutation rates and generation times are "reasonably constant" across a
group of organisms, then the rate of evolution should be "reasonably con-
stant" as well. By contrast, certain models of directional selection predict
that the rate of molecular evolution is

For the same degree of constancy, some assumptions are required to keep
Ns under control. The general feeling has been that there are no such
assumptions that appeal to our biological intuition. For these reasons,
Kimura and Ohta concluded (in 1971) that

Probably the strongest evidence for the theory is the remarkable uni-
formity for each protein molecule in the rate of mutant substitutions
in the course of evolution. This is particularly evident in the evolu-
tionary changes of haemoglobins, where, for example, the number of
aminoacid substitutions is about the same in the line leading to man
as in that leading to the carp from their common ancestor. [161, p. 467]

Today, it is still true that the rough constancy of rates of molecular evolu-
tion is the strongest and most appealing argument in favor of the neutral
allele theory.

Yet, in Chapter 3 we saw that rates of molecular evolution are not
constant. How does this impact the neutral allele theory? There are two
distinct aspects of rate constancy that must be addressed. In our statistical
study we called them lineage effects and residual effects.

Lineage effects

Our observations on lineage effects in Chapter 3 could be summarized as
follows. Within mammals, the magnitude of lineage effects differs for silent
and replacement substitutions, being more pronounced in the former. More-
over, lineage effects for silent substitutions appear to be due to a generation-
time effect: species with shorter generation times evolve more rapidly. By
contrast, the generation-time effect for replacement substitutions is very
weak.

The weak-selection neutral theory appears ill-equipped to handle this
dichotomy. Assuming that the mutation rate, ug, is relatively constant per
generation across mammals, equation 6.7 clearly predicts that the rate of
substitution should vary with generation time, just as seen for silent substi-
tutions. The dependency of the mutation rate on generation time must be
a genome-wide property. In particular, if we assume that ug is independent
of the generation time for silent substitutions, we must assume that it is
independent for replacement substitutions as well. If so, then how are we
to account for the absence of a generation-time effect for replacement sub-
stitutions? The answer is clear: we can't under the weak-selection neutral
model.
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Historically, this argument was turned on its head. Even though a
generation-time effect had been noted in the late 1960s in DNA hybridiza-
tion studies, what impressed population geneticists at the time was the
rough clock-time dependence of amino acid substitutions inferred from pro-
tein sequence data. This led to the assumption that the rate of mutation
was clock-time dependent as well, ug = guy, where the mutation rate per
year, Uy, was viewed as constant across species for each protein.

For example Kimura wrote in 1969,

The remarkable constancy per year is most easily understood by as-
suming that in diverse vertebrate lines the rate of production of neutral
mutations per individual per year is constant. [156, p. 347]

It should be noted that the constancy of mutation rates per year was not
a well-established biological phenomenon then, nor is it today. Thus, the
neutral theory in no sense predicted the clock-time dependency of amino
acid substitutions. Rather, the theory was modified in such a way as to
make it compatible with the observations.

Kimura himself quickly retreated from the constancy of uy when he
adopted Ohta's mildly deleterious theory. For example, in his 1983 book
he wrote

Unless the mechanism of mutation differs fundamentally for neutral al-
leles from other type of mutations, we should expect that the frequency
of neutral mutations is roughly constant per generation, contrary to
observations.

I must admit that this is a difficult problem for the neutral theory
to cope with (and even more so for the 'selectionist' theory). [159,
p. 246]

Others have retained the assumption that uy rather than ug should be
held constant. The justification is that the rate of mutation may, in fact,
be constant per cell generation rather than per creature generation. If
the number of cell generations in spermatogenesis per unit time is roughly
the same in all mammals, then the clock-time dependence of the overall
mutation rate is a simple consequence [308].

We thus have two models of mutation and two dynamics of substitutions.
The choices seem obvious:

ug constant: Under this assumption we must conclude that silent
substitutions, because they exhibit a generation-time effect, are com-
patible with the weak-selection neutral model while replacement sub-
stitutions are not.

uy constant: Under this assumption we must conclude that replace-
ment substitutions, because they are clock-time dependent, are com-
patible with the weak-selection neutrality while silent substitutions
are not.
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Most will find the first alternative more attractive. The choice that cannot
be accepted is that both silent and replacement substitutions are weakly
selected.

We can accommodate both phenomena under a neutral theory that in-
cludes moderate selection as was done originally by Ohta [226] in 1972.
She assumed that mutation rates are constant per generation, that silent
substitutions are purely neutral (pw = 1) and that amino acid substitutions
are moderately deleterious (pw = 0). It is clear that this can account for
the generation-time effect among silent substitutions, but it is not at all
obvious how the absence of a generation-time effect among amino acid sub-
stitutions is accommodated. With good reason: it isn't unless we introduce
the additional assumption that the generation time is inversely proportional
to the population size. We will look first at the mathematical argument
that leads to this conclusion and then at the assumption itself.

Mathematical results on the substitution process for the moderately
selected deleterious alleles are surprisingly sparse. All that is known comes
from an approximate analysis based on the assumption that the population
is monomorphic. The probability of fixation of a mutation with selection
coefficient s < 0 is approximately

when only two alleles are in the population. If s is exponentially distributed,
as in equation 6.1, the probability of fixation, randomized over all possible
mutations, is

The change of variable y — —4Ns transforms this expression into

where C is Reiman's zeta function.
Traditionally (for want of a better explanation), equation 6.8 is approx-

imated by

The approximation can be justified only for large 4Nams. Note that if
4Nams < 1, the rate of substitution of deleterious alleles exceeds that of
neutral alleles, an obvious absurdity.

The rate of substitution per generation, kg, is approximately the mean
number of deleterious alleles introduced each generation times the fraction
that are ultimately fixed, or
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For large 4N<rm3, we have

Thus, substitutions occur more rapidly in smaller populations, as would be
expected given that they are deleterious.

If the generation time is inversely proportional to the population size,
9 — Cg/N, the rate of substitution per year,

is independent of the generation time, as we wanted to show.
Ohta's model provides a natural explanation for the contrast in the

strength of the generation-time effect for silent and replacement substi-
tutions. Although there are some mathematical details that need to be
cleaned up, the foundation for a neutral theory that encompasses both
sorts of substitutions is firmly in place. Our judgment of the scientific va-
lidity of the theory must begin with an examination of the assumption that
the generation time is inversely proportional to the population size.

Ohta herself provides no direct evidence, merely noting that

We know as an empirical fact that there is a negative correlation be-
tween population size and generation time. [228, p. 149]

Although the assumption might seem reasonable—there are a lot of Dros-
ophila and not many elephants—the only direct test that I am aware of
is that by Nei and Graur [218] who failed to find a significant correlation
between N and g among 77 species. This is a serious blow to the the-
ory and could quite reasonably be used to reject it altogether. My own
view, however, is that this remains an open question until a more thorough
examination of the correlation of N and g within mammals is attempted.

Beyond this, we need more results on the rate of substitution as a func-
tion of the population size. It is clear from equation 6.8 that the rate
of substitution is not (exactly) inversely proportional to population size.
Whatever the relationship is, we require that the generation time be pro-
portional to it.

Residual effects

Once lineage effects are removed, there is still some residual variation in
numbers of substitutions beyond that expected were the substitution pro-
cess a Poisson process. In Chapter 3 we quantified residual effects with the
index of dispersion,
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Figure 6.6. An illustration of the connection between the trajectories of nucleotides,
the origination process, and the fixation process.

where A/"(t) is a random variable representing the number of substitution
on a lineage of length t* Prom Figure 3.7, we see that, for mammals,
R(t) « 7.8 for replacement substitutions and approximately 3.3 for silent
substitutions, although we expressed little confidence in the latter figure.
Are these results compatible with the constancy of rates predicted by the
neutral theory?

A short digression is in order to explain the connection between the
way data are gathered and the predicted index of dispersion of the neutral
theory. There are actually two point processes that could be used to de-
scribe fixations under the neutral model as illustrated in Figure 6.6. One
represents the instants in time when nucleotides become fixed; call this the
fixation process. The other represents the instants in time when mutations
that ultimately become fixed first appear in the population; call this the
origination process. The two processes are intimately connected since each
origination is attached to one fixation, although each fixation may corre-
spond to more than one origination.

The two processes differ dramatically in complexity. The origination
process is, to very good approximation, a Poisson process with constant
rate ug when time is measured in units of generations.

The fixation process is much more complex. Because of hitchhiking, the
fixation of one site increases the probability of the fixation of another site
within a small interval of time. The resulting clustering of substitutions is
moderated somewhat by a refractory period between successive substitu-
tions due to a reduction in the genetic variation that accompanies fixations.
A mathematical description of the fixation process may be found in two pa-
pers by Watterson [301,302]. Fortunately, our sampling procedure, which
looks at the cumulative number of substitutions, applies to the origination
rather than the fixation process.

To see this, suppose we have sequences from two species whose common

Recall that the statistic R(t) is often used to estimate the index of dispersion,
I(t).
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Figure 6.7. The history back in time of two sequences sampled in generation 0.

ancestor lived t generations ago. Each of these sequences is replicated from
a sequence in the previous generation. Each of these is a copy of a sequence
from two generations before present, and so forth back to the population
that existed t generations ago, the common ancestor population, as illus-
trated in Figure 6.7. The two ancestor sequences in the common ancestor
population will have a common ancestor sequence at some random time,
T generations further back. For weakly selected alleles, T is geometrically
distributed with mean 27V", Thus, the time back to the common ancestor
sequence of our two sampled sequences is the random time t + T.

Any nucleotide site that differs between our two sampled sequences must
have appeared for the first time in one of the ancestral sequences. Thus,
the times of origination of fixed mutations, rather than the times of their
fixation, are what determine the distribution of the number of nucleotide
differences between sequences chosen from a pair of species.

The mutations appear at random along the lines of descent. Were the
time back to the common ancestor a fixed number t, then the number of
mutations would be Poisson distributed with mean 2ugt. However, the time
is a random quantity so the distribution is the sum of two random variables.
The first, Xt, is the number of mutations that occurred during the fixed
time interval t. Xt is a Poisson random variable with mean 2ugt.

The second, Y, is the number that occurred during the random period
of time T. The distribution of Y is obtained by randomizing a Poisson
with an exponential (an approximation of a geometric) random variable
with mean 4Nug. A Poisson distribution randomized by an exponential is
a geometric distribution. Thus, Y is geometrically distributed with mean
0 = 4Nug and variance 9(1 + 0}. Adding these two independent random
variables we conclude that the mean number of mutations separating the
two species has mean

and variance

Generation nback intime
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Thus,

as was originally shown by Gillespie and Langley [99]. From this we con-
clude that the apparent index of dispersion for the neutral model is greater
than one.

There is a problem: on the one hand, the origination process is claimed
to be a Poisson process (with I(t) = 1); on the other hand, the estimated
index of dispersion is greater than one. The resolution comes with the re-
alization that we are, in effect, following a Poisson process for a random
length of time when we examine two sequences. That extra bit of random-
ness introduced by the time back to the common ancestor sequence, T,
inflates the variance in the number of substitutions beyond the mean. The
estimator, R(t), is thus not an unbiased estimator of I(t) for the neutral
model.

The error is small, however, for the sequences typically used to estimate
the index of dispersion. For example, the average number of substitutions
in /3 hemoglobin between representatives of different orders of mammals is
30 [159, Table 4.4], which we can use as an estimate of 2ugt + 6. We do
not know 0 for replacement sites in /3-globin, but 0 = 0.1 is representative
of proteins. Putting these into equation 6.10 gives R(t) « 1.003.

In general, we would expect the apparent index of dispersion for neu-
tral substitutions to be very close to one unless 0 is unreasonably large.
Rearranging equation 6.10 gives

where EN(t) is the mean number of substitutions separating a pair of
species. For Rn = 7.8 and EN(i) = 30, 9 = 14.28. Were all of the alleles
weakly selected, then 0 = 14.28 implies that the expected homozygosity is
1/(1 + 0) = 0.065, far lower than seen in protein polymorphism studies.

Our conclusion must be that the index of dispersion of replacement sub-
stitutions is too high to be accounted for by the weak-selection neutral allele
theory. The same conclusion was reached by Hudson [134j in a more com-
plete analysis using all of the data in the Langley and Fitch studies [182].
Given our reservations about the estimate of R(t) for silent substitutions,
there remains the possibility that they are weakly selected.

Certain modifications of the neutral model might allow it to exhibit a
higher index of dispersion. One possibility is that linked loci undergoing
directional or balancing selection might raise R(t). However, it is easy to
see that this is not the case. The sampling process illustrated in Figure 6.7
applies no matter what dynamics may be changing the frequency of linked
sites. The only place where linked loci can have an effect is in the dis-
tribution of T. Even if T has a distribution that is wildly different from
an exponential, the effects on R(t) would be minor as long as t is much
larger than the mean of T, as is the case for comparisons involving orders
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of mammals. A direct demonstration that the fixation probability of a neu-
tral mutation is independent of selection at linked sites, recently published
by Birky and Walsh [18], also argues for the lack of sensitivity of R(t) to
events at linked loci.

An obvious way to increase the variability of rate of substitution is by
allowing the mutation rate to vary. For this to work, the time scale of change
of the mutation rate must be delicately balanced. If it were much faster
than the rate of molecular evolution, the variation would be averaged out
and the process would be identical to a constant mutation-rate process. If it
were much slower, the mutation rate would be inherited down the separate
lineages and the process would, once again, exhibit little variability.

This time-scale argument should sound familiar: it is the same one that
led us to an episodic model for molecular evolution in Chapter 3. There we
had the luxury of allowing the rate of molecular evolution to vary without
bound; here we must constrain the mutation rate within reasonable levels,
mitigating against an episodic model of mutation. The restrictions on time
scales and the bounds on the variation in mutation rates do not rule out
fluctuations of mutation rates as an explanation for the high R(t), but they
do argue that such an explanation would depend in a very delicate way on
the parameters.

Takahata's fluctuating neutral space model [277] is a way of circumvent-
ing these problems. It provides a connection between the rate of change of
the mutation rate and the rate of molecular evolution by assuming that the
mutation rate changes with each substitution. Our sampling model, shown
in Figure 6.7, may be easily modified to include the fluctuating neutral
space.

As it currently stands, we represent the number of substitutions separat-
ing the two species as a Poisson process with rate ug that has been running
for the random time, 2(t + T). The fluctuating neutral space model simply
replaces the Poisson process with a more complicated point process. Taka-
hata [277] chose a renewal process for mathematical convenience, but any
stationary point process will do. In fact, the renewal process is not the most
biologically compelling choice since it does not exhibit any autocorrelation
of mutation rates. Each substitution changes the rate to a value that is
independent of the current rate.

A complete mathematical description of the neutral space model is com-
plicated as it involves the moments of the numbers of events for a stationary
point process over finite intervals. There are no general expressions for these
moments. They are complicated even for the relatively simple renewal pro-
cess. However, if we choose species for which t 3> ET, then the measured
index of dispersion will equal the asymptotic (t —> oo) index of dispersion of
the mutation process. In this way, we can easily account for the high index
of dispersion for replacement sites within the context of a purely neutral
model by using our estimates of R(t) as estimates of the index of dispersion
of the mutation process.

But is a mutational process with a high index of dispersion biologically
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reasonable? Recent work on contextual effects in mutagenesis [175,245]
shows that one mutation can dramatically alter the frequency of subse-
quent mutations. Thus, we have little difficulty in identifying a biological
mechanism for elevating the index of dispersion of mutation. However,
if contextual effects account for the index of dispersion for replacement
substitutions, why don't silent substitutions, which one might feel are less
affected by selection, show a high index of dispersion as well? I can see no
answer to this other than to assume that silent mutations are subject to
forces other than drift and mutation, a choice I feel is much less attractive
than rejecting contextual effects as the cause of variable rates.

Alternatively, we could attribute the high index of dispersion for re-
placement substitutions to properties of the proteins themselves. Takahata
argues that

The [fluctuating neutral space] model assumes that the substitution
rate fluctuates through changes of selective constraints as new substi-
tutions occur. [277, p.174]

Picture a protein with a certain fraction of amino acid sites undergoing
neutral evolution and the remainder being held invariant by natural selec-
tion. A change in one of the neutral sites is assumed to cause a previously
selected site to suddenly become a neutral site. In the neutralist jargon,
this is a "relaxation of constraints," in ours it is a lowering of site effects.
The lowering of site effects is believable; that this could be accomplished by
purely neutral substitutions is less so. That such a mechanism could cause
a many-fold change in rates, as seen in the data, seems extraordinary. Yet,
this is the model that is currently used to account for the high index of dis-
persion for replacement substitutions in the context of the weak-selection
neutral theory.

Could a moderate-selection netural model account for high values of
R(i)l Just as Ohta's theory of mildly deleterious mutations salvaged the
neutral theory from the generation-time effect, we might hope that it can
provide salvation from residual effects as well. An obvious start is to exploit
the fact that the rate of substitution depends on the population size. Since
population sizes fluctuate in nature, we might expect that the fluctuations
will elevate R(t). In fact, they do [93,277], although the effect does not
appear to be strong enough to elevate R(t) to the level seen in replacement
substitutions. The basic problem can be understood without resorting to
mathematics.

Imagine a species whose population size continually oscillates between
large and small values. While small, substitutions occur at a rapid rate;
while large, they occur very slowly. This is exactly what we need to elevate
R(t). For such a scenario to succeed, several substitutions must occur while
the population is in each of its sizes. Since, on average, substitutions occur
on a time scale of millions to tens of millions of years, we require that the
population size oscillate on a somewhat longer time scale. Our demographic
intuition says that fluctuations occur much more rapidly than this. If they
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do, the substitution process proceeds as if the population size were constant
at its average value.

An approximate mathematical demonstration of this point is possible
using our results from Chapter 3 on the doubly stochastic Poisson process.
Assume that the population size shifts to new sizes at the end of time
intervals that are exponentially distributed with mean /it and that each
size is chosen independently from some probability distribution. The rate
of substitution corresponding to each population size will be a random
quantity as well. Its mean may be written Ekg and its autocovariance

Using equation 3.9, we see that the asymptotic (large t) value of the index
of dispersion is

As an example, consider a species whose population size is chosen at
random from two values leading to two rates of substitution, kg suid ki,
that occur with equal probability. The mean rate is (ko + &i)/2 and the
variance is (ko - &i)2/4. The index of dispersion is

The situations most likely to yield large indices of dispersion will have
very different rates corresponding to the two population sizes. Let, ko 3> fci,
giving

If the fast rate of substitution is, say, ko = 10~5, we see immediately that
the population size must remain constant for hundreds of thousands of years
fat = O(W5)) to elevate the index of dispersion beyond one. However, the
more likely situation is for /^ <C I/&Q. From this we are forced to conclude
that fluctuating population sizes and moderate selection of deleterious al-
leles is not a likely model to account for high values of R(t).

There is another mechanism that could elevate R(t): multiple muta-
tional events such as caused by gene conversion or replication slippage.
However, such events should elevate the index of dispersion for both silent
and replacement substitutions, which isn't observed in the sequence data.
Perhaps when we finally have a solid estimate of R(t) for some region of
the genome that we are confident is undergoing neutral evolution we can
use that estimate to indicates the fraction of the replacement R(t) that is
attributable to complex mutational events.

Patterns of substitutions are our best available evidence that speaks to
the scientific validity of the neutral allele theory. In this section we have
seen that the evidence is compatible with a weak-selection neutral theory
for silent substitutions, but strains the theory for amino acid substitutions.



Constraints 283

If a weak-selection neutral theory is to be invoked for all substitutions, then
it must be one that includes a fluctuating neutral space for replacement sub-
stitutions and an orthodox mutational pattern for silent substitutions. The
moderate-selection neutral theory does not, in its current incarnation, offer
any explanation for the high values of R(t) for replacement substitutions.

6.4 Constraints

Two conspicuous properties of molecular evolution that have been com-
monly used to argue for the neutral theory, as stated by Kimura [159,
p. 103], are

• "Functionally less important molecules or parts of molecules evolve
(in terms of mutant substitutions) faster than more important ones."

• "Those mutant substitutions that are less disruptive to the existing
structure and function of a molecule (conservative substitutions) oc-
cur more frequently in evolution than more disruptive ones."

Basically, substitutions with only a small functional consequence occur
more frequently than those with a large effect.

King and Jukes [164] were among the first to use the inverse relationship
between the effect of a substitution and its rate of occurrence as evidence
for the neutral allele theory. They argued that certain amino acid replace-
ments, such as leucine for isoleucine, are chemically so similar as to be
purely neutral. They also argued that the sensitivity of a protein to a par-
ticular amino acid substitution depends on where the substitution occurred.
There may be regions of some proteins where amino acid substitutions of
even moderate chemical effects could be purely neutral. In Figure 1.12 we
saw that the rates of amino acid substitution may not exhibit the pattern
predicted by the neutral theory. The chemically most conservative changes
appear not to occur as rapidly as some less conservative changes.

Kimura [159, p. 155] contrasted the predictions of the neutral theory to
those of a Fisherian model of evolution, deciding that the graphs supported
the former. The Fisherian model is a geometric representation of the notion
that mutations with large effect are less likely to be favorable than those
of small effect. The probability depends on the magnitude of effect, r; the
number of pleiotropic effects that mutations are thought to have, n; and
the distance of the mean phenotype from the optimal phenotype, d. The
probability of a favorable mutation is, under Fisher's model,

where x = r^/n/d [75, p. 43]. Kimura argued that the probability of
fixation of an advantageous mutation is proportional to its effect, suggesting
that rate of fixation of advantageous mutations should be proportional to
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Figure 6.8. The rate of fixation as predicted by Kimura's adaptation of Fisher's geo-
metric model of adaptive evolution.

xp(x). This function is graphed in Figure 6.8. The similarity of the curve
to the sixth-order polynomials fitted to the data in Figure 1.12 is striking.

Taken at face value, the amino acid substitutions appear to be due
to the fixation of advantageous rather neutral mutations. However, such
a conclusion must be viewed with extreme caution. Our data represent
average properties taken from a large number of proteins and species. As
such, there are many opportunities for biases that could obscure the true
relationship. For example, the more rapidly evolving pairs may reflect a
tendency for such pairs to be located in regions of proteins far away from
ligand binding sites rather than reflecting their chemical differences. Such
biases make me uncomfortable using Figure 1.12 to argue for directional
selection; they make me even more uncomfortable using it to argue for
neutrality.

There is a simple argument for the neutrality of conservative amino acid
substitutions that illustrates the pitfalls of using averages across proteins.
We could declare that substitutions between pairs of amino acids with the
highest rate of substitution are purely neutral. If so, then the rate between
these pairs should be similar to that of a region of the genome, say silent
sites or processed pseudogenes, where we believe that neutral evolution is
occurring. Kimura [159, p. 154] did exactly this and concluded that the
highest rate of substitution between amino acids was about one half that
of silent substitutions, concluding that

considering the large statistical error of this estimation procedure, we
may conclude that the data on synonymous substitution are consistent
with the protein data...

Consider, however, that we know at the outset that certain proteins (e. g.,
histones) evolve very slowly while others (e. g., fibrinopeptide) evolve very
rapidly. The absolute rates that appear in Figure 1.12 reflect, in the main,
the particular mix of proteins in The Atlas used to calculate the rates. Had
only histones been used, for example, then the comparison of the absolute
rates to silent rates would have been very different. From this we can only
conclude we cannot use the absolute rates from this data set to decide
whether or not the fastest substitution rates reflect neutral events.
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A better approach to finding some amino acid sites that are evolving at
the "neutral rate" is to examine the most rapidly evolving sites within a set
of proteins and check whether these rates are similar across the proteins as
they should be if all of the fast evolving sites are neutral. To my knowledge,
this has not been attempted.

The evolution of codon usage and GC% may be one of the best exam-
ples of evolution under constraints. As we saw in Chapter 2, the rate of
silent substitution is negatively correlated with the degree of codon bias
in unicellular organisms and Drosophila. The usual explanation for this is
based on the existence of an optimal codon that allows for the fastest rate of
translation. Efficiency of translation is more important in highly expressed
proteins, hence the stronger selection for codon bias with the consequent
lowering in the rate of substitution of moderately selected deleterious mu-
tations to the suboptimal codon.

6.5 Polymorphisms

Although polymorphism studies fueled much of the original debate over the
neutral theory, they have done little to help settle the issue. The reasons
will emerge as we discuss their use in arguments for and against the theory.

When faced with both polymorphism and molecular evolution data, the
obvious first question is whether the two are mutually compatible under
the weak-selection neutral allele theory. In 1971, Kimura and Ohta [161]
concluded that for proteins they are compatible, using the following argu-
ment.

The neutral mutation rate, uy, is equal to the rate of amino acid sub-
stitution, which is "typically" 10~7 amino acid substitutions per locus per
year in mammals. The expected homozygosity at equilibrium,

is "typically" 0.9 in mouse and Drosophila populations. If mice and Dros-
ophila reproduce twice annually (g — 0.5) and if their effective population
sizes are approximately TV = 5 x 105, then the substitution rate and ho-
mozygosity are mutually compatible with the weak-selection equilibrium
neutral allele theory.*

The compatibility is very sensitive to the effective population size. Were
the true size an order of magnitude smaller or larger, the compatibility dis-
solves. In fact, it has been argued that the effective size of Drosophila
populations could be as large as 1010 [9], in which case the predicted ho-
mozygosity is 0.0005, far below the observed values. Drosophila is not
unique. In a study of 77 species for which protein heterozygosities and

'Their argument is slightly more detailed than this in an effort to accommodate
the lack of resolution of gel electrophoresis. The frills do not significantly affect
the conclusion.
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(crude) population size estimates were available, Nei and Graur [218] con-
cluded that the homozygosities of most species are well above that expected
under the weak-selection neutral allele theory.

High homozygosities are readily accommodated under the weak-selec-
tion neutral theory by assuming that most populations are not at equilib-
rium due to historic effects such as bottlenecks or hitchhiking. The time
for a population that is initially homozygous to achieve one half of its equi-
librium homozygosity is approximately

generations, a very long time for a species to evolve in the relative homo-
geneity required of the neutral theory. It is likely that some event will
interfere with the attainment of equilibrium and raise the homozygosity.
As we shall see, hitchhiking is a better candidate than bottlenecks.

We can imagine two sorts of models of population size fluctuations that
fall under the rubric of bottlenecks. The first assumes that the population
size fluctuates at random on a time scale that is faster than that of genetic
drift. Such a model will behave essentially like a constant population size
model, but one with the effective size of the population, Ne, satisfying

Were this the correct model, some species should be found with larger
heterozygosities than expected given the current population size and oth-
ers with smaller heterozygosities. Nei and Graur's finding that almost all
species exhibit greater than the expected homozygosities effectively argues
against short time scale population size fluctuation as the reason for the
excess.

Alternatively, imagine that all species experienced a severe bottleneck
in the relatively recent past and that their heterozygosities are still climbing
toward their equilibrium values. Nei and Graur argue that most species ex-
perienced such a bottleneck during the most recent ice age. Unfortunately,
we have no way to test this hypothesis. It is clear that the bottleneck would
have to be severe and would have to last a very long time. Beyond this,
there is little to add. We did see in Chapter 1 that the average heterozy-
gosity of temperate species is about 15% below that of tropical species, but
this is not particularly informative since tropical species may have had their
population sizes reduced during the last glaciation as did their temperate
counterparts.

Hitchhiking appears to be a much stronger candidate to account for low
heterozygosities in the context of the weak-selection neutral model. May-
nard Smith and Haigh [207] presented an approximate analysis suggesting
that hitchhiking of neutral alleles on chromosomes bearing favorable muta-
tions could be a more potent force than genetic drift for removing variation.

Recently, Kaplan et al. [149] showed that if one substitution out of every
400 is selected, the heterozygosity at linked neutral sites will be reduced
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to 20% of the expected value under the equilibrium neutral model. This
is an important calculation. Supporters of the neutral theory frequently
claim that 1 out of 10 substitutions are selected. Were this the case, ob-
served heterozygosities should be severely limited by hitchhiking. Moreover,
hitchhiking provides a natural explanation for our failure to find a strong
correlation between population size and heterozygosity.

We cannot accept this role for hitchhiking without some qualifications.
In our discussion of the polymorphism data in Chapter 1, we noted the pres-
ence of locus effects. Some loci tend to be more monomorphic than others
among species. The reduced variation at these loci cannot be attributed
to hitchhiking without postulating that transient selection at closely linked
loci is similar across species, an interesting idea but one that has no empir-
ical support. If we are to use hitchhiking, we should use it only to explain
the fact that the heterozygosities at the most polymorphic loci are much
lower than would be expected under the neutral theory. In so doing, we
also avoid discussions of average heterozygosities as we advised earlier.

Our development of the neutral theory has reached a critical point. If, as
our argument appears to have taken us, populations are not at equilibrium,
then much of what we have held to be relevant to the neutral theories
as it applies to natural populations is not relevant at all. For example,
the formula for the mean homozygosity, equation 6.11, does not apply.
Nor does the Ewens sampling distribution, nor many of the results from
coalescent theory, nor stepping-stone models, and on and on. The specter
of nonequilibrium dynamics is so daunting that we must have embraced the
equilibrium theory despite many observations and theoretical results that
should have warned us away. The neutral theory may not be the correct
theory, but I feel strongly that if it is to be invoked, it should not be used
as an equilibrium theory.

The alternative explanation for low heterozygosities is Ohta's hypoth-
esis that most alleles are moderately deleterious [227]. While the extra
parameter reflecting the average strength of selection in her model should
make the fit to the data better than for the weak-selection model, the math-
ematical properties of the model are not known in sufficient detail to allow
us to check the fit. What follows are some crude approximations that will
illustrate some of the important qualitative features of Ohta's model.

If all mutations come from the moderate-selection component of the
fitness distribution (pw = 0), we would expect only those with delete-
rious effects very close to zero to attain high enough frequencies to ap-
pear in a sample. The dynamics of these mutations may be close enough
to weak-selection neutral dynamics to use equation 6.11 with a doctored
mutation rate as an approximation to the mean homozygosity for the
moderate-selection model. Mutations with selection coefficients in the in-
terval (-0.1/AT, 0) will behave very much like neutral alleles suggesting that
we use the approximation in equation 6.3 to replace the mutation rate, uy,
in equation 6.11 with
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Figure 6.9. The homozygosity under weak and moderate selection as a function of
population size.

The resulting approximation of the mean homozygosity compared with that
for the weak-selection neutral model is illustrated in Figure 6.9.

Figure 6.9 clearly illustrates one of the most important properties of
Ohta's model, the restriction of the range of mean homozygosities imposed
by the upper limit:

The largest protein heterozygosities for individual loci are around 0.4. If
the weakest mean selection coefficient were around ams w 0.6uy and if N
were large enough, we could nicely account for the upper limit on heterozy-
gosities and the weak correlation between heterozygosity and population
size illustrated in Figure 1.17. Examination of equation 6.9 shows that
we cannot be too cavalier about the magnitude of N. If it is too large
(Nams » 1) molecular evolution will grind to a halt. If it is too small, we
loose the insensitivity of Ef to N. To make Ohta's theory work it appears
that a delicate balance between N, ams and uy must be assumed.

We can examine silent variation in much the same way as we did re-
placement variation, except that we will concentrate on properties of sites
rather than of the entire locus. The only data that we have confidence in
is for the Adh locus in Drosophila melanogaster for which, as we saw in
Table 2.8, one site in 166 is polymorphic in a pair of randomly drawn chro-
mosomes. Were this variation weakly selected and were the population in
equilibrium (which it cannot be if we acknowledge the role of hitchhiking),
then the estimate for 8n = 4Nun is (from equation 6.11), 0.006. If the nu-
cleotide mutation rate is somewhere in the range 10~9 to 10~8, the effective
population size of D. melanogaster must be around 105 to 106, ominously
close to the figure from protein data, but too low for the reasons discussed
previously.

This glimpse into silent variation suggests that it is depauperate as

Log10populationm size
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well. If it were weakly selected, then hitchhiking could be responsible.
Support for this view comes from Table 2.8 where we saw that regions of
the Drosophila chromosome with reduced recombination also appears to
have reduced heterozygosity. As with amino acid variation, should silent
variation be out of equilibrium, we are severely restricted in the statistical
procedures available to test hypotheses.

Ohta's moderate-selection deleterious allele model may provide a viable
alternative explanation for the reduced heterozygosity in the exons of the
Adh locus. Recall that codon bias is pronounced at this locus suggesting
that silent variation may be deleterious. If so, this may account for the
reduced levels of variation. We clearly need a study that examines silent
variation in exons from loci with low and high codon biases. Ohta's hypoth-
esis cannot explain the lowered variation in regions of low recombination
suggesting that deleterious alleles can account for only a portion of the
reduction in heterozygosity.

In Chapter 2 we noted Aquadro's observation that D. melanogaster has
higher protein variation but lower silent variation than its sibling species D.
simulans. Aquadro accounted for this disparity by invoking weak selection
for silent variation and moderate selection for protein variation and assum-
ing that the effective population size of D. simulans is greater than that
of D. melanogaster. Figure 6.9 suggests that this explanation needs some
additional assumptions as the curves for silent and replacement substitu-
tions do not cross. They can be made to cross by assuming that the silent
mutation rate is less than that of replacement mutations, an assumption
which appears to be compatible with the genetic code. With this additional
assumption Aquadro's explanation becomes viable.

This brief discussion of the polymorphism data shows that the level
of replacement and silent variation is too low to be accounted for by a
weak-selection equilibrium neutral model. The low levels of variation are
compatible with nonequilibrium and moderate-selection neutral theories,
although in both cases the parameters must be chosen carefully.

6.6 The status of neutral theories

The most important conclusion from our examination of molecular evolu-
tion and polymorphism data is that silent and replacement mutations are
experiencing different dynamics. As a consequence, we cannot conclude
that both are undergoing the same brand of neutral evolution. There can-
not be one neutral theory to accept or reject.

The case for the neutrality of replacement substitutions seems particu-
larly weak. Not only does the theory have difficulty accounting for the high
value of R(t) and the weaker generation-time effect, but the theory cannot
even speak to the examples of microadaptations that we documented in
Chapter 1. In my view, the neutral theory must be abandoned for replace-
ment substitutions.

Silent substitutions, on the other hand, may well be neutral, although
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the evidence at the time of this writing is incomplete. Should silent vari-
ation be neutral, then there are two important observations that must be
made. The first is that silent variation is probably not in dynamic equilib-
rium because of historic events such as hitchhiking or recent bottlenecks.
The second is that the patterns of codon usage and GC% evolution imply
that at least some of the silent variation is moderately selected. Together,
these two observations suggest that the genetic structure of populations is
far more complex than we have hitherto assumed. An unfortunate conse-
quence of this view is that we cannot rely on statistical procedures that
assume that silent variation is weakly selected and at equilibrium.
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Selection theories

In this, the final chapter, I will present a theory of molecular evolution and
polymorphism based on the combined forces of natural selection, genetic
drift, and mutation. The theory is intended to apply to amino acid varia-
tion, although it may eventually be extended to include silent variation as
well. Before jumping in, I will summarize some of the evidence that created
the need for such a theory.

7.1 Selection on proteins

In Chapters 1 and 3 we described studies that point to natural selection as
a major force contributing to the evolution of proteins. Here I will review
the major features of these studies and argue that, collectively, they imply
that most amino acid substitutions are adaptive.

The case for selection begins with stories: anecdotes about amino acid
substitutions that can reasonably be called adaptive. Such stories bol-
ster our intuition about what is possible. We saw, for example, that the
broad patterns of LDH adaptations to temperature are mirrored in the few
amino acid substitutions that separate closely related species of fish living
in waters that differ by only a few degrees centigrade. We saw amino acid
substitutions in hemoglobins that increase oxygen affinities in species liv-
ing at high altitudes. We saw examples of species or populations living in
warmer environments having more thermostable proteins then their colder
relatives. In each case, an adaptive story unfolded because of the original
experimenter's ability to recognize an environmental factor that is likely to
elicit an evolutionary response in a protein. The pairing of a functional as-
pect of a protein with a relevant environmental factor is key to a successful
investigation. The pairing also forces us to recognize that, since environ-
ments are in a constant state of flux, so must be the evolutionary forces
acting on proteins.

Our most convincing anecdotes used comparisons of different species,
but we also described a number of studies of allelic variation within species
which also suggested—albeit less convincingly—a role for natural selection.
The fitnesses of PGI alleles in Colias butterflies, for example, appear to
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be affected by temperature as do the fitnesses of LDH alleles in Fundulus.
The dynamics of alleles affecting osmoregulation in Tigriopus and Mytilus
are also likely to be influenced by natural selection. Even though direct
estimates of fitness differences are usually lacking, in each of these cases
there are measureable physiological differences between genotypes that can
reasonably be attributed to the variation in the enzymes.

While anecdotes expand our horizons about what is biologically plausi-
ble, there remains the lingering uneasiness that we are being misled by a
small fraction of observations from a large scientific enterprise that has, in
the main, failed to uncoverer direct evidence for selection. In our assessment
of the role of examples, we must pay careful attention to the studies of null
alleles in Drosophila populations that tell us, as we saw in Chapter 1, that
selection coefficients for enzymes are likely to be bounded above by 10~3.
If all naturally occurring ammo acid variants were subject to selection in-
tensities on the order of 10~4 to 10~3, we would be unable to measure any
fitness differences; yet, such intensities represent very strong selection in
species, such as Drosophila, with effective population sizes greatly in excess
of 104. In this context, our examples should be viewed as extremes, in-
stances where experimentalists were clever enough to choose systems with
very large effects. They should be cherished as windows into a world of
selection that will forever remain beyond the resolution of our techniques.

We should not give up our quest for generality: there is evidence in
support of the thesis that most ammo acid substitutions are adaptive. The
first of this evidence is summarized in Table 1.3, which argues that most
allelic variation in enzymes in Drosophila has both kinetic and physiological
effects. Had we been unable to measure such effects, the case for selection
would be weakened considerably. While Table 1.3 certainly makes a strong
case that most allelic variation is functionally significant, it is unfortunate
that more isn't known about the kinetic and physiological effects of natu-
rally occuring amino acid variation in Drosophila and other species. It is
surprising that no one has chosen a pair of sibling species and carefully corn--
pared the kinetic properties of, say, 20 enzymes between the two species.
At the present time we can conclude that the best evidence supports the
hypothesis that most allelic variation has measureable physiological conse-
quences, and plead for more such experiments in the future.

Indirect studies into the effects of selection holds more promise for estab-
lishing generalities. In moving from Chapter 1 to Chapter 3, we saw a series
of examples designed to connect the action of selection with accelerations
in the rates of amino acid substitutions. We saw, for example, that the rate
of substitution in insulin in the hystricomorph rodents accelerated by an
order of magnitude as these rodents evolved a modified gastroenteropancre-
atic hormonal system. Similarly, we documented accelerated evolution of
lysozymes in two independent groups of mammals, langurs and ruminants,
that evolved rumins.

Most changes in rates of substitution should be more subtle. Yet, in
Table 3.5 we saw that significant rate variation could be detected in 12
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out of 20 proteins using only three species in the analysis. Rates of silent
substitution are much less variable, suggesting that the rate variation in
proteins is functionally significant. Given the crudeness of our measures,
the fact that we can measure significant variation in as many as one half
of the proteins compels us to conclude that variable rates are the norm
for protein evolution. In the previous chapter, we argued that neutral
models have difficulty accounting for rate variation, leading us to the general
conclusion that most amino acid substitutions result from the action of
natural selection.

Yet, one could argue that the high values of R(i) are due to a few selected
substitutions in a sea of neutral substitutions. We need some quantitative
argument to rule out this possibility if we are to claim the most amino acid
substitutions are selected. One approach is as follows.

Suppose the substitution process is the sum of a Poisson process, X(i),
representing neutral substitutions and a compound Poisson process, Y(t),
representing episodically selected substitutions:

Let p be the fraction of substitutions contributed by the Poisson process
X(t). The index of dispersion for M(t) is

the average of the indices of dispersion of the two component processes.
As the fraction of Poisson (neutral) substitutions increases, so must the

index of dispersion of the selected alleles:

If, for example, 90% of the substitutions were neutral and I(t) = 7.75, then
the index of dispersion for the selected substitutions would be /y(i) = 67.5.
Such a high value should alert us to the possibility of strange dynamic. Just
how strange is illustrated in Figure 7.1, which provides a histogram of the
estimated indices of dispersion from Table 3.5 compared with the expected
histograms (using the same simulation of the estimation procedure as in
Figure 3.7) for a case with 90% and 10% Poisson substitutions. When
p = 0.9, the expected histogram has a mode near one and a rapid fall off
for higher values of the index of dispersion. The reason for this behavior
is that the high value of Iy(t) forces the episodic process into a bimodal
pattern: in a fixed period of time it is likely to have either no substitutions
or a large number of substitutions. As the mean contribution of Y(t) is only
10% that of X(t), most of the time no episodic burst occurs. Thus, most of
the time the process looks very Poisson-like, with only occasional lineages
with large numbers of substitutions. The data do not exhibit this behavior,
being much closer to the histogram with only 10% neutral substitutions.
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Figure 7.1. Histograms of the indices of dispersion for the data in Table 3.5 and from
simulations with 10% and 90% neutral (Poisson) substitutions.

From this we must conclude that the available evidence supports the view
that the fraction of selected substitutions is closer to 90% than 10%.

Other indirect studies are also suggestive. For example, we saw parallel
clines in allele frequencies in Menidia and Drosophila that strongly suggest
some role for natural selection. The studies of ADH in Drosophila show
that the amino acid difference at that locus is following a dynamic that
differs from the dynamics of silent mutations.

I am persuaded by this evidence that most amino acids substitutions
and polymorphisms are selected. I will go further and claim that most are
under strong selection in our sense that Nas » 1. Otherwise, it is difficult
to account for the high values of R(t). (This particular point will be taken
up again in the next section.)

If we accept that strong selection is at work, we are faced with the dif-
ficult question: What kind of selection is operating? All of our examples
point to selection in response to environmental factors, either external or
internal, that are changing through time and/or space. Those cases impli-
cating temperature are the most obvious examples. If they serve as guides,
then we must be concerned with models of selection in a variable environ-
ment. How could it be otherwise? Natural selection is the force adapting
species to their environments. Environments are in a constant state of flux;
selection coefficients must be in a constant state of flux as well. Models of
selection should reflect this; that in the bulk of population genetics theory
they do not may have contributed to our failure to make significant progress
in our understanding of the forces shaping protein evolution.
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7.2 Strong selection

The aim of this section is to develop a model of molecular evolution un-
der strong selection that is compatible with the major features of protein
evolution. There are two observations that are crucial in determining the
nature of the model.

The average value of the index of dispersion of replacement substitu-
tions, once lineage effects are removed, is about 7.8 (see Fig. 3.7). In
our discussion of this value we concluded (see equation 3.12) that an
episodic model of amino acid substitutions is appropriate,

where M(t) is the total number of substitutions, Xi is a positive
random variable representing the number of substitutions in the ith
episode, and M(t) is a Poisson process representing the number of
episodes.

The rate of replacement substitution is more clock-time than gener-
ation-time dependent. There appears to be a weak generation-time
effect, but not nearly as strong as that for silent substitutions (see
Fig. 3.6).

When completed, our model must exhibit these two features and be com-
patible with the rates of substitution and heterozygosities documented in
Chapter 1.

The clock-time dependency of rates of amino acid substitutions suggests
that the process is being driven by external factors, presumably a restless
environment. Imagine that the times at which environmental changes oc-
cur may be represented by a point process, Me(t), and let the number of
selected amino acid substitutions that occur in response to the ith environ-
mental change be 1$. We can immediately write down the total number of
substitutions in a form,

that is formally identical to equation 7.1. In doing so, we have made the
most important conceptual leap in our model.

While equation 7.2 is formally the same as equation 7.1, there is nothing
in our description of equation 7.2 to assure that the number of substitu-
tions accompanying each episode, Yi, are distributed like the empirically
determined Xi nor that Me(t) is similar to a Poisson process. Establishing
these similarities using the theory of gene frequency dynamics is our main
challenge.

Consider first the number of substitutions accompanying each environ-
mental change as captured in y». From Table 3.6 we see that the estimated
mean values of Xi, fa, are between one and five with most values between
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two and three. Is there anything to suggest that most of the adaptive
substitutions accompanying each burst should be similarly restricted? In
Chapters 4 and 5 we saw that there are two distinct mechanisms that could
lead to bursts of substitutions during an episode and that both typically
involve small numbers of substitutions.

One process leading to bursts of substitutions is excursions through
the mutational landscape for loci that are generally monomorphic. For
these loci, the fixed allele will not be the globally most fit, but will be
the one that is most fit in the current environment among all those that
are one mutational step away from it. This allele will remain fixed until
the environment changes in such a way that one or more of the alleles
that are one mutational step away become more fit than the fixed allele.
(Mutations two or more mutational steps away occur too infrequently to
enter the population.)

After the environmental change, one of the more fit mutations will sweep
through the population to produce mutations one step away from itself and
two steps away from the original allele. One or more of these mutations may
be more fit and may displace the current allele. This process will continue
until an allele is fixed that is more fit than any others one mutational
step away, at which point the process stagnates. If the fitnesses of the
alleles are assigned at random, then the mean number of substitutions per
episode is small, as illustrated in Figure 5.4. Recall that we used extreme
value theory to argue that the distribution of the excursions through the
mutational landscape is insensitive to the distribution of fitness effects.

In Chapter 1 we reviewed the evidence that our initial estimates of
protein heterozygosities may have been inflated and that most loci may be
monomorphic. If future evidence supports this view, then the mutational
landscape model may be appropriate for a majority of loci and provides a
ready explanation for the small mean value of Y^.

The second process leading to small bursts of substitutions is a combina-
tion of the fixation of polymorphic sites and the mutational landscape. Our
process is illustrated in Figure 5.8. We imagine an alternation of buildup
processes and allelic constrictions. The buildup process is the relatively
rapid accumulation of alleles in the population due to strong balancing
selection. Allelic constrictions are events, such as extreme environmental
changes or hitchhiking, that render the population homozygous.

We saw in Chapters 4 and 5 that the buildup process is the same for
the SAS-CFF and overdominance models and argued that it should be es-
sentially the same for other models of balancing selection as well. The
accumulation of mutations on chromosomes during the buildup process is
illustrated in Figure 5.7. The limitation on the total number of segregat-
ing alleles is imposed either by the mutational landscape—no more alleles
satisfying the polymorphism conditions are one mutational step away from
the segregating alleles—or, in the case of the SAS-CFF model, the values
of parameters (see equation 4.66). When an allelic constriction occurs, one
allele is fixed in the population. At that time, all of the mutations that ac-
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cumulated on the allele are fixed. The mean number of fixed mutations, as
a function of the number of segregating alleles, is illustrated in Figure 5.9.
As with the mutational landscape alone, the mean number of mutations
fixed in each episode is small.

From the above we see that the small number of substitutions associ-
ated with each episode is a natural property of our SSWM models. The
independence of the number of substitutions at different episodes follows
from the fact that each episode unfolds in a different region of the muta-
tional landscape. Thus, we have succeeded in our attempt to equate FJ in
equation 7.2 with Xt in equation 7.1.

The next problem concerns the point process Me(t) that represents the
times of environmental change or allelic constrictions. If Me(t) is to corre-
spond to the empirical M(t) in equation 7.1, we need some reason to think
that Me(t) will be close to a Poisson process. There is a simple argument
that appears to do just that.

The times at which episodes of substitutions occur are widely sepa-
rated; a typical locus experiences one amino acid substitution every 10
million years. Yet, the environment is changing on a considerably faster
time scale. Obviously, not every environmental change results in an amino
acid substitution. For a change to result in a substitution, it must alter the
relative fitnesses of the alleles that are accessible on the mutational land-
scape and the new ordering must be maintained long enough for the burst
of substitutions to run its course or for polymorphic alleles to accumulate.
From the point of view of a particular locus, such changes must be very
rare.

For many changes, there may be a large number of loci that have alleles
available on the mutational landscape that can mollify whatever challenge
the environment may have offered. Should the alleles at a particular locus
be more strongly selected than those at other loci, then this locus is more
likely to experience a burst of substitutions or an accumulation of polymor-
phic alleles. Under the epistatic scheme that I envision, the changes at this
locus will restore the rank ordering of alleles at the other loci and, in so
doing, prevent substitutions at these loci.

We can capture these ideas in a model by supposing that the times of
environmental change are represented by a point process M.(t), that the
probability that a change in the environment leads to a burst of substitu-
tions or the accumulation of a new set of alleles at a particular locus is
p, and that the probabilities that successive environmental changes lead to
bursts of substitutions or polymorphisms are independent. Set Me(t) equal
to the point process obtained by including a point from Ai(t) in Me(t) with
probability p.

The act of choosing points at random from a point process to create a
new point process is called thinning. A thinned point process will approach
a Poisson process if the rate of the process increases while the probability
of choosing a particular point for the thinned process decreases in such a
way that the rate of the thinned process remains fixed [46, p. 98]. In our
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Figure 7.2. A summary of the elements of the SSWM mode! of molecular evolution.

case, we imagine that the rate of the environmental process M(t) is very
high and that p is very small. As a consequence, Me(t) should be close
to a Poisson process and our demonstration that equations 7.1 and 7.2 are
similar is complete.

The two essential ingredients in the model are the limitations placed on
the number of substitutions by the mutational landscape and the Poisson
character of the environmental changes that lead to substitutions. What
differentiates the model from others is that substitutions are "waiting" for
environmental changes rather than mutations. The model is environmen-
tally limited rather than mutationally limited, even though the population
spends most of its time sitting on a peak in the mutational landscape.

The SAS-CFF model differs from the overdominance model in that it
has an allelic exchange process in addition to buildup processes and allelic
constrictions. Recall that the fluctuations in the frequencies of SAS-CFF
alleles due to the vagaries of the environment mean that alleles may oc-
casionally become rare enough to be sucked into the boundary layer and
replaced in the interior by a new allele. This leads to a steady exchange
of alleles in a process that is remarkably like the origination process of the
weak-selection neutral model. In particular, the allelic exchange process is
a Poisson process and is mutation limited (see equation 5.24).

Both substitution processes may be included in a single model as illus-
trated in Figure 7.2. The rate of substitution per year for the combined
model is, from equations 5.23 and 3.13,

where pe is the episodic rate, /i& is the mean burst size, px is the rate
of allelic exchange, and K is the number of segregating alleles. In this
expression, px is expressed in units of generations so it must be divided by
the generation time, g, to yield a clock-time rate.
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The weak generation-time effect suggests that the contribution of the
allelic exchange process, which will only operate at polymorphic loci expe-
riencing SAS-CFF style dynamics, will be less important than the episodic
process. Moreover, the observation that the level of polymorphism and the
rate of substitution are correlated (see Fig. 1.18) also suggests that the
episodic component dominates. (Recall that /i& is an increasing function of
K as given by equation 5.14.)

It is tempting to extend the analysis of the SSWM model to test for
agreement with polymorphism data. For example, the SAS-CFF model
has the same sampling distribution as the weak-selection neutral model
and necessarily fits the allele frequency data as well as does the neutral
model. However, it does not seem profitable to head down this path. The
distribution of the frequency of alleles in the population depends critically
on the details of the model. One thing we can be certain of is that whatever
model we choose it will not be a faithful mimic of nature. Should we reject,
say, the symmetric overdominance model we need only move to an asym-
metric overdominance model to achieve agreement. We could accept the
asymmetric overdominance model, but at the risk of committing a blatant
Type II error. The problem is compounded by the distinct possibility that
the population is out of equilibrium.

These complications do not arise when discussing substitutions under
the SSWM assumptions because all models converge to the fixation pro-
cess in equation 7.1; the differences between models are only reflected in
the moments of Xi and M(t). Just as with the neutral model, substitu-
tions separating species are much more instructive than are polymorphisms
within species.

At this early stage in the development, the SSWM model of molecular
evolution and polymorphism appears to fit the protein sequence data better
than do weak-selection models. Moreover, the model can directly address
the numerous examples of amino acid variations that appear to be related
to aspects of a changing environment, a connection that is not embraced
by weak-selection models. The model, as presented here, is in its most
specialized form. Generalities may be found in [95,96].

There is, at present, no compelling evidence concerning the strength
of selection acting on silent mutations. Our current estimate of the index
of dispersion for silent substitutions is so confounded by corrections for
multiple substitutions that it is premature to use the index in any scientific
judgments about forces acting on silent mutations. The fact that silent
substitutions exhibit an apparent generation-time effect in mammals means
that, were they strongly selected, they would be mutation limited.

7.3 Moderate selection

Moderate-selection models have dominated the literature on stochastic the-
ories of selection. In classical population genetics the standard assump-
tion in models that mix constant selection and finite population effects is
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s = O(\/N). More recently, a common alternative model to the neutral
model in discussions of molecular polymorphism is overdominance with
moderate selection (e. g., [298]). While constant-fitness models spanning
the time scale of molecular evolution are biologically unrealistic, moderate-
selection models with varying fitness are of interest.

The most thoroughly studied random environment moderate-selection
model is the TIM model, named for the three authors of its original incar-
nation: Takahata, lishi, and Matsuda [278]. The model, which is concerned
with selection on additive alleles in a moderately autocorrelated environ-
ment, is approximated by the diffusion process

To place this diffusion in the context of our previous models, it should be
compared with equation 4.58, which is the symmetric SAS-CFF diffusion.

The first, and most important, observation is that the TIM model cor-
responds to a SAS-CFF diffusion with B = I. This is the value of B that is
appropriate for a moderately autocorrelated environment as was recorded
in Table 4.1. The second observation is that k = oo and 6 corresponds to
the locus rather than a site within the locus. In this regard, the TIM model
is similar to neutral models, which also assume an infinite number of alleles
and a locus 6.

Recall that SAS-CFF models with B = 1 are equivalent to haploid
models. In haploid models with only temporal fluctuations, selection is a
dispersive rather than a balancing force. Consequently, variation must be
held in the population by the balance between mutation and the combined
effects of drift and fluctuating selection. For mutation to be a powerful
enough force either we need to increase the mutation rate or the number
of alleles over what was assumed for SSWM SAS-CFF models. As the
nucleotide mutation rate is fixed, our only choice is to assume that the
number of moderately selected alleles is very large, hence the assumption
that k = oo . Despite the apparent simplicity of the TIM diffusion, very
few analytic results are available. The most complete description, based of
computer simulations, is by Takahata and Kimura [279]. From their paper
we can describe some of the qualitative features of the model.

As the strength of selection increases, it begins to dominate both drift
and mutation and variation is driven from the population. In addition, the
time scale of selection is shortened, so alleles move through the population
faster, leading to an accelerated rate of substitution. Takahata and Kimura
showed that the rate of substitution approaches

as selection begins to dominate drift. From this we see that the rate of
substitution is mutation limited, hence we should expect to see a generation-
time effect under the TIM model.
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Population size

Figure 7.3. A simulation of the TIM model. R(t) is the index of dispersion of the
origination process and S is the average number of segregating sites.

For the TIM model to be a candidate to explain protein evolution, it
must be able to account for the high index of dispersion. Since no ana-
lytic results are available on this point, I simulated the infinite-sites, no
recombination TIM model and recorded both the index of dispersion for
the origination process and the average number of segregating sites. The
results for one case are illustrated in Figure 7.3.

Surprisingly, the index of dispersion is less than one. If the mutation
rate and strength of selection are held fixed as the population size increases,
the index of dispersion decreases. The only explanation I can offer is that
fixations occur fairly rapidly, thereby wiping out the standing variation
and introducing a refractory period during which variation builds to spawn
another substitution. If such a process occurs, then the substitutions will
be more regular than for a Poisson process, thus accounting for the low
index of dispersion for the TIM model.

The TIM model does not appear to be a viable candidate for protein evo-
lution but its two major features, low index of dispersion and pronounced
generation-time effect, make it a viable model for silent substitutions as
will be discussed more fully in the next section.

It should be noted that the TIM model is very similar to Ohta's model of
moderately selected deleterious alleles. If we were to examine the fitnesses
of genotypes under the TIM model at one instant in time, they would be
distributed in exactly the same way as assumed under Ohta's model. The
essential difference, of course, is that under the TIM model the fitnesses
change slowly through time, whereas under Ohta's model they remain fixed
in perpetuity. Depending on one's views on the time scale of change of
fitnesses, the TIM model might well be viewed as an improvement, or at
least an extension, of Ohta's model. However, the two are dynamically
very different. Under Ohta's model, genetic drift is the only force causing



302 Selection theories

Figure 7.4. A unified model of selection in a fluctuating environment

the fixation of mutations whereas under the TIM model, selection always
plays a role and when a is large, plays the dominant role. This difference
shows that a lot rides on Ohta's assumption that fitnesses are constant. If
her model is to be used as an explanation for certain phenomena, then the
explanation must carry with it a clear justification for maintaining constant
fitnesses.

7.4 Whither?

I have argued the case for strong selection acting on amino acid variation
but have said little about silent variation. I feel that at, the time of this
writing the data on silent variation are too sparse to form a clear picture of
the phenomenology, much less of the responsible forces. It does seem to be
true that silent substitutions are mutation limited and that their rates of
substitution are less variable than are those of replacement substitutions.
It also seems true, based on the evolution of codon usage, that natural
selection plays some role in the dynamics of silent mutations.

It is of some interest to try to fit silent and replacement dynamics into a
single unified model. The approach that I will take makes the fundamental
assumption that selection on silent mutations is weaker than that on re-
placement mutations. Few will find this assumption unpalatable, although
it must be stressed that there is no direct evidence to support it. If our
model is to be unified, it must contain some elements that slide smoothly
from the stronger selected amino acid mutations to the more weakly se-
lected silent mutations. Figure 7.4 is a rendition of the slide.

In our discussion of the conditions for polymorphism under the SAS-
CFF model, we observed that variation will be maintained if the variance
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in the effects of alleles is greater than the difference in their mean effects.
Typically—for example, equation 4.31—the conditions for polymorphism
are of the form

where the constant c reflects the particular details of the model. If the
variance is large enough, all k alleles will be held polymorphic.

In our derivation of the SAS-CFF diffusion we assumed that the mean
and variance of allelic effects on the additive scale were very small and
of the same order of magnitude. One way to express this assumption is
through a parameter, e, and the order of magnitude relationships:

As f. —> 0, the order of magnitude of the moments on both sides of equa-
tion 7.4 remain the same relative to each other. Consequently, polymorph-
ism is possible no matter how small f. may be.

Is this scaling appropriate? In biological systems one often constrains
the coefficient of variation when scaling. In equation 7.5, the coefficient of
variation is of magnitude 1/^/e. As e —> 0, the coefficient of variation blows
off to infinity. While we have no a priori reason to be distressed by this
revelation, it does suggest that we entertain another scaling. If our criterion
is that the coefficient of variation remains fixed, then we must have

With this scaling, the mean effects on the left side of equation 7.4 grow
in proportion to e, while the variance effects on the right side grow in
proportion to e2. These two cases are illustrated in Figure 7.4 by the lines
marked "Polymorphism criteria" and "Variance scaling," respectively. The
slope of the former line is chosen such that when the lines cross, at fl, we
move from a domain where balancing selection is not operative to a region
where it is.

In the region of strong selection, marked WA/z:» 1 in Figure 7.4, bal-
ancing selection is seen to incur the largest fitness differences. Perhaps this
is related to the ease of finding kinetic and physiological differences between
polymorphic alleles as documented in Table 1.3 and the correlations of de-
velopmental and fitness components with the number of heterozygous loci
that we documented in the subsection On Being Heterozygous.

As we slide from strong to moderate selection, the variance in fitness
goes to zero more rapidly than the mean. It appears that the effects of
environmental stochasticity become insignificant in comparison with mean
effects. To correct this we need to introduce another element to the model:
autocorrelations in the temporal fluctuations. Accordingly, assume that as
e —» 0, the autocorrelation increases as required for the continued presence
of stochastic selection (see equation 4.52).
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The delicate balance between the variance and autocorrelation required
by equation 4.52 may seem overly restrictive. However, rather than viewing
equation 4.52 as a restriction on the model, it is preferable to view it as a
filter on the full power spectrum of environmental fluctuations. Only those
fluctuations with autocorrelations given by equation 4.52 will contribute to
the dynamics of moderately selected mutations. Those components fluctu-
ating on a faster time scale will average out and contribute nothing to the
dynamics. Those on a longer time scale will give long-term mean advan-
tages to certain sets of alleles from which the moderately selected alleles
will be chosen.

The final assumption of the model concerns the numbers of alleles partic-
ipating in the dynamics. If we accept the Fisherian view that mutations of
small effects are more likely to be advantageous in the current environment
than alleles of large effect, then the number of mutations participating in
the dynamics of our model should increase as selection gets weaker. Once
we enter the moderate-selection domain, variation is maintained by the
balance between mutation and the combined effects of drift and fluctuating
selection, so the number of alleles must be very large.

At the present time the theory of selection in a fluctuating environment
is not developed sufficiently to assess fully the merit of the model sum-
marized in Figure 7.4. In each domain we have a model that has been
investigated in some detail:

Neutral model: In the lower left hand corner we have the weak-
selection neutral model. As the figure is drawn, the neutral domain
appears to occupy a small fraction of the space of mutations. How-
ever, as the effective population size gets smaller, the relative region
occupied by the shaded neutral region will grow. If population sizes
were small enough relative to the strength of selection, most muta-
tions could be weakly selected. In the neutral domain populations
are not likely to be in equilibrium due to the effects of hitchhiking.

TIM model: In the moderate selection domain alleles are continually
being brought into and driven out of the population by a moder-
ately auto correlated fluctuating environment. C. H. Langley once
suggested to me that these dynamics be referred to as "churning hap-
lotypes." The time scale of the TIM model is faster than that of the
weak-selection neutral model so it is possible that moderately selected
alleles are in equilibrium. Silent mutations are good candidates for
this domain.

Mutational landscape model: This strong-selection substitution model
produces the bursts of substitutions required to elevate the index of
dispersion. Polymorphism is ruled out if the mean effects, which
change on a time scale of millions of years, are larger than the variance
effects.
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SAS-CFF model: In the right domain variance effects are large enough
to allow balancing selection under the SAS-CFF model. Superim-
posed on these dynamics are occasional allelic constrictions operating
on a time scale of millions of years that result in bursts of substitu-
tions. Overdominance may occur for short periods of time relative to
the time scale of molecular evolution. This is indicated by "Transient
overdominance" in the lower right hand corner.

I will leave the description of the unified model at this incomplete stage.
A critical aspect of the unified model, one that has not been explored

mathematically, concerns the role of the autocorrelation of the environ-
ment. Environmental fluctuations may be decomposed into components
operating on time scales of different lengths. The greatest power is pre-
sumably concentrated at shorter time scales, hours to years. These are the
components that lead to polymorphism under the SAS-CFF model. The
components with time scales similar to the time scale of moderate selec-
tion will allow the TIM dynamics to proceed. Very long time scale changes
will be responsible for substitutions in the mutational landscape and allelic
constrictions. These long time-scale fluctuations may be due, in part, to
an evolving biological environment as well as an epistatic internal environ-
ment. At the present time, we do not have a theory that begins with a
spectrum of environmental noise and demonstrates how each component
leads to evolution on the corresponding time scale.

The theories outlined in this chapter do not mesh well with some of the
standard paradigms of population genetics, the most cherished of which
is Sewall Wright's adaptive landscape. Under this model, populations are
imagined to spend most of their time on selective peaks, genetic drift pro-
viding the push when a population jumps from one peak to another. In
our random environment models, there are no analogs to adaptive peaks.
The essential reason is that the adaptive landscape is changing faster than
the genetic system. The population is always running uphill, but the peak
is always two steps ahead. All the population ever sees, in effect, is the
side of the mountain. Should it stop evolving, it will face extinction. This
view is essentially Fisher's description of the deterioration of the environ-
ment [75, p. 45]. It is also closely related to his model on the nature of
adaptation [75, p. 41] that assumes that a population is never exactly at
its optimal phenotype.

If selection is responsible for much of the protein polymorphism and
some of the silent polymorphism, then some of this variation must con-
tribute to the variation observed in quantitative characters through its
pleiotropic manifestations. The standard paradigm claiming that most
quantitative variation is due to the balance between mutation and selec-
tion must be reexamined in light of our model. Perhaps the reader will be
stimulated to work in this challenging area of evolutionary theory.
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